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Dielectric Relaxation for Spherical Molecules in a 
Crystalline Field: Theory for Two Simple Models 

John D. Hoffman and Benjamin M. Axilrod 

A t heor y of dielectric relaxa t ion is given for t wo simple models where t he dipoles may 
occupy orientat ional sites arranged in t hree dimensions. I n t he first model, t he di pole may 
poin t t oward t he corn ers of a regula r tetrahedron, and in t he second, toward t he faces of a 
cube. Both models are simplified to the extent that only one of t he sites can differ in cnergy 
fro m all t he others. 

The calculations show t hat these models lead to a discrete set of dielectri c relaxa t ion 
t imes when t he sites are not equi valent. The effect of t he set of relaxat ion t imes on t he 
characteristics of t he dielectric relaxa tion spectru m is examined . The relaxat ion t imes a re 
always suffi cient ly close t ogether so t hat t he dielectric loss is confined t o a s ingle r egion . 
H owever, the sepa ration of t he relaxation t imes is suffi cient to cause t he d ielect ric loss peak 
to be considerably broader t han that predi cted by t he D ebye equations. In addit ion , it is 
found t hat the loss maximum will frequent ly be asymmetrical. The variation of the di
electric constant with te mperature, an d t he breadt h and asymmetry of t he loss peaks are 
discussed. 

1. Introduction 

Our basic viewpoint is that an anisotropy in t he 
crystalline field hindering t he rotation of a d.ipole in 
a lattice can be the source of a set of discrete dlOlectn c 
relaxation times. This viewpoiut has already been 
explored in some detail for a single-axis rot ator. 1 2 

The main obj ective of this paper is t o show how one 
type of calculation used wit h the single-axis rot ator 
can be extended t o include two simple models where 
each dipole in the lattice, by t urning about a lattice 
point , can occupy orien tational sites arranged in 
three dimensions. A model permitting such ori
en tations in space may be a reasonable representation 
for certain molecular crystals composed of polar 
molecules that ar e approximately spherical. 

The theory presented here and in t he papers m en
t ioned above may be regarded as an extension of 

1 J. D . H offman and H. G. Pfeiffer, J . Chem. Pbys. 22, 132 (1954). 
2 J. D . H offman, ibid. (in press). 
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D ebye's two-posit ion model,3 The two-position 
model gives only a single 1 34 relaxat ion time; how
ever, a se t of relaxation t imes frequen tly appears for 
a single-axis rotator when more t han two sites are 
involved. 1 2 We have also modified D ebye's theory 
to the extent that transit ion probabilit ies of the 
elementary process for dipole reorientation have been 
defined along the lines proposed by K auzmann.5 

2. Tetrahedral Model With One Stable Site 

2 .1. Model 

In this model the dipole possesses four equilibrium 
orien ta tions (sites) designated 1 through 4 which 
are arranged in a tetrahedral manner (fig. 1) . The 
permanen t dipole moment has the magni tude fJ.. 

3 P . Debye, Poiar Molecules, p . 104 (Dover Publications, New York, 1945). 
4 H . Frohlicb , T heory of DielectTics, p. 83 (Oxford University Press, 1949). 
' W. Kauzmann, R ev. Mod. Phys. 14 , 12 (1942). 
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ANGULAR POSITION 

F IGUR E 1. Elementary processes for the tetrahedral model . 

Left diagram : Heavy straight arrows indicate eqnilibrium dipole orientations, light ellrved arrows the ele mentar;' 
processes k (- - ---» and k' (----». Site 1 is the stable orientat ion. Right diagram: Details of the barrier system for site I 
relative to sites 2, 3, a nd 4. The barrier between sites 2,3, and 4 (not shown) is W, and the corresponding transition 
probability is k' . 
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Sites 2,3, and 4 are equivalen t; site lis unique, and 
may be more stable than th e others. 

The dipole can turn in a single jump (elementary 
process) from site 1 to either site 2, 3, or 4 by sur
mounting a local free energy of activation barrier 
W + v. Wand V are shown in figure 1 (right 
diagram) . The barrier system is considered to be 
the result of the crystalline field imposed on the 
dipole by its neighbors in th e lattice. It is assumed 
in this simplified treatmen t that there is no correla
tioD with the motion of neighboring dipoles. 

The probability that a dipole will jump from site 
1 to either site 2, 3, or 4 is given by 

(1) 

where B is a frequency factor , k is Boltzmann 's con
stan t , and T the absolute temperature. The dipole 
must surmount an activation barrier W in order to 
turn from either site 2, 3, or 4 back to si te 1, and the 
corresponding probability is 

(2) 

The ban'ier between any pair of th e sites 2, 3, and 4 
is also TV so that th e probability of the reorientations 
2~3 , 3~4 , and 2~4 is k' . It is readily sern that 
when V > O, so that site 1 is relatively stable, we 
have k' > k. The assigned transition probabilities 
for reorientations between the various sites are 
shown in figure 1 (left diagram.) 

2 .2. Rate Equations 

The molecular relaxation t imes associated with the 
model are calculated by constructing and solving 
the differential equations tha t describe the rate at 
which dipoles enter and leave each site in terms of 
the elementary process t ransition probabilities given 
by eq (1 ) and (2). The number of dipoles leaving a 
site i and entering another designatedj is the product 
of the probability of the transition i --'i>j and the pop
ulation, N i , of site i. In our problem each k repre
sents the probabilit.v that a dipole will leave a site 
in a specified direction and turn to an adjacent site 
(single-jump hypothesis, S - J) . 1. 2 

Consider the llet rate at which dipoles enter and 
leave site 1. According to our hypoth esis the num
ber per second leaving site 1 and en tering site 2 is 
kN1 ; the total number leaving to enter sites 2, 3, 
and 4 is 3kN1 • Similarly , the number returning 
from site 2 to site 1 is k' N 2• The corresponding 
numbers leaving sites 3 and 4 to rnter site 1 are 
k' N3 and k' N 4 . Hence the net rate for site 1 is 
given by clN1/clt= - (numbrr leaving) + (number en 
tering) = - 3kN1 + k' (N2 + N 3 + N 4 ) . Similar reason
ing leads to the differential equations for the net 
rates for the other sites. Thus we find 

clNddt=-3kN1+ k' (N 2 + N 3 + N 4) ) 

clN2/clt= kN1- 3~' N 2+ k: (N 3+ ~T4) 

dN3/(lt= kN1+ k N 2- 3k N 3+ k N . 

dN4/dt = kN1+ k' (N 2 + N 3) - 3k' N 4 .' 

(3) 

The solu tions of eq (3 ) will provide the molecular 
(intrinsic) relaxation times, T~ , where (3 is the mode 
of decay, and will also give considerable information 
regarding the nature of the modes of decay. 

2 .3. Relaxation Times and Modes of Decay 

Solutions of the equa tions of the t.vpe illustrated 
in eq (3) are of the form 1.2.6 

Ni=~Ci81/;~ ; i = 1, 2, .'. 0, (4) 
~ 

where i refers to a par ticular site, 0 is the number of 
sites, (3 is the mode of deca~~, and 1/;.8 is a deca~~ func
tion of the form 

(5) 

The set of discrete relaxation t imes is gi ven b.v 

T~=- llf~(k, k'). (6) 

The solutions of eq (3) are obtained by forming the 
characteristic determinant of the differential equa
tions, and solving for eigenvalues of the operator 
D = cl/clt. These eigenvalues, which are always found 
to be negative or zero, are the h(k,k' ). One of the 
f~(k,k' ) is always zero, and this mode is designated 
by {3 = 1; the corresponding Oil are the equilibrium 
values of the N i . The relationships between the 
Oi~ for each mode where ,8 ;;;2 are determined by sub
stituting each solution Ci~l/;d into eq (3). On carry
ing ou t the above steps we find that the solu tions of 
eq (3) may be written7 

fi;lode 2 ].£ode S 

N ,= 0 11 + 30221/;2 + 0 '\ 

N 2= C21 (\21/;2 + (1,31/;3 
(7) 

N 3 = ('31 n 21/;2 + 0331/;3 

N 4= 041 C1.2 1/;2 + 0 431/;3 

where I/;z= exp[ - (k' + 3k)t] and 1/;3= exp(- 4k't) . 
Also, we may no te that 0 1;1= C31= C41= CIl exp (- F j 
kT), and that C23+ C33+ 0 43= 0. 

Equation (7) describes the rate at which equilib
rium is established after the abrupt removal of a dis
turbance at t= O. In the present case th e displace
ment from equilibrium at t;;£O will be assumed to be 
the result of a static electric field. The quantities 
Oi~ and Ci3 in eq (7 ) represent the (small) number of 
dipoles that are displaced from their eq uilibri um 
orientations by the field . 

--> 

If we form the vectors C iZ where each C i2 has the 
direction of a dipole in the i th site and the magnitude 

6 Ince, Ordinary Differential Equations, p. 144 (Dovcr Publications, New York, 
1944l. 

7 T he eigen value of the characterist ic dcterminant D=-4k' occurs tw ice. In 
the case of such doubly degenerate roots we actuall y have N i= Gi1+ Gi'W,+Gi3h 
+ tG" ,"3. However, it is found by substitu ting th is solution into the original 
differential equ ations that the Gil are identically zero. 
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..... 
0,'2, the sum of the C;2 is a measure of the polarization 
associated with mode 2. A similar relation applies 
to mode 3. Thus, eq (7) indicates that, owing to the 
return of the displaced dipoles to their equilibrium 
orientations, the polarization will decay with time 
according to 

(8) 

P2 and P3 are the polarizations associated with modes 
2 and 3 at t= O. The actual values of P~ and P3 are 
calculated in a following section. Since the dielectri c 
r elaxation time is defined as the time the polarization 
takes to fall to l /e times its original value, it is seen 
that the molecular relaxation times are 

T2 = 1/(k l + 3k)} 

T3= 1/4k' 

in accord with eq (6). 

(9) 

Information regarding the nature of the modes of 
decay can also be obtained from the solu tions. The 
constants Ci2 in eq (7) show that mode 2 promot.es 
the attainment of equilibrium by permitting a flow 
of dipoles from site 1 equally to sites 2, 3, and 4 (or 
vice versa). Similarly, it is seen that mode 3 involves 
reorientations among the equivalen t si tes only ; site 
1 is not involved. The uncertainty (which is removed 
when we place an electric field on the system) regard
ing the exact nature of the motions for mode 3 is a 
resul t of the fact that this mode is degenerate. 

2.4. Polarizatio~ and Orientational Polarizability 
Associated With the Relaxation Times 

It is de irable to know the polarization and po
larizability associated with each mode of deca~T . 

Z 
I 

I 
I 
I 
I 
z' 

x 

This means that we must evaluate the Oiff in cq (7) 
for (3 ~ 2. To do this we first calculate the new 
equilibrium number of dipoles, Ot1' in each ite when 

..... 
a static electric field F is present, where F i the 
magnitude of the fi eld. 

According to the Boltzmann d istribu tion law we 
may write 

.......... 
Oi~/Ot~ = Oile(I'" I<' );/kT/Oue(I'" I<'),/kT (10) 

where Ot1 is the equilibrium number of dipoles in 
..... 

site i in the presence of the fi eld F, and 0:; is th e 
--+--+ 

corresponding number for site 1. The quantity wF 
is given by 

C;F) i= J..tF[sin ~; cos 0; sin ~ cos 0+ 
sin ~; sin 0; sin ~ sin O+cos ~: cos OJ . (11) 

The angles ~; and 0; define the angular position of 
the i th site, while ~ and 0 define the fi eld direc tion 
(fig. 2). After calcula ting the ratio Oi~/O:; for 1= 2, 
3, and 4, and applying the condition "20i~ = N where 

I 

N is the Lotal number of dipoles in the lattice, we 
obtain 

Oit = Oil + 4 Oil 021MF cos ~/NkT 

0:; = 0 21 - 40 11 021 MF cos ~/3Nk T -
0 21 MF sin " sin Hcos 0+ 3 Slll 0)/2k T 

0:; = 0 21 - 40 11 C21 MF cos ~/3Nk T - (12) 
021J..tF sm " sm Hcos 0- 3 sin 0)/2k T 

0:; = 021-4011C21 MFco ~/3NkT+ 
021 MF sin " sin ~cosO/kT 

F 

FIGURE 2. Arrangements of the site(and field direction for the tetrahedral model. 

Left diagram: Heavy arrows rep resent the equilibrium dipole orientations. Righ t diagram : Polar coordinates used 
to define the field direction. The same angles with the notat.ion €; and 0; are used to define the equilihrium dipole 
orientations. 
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to an excellent approximation.s }. is the tetrahedral and for mode 3 
angle. 

The actual number of dipoles displaced by the P 3= (S 0321) (3/1k2FT-) ' 
field into each site for each mode is readily obtained 
if we note , as implied in sections 2, 3, that 

N i = 0[1 at t=o ~ 
Ni= Oil at t= ro. j 

(13) 

With the 0[1 given in eq (12), application of these 
boundary conditions to eq (7) yields 

0 12 = 4 011 0 21 /1 F cos ~/3 N kT } 

023 = - 0 21 /1 F sin}. .sin ~ (cos 0 + v'3" sin 0) /2 k T 
0 33 = 0 21 /1 F sin}. sin ~ (..j3 sin O- cos 0)/2 kT (14) 

043 = 021 /1 F sin}. sin ~ cos O/kT 

Now that the coefficients Oi{3 have been evaluated 
for the case of an applied electric field , the polariza
tion and polarizability associated with each mode 
at t= O may be calculated . For each mode we 
obtain the eornponents of the polarization in the 
x, y , and z directioUR with 

/> "'" N . , ' } x = /1 L.J i SIn ~i cos Oi 

p y: J1 ~ N i sin ~.: sin 0; 
P z- I" ~ N i cos I ', 

(15) 

where the H i (at t= O) are given by eq (7) after 
relations (1 4) h ave been inserted. To obtain P x, 
P y , and P, for a given mode, only the part of the 
Ni involving that mode is employed. The com
ponents of Px, P y , and Pz in the fi eld direction are 

P ( X, P ) = P x sin ~ cos O} 
P (y , P ) = P y sin ~ sin 0 

P (z, P)= Pz cos~ . 

(16) 

The average value of the polarization for all orienta
t ions of the applied field is given by 

(17) 

The averaging over all orientations of the applied 
field implies that the sample is polycrystalline, 

Following the above procedure we obta.in for 
mode 2 

P = (160 n 0 21 ) (/12F ) 
2 3N 3kT ' (1 Sa) 

' In applying eQ (10), the ex ponentials ha\'e been expanded and tf rms 0(-;;; 
k T )2 and higher dropped. This is permissib19 since for ordinary field strengths 
-+-> 
JJ ·F/k T < < 1. 

(ISb) 

These are the polarizations referred to in eq (S) . 
Using the defining relation P{3 = NO/{3F, we find the 
molecular orientational polarizabilities to be 

(lSd) 

where we have made use of the fact that Oll/N = k' / 
(k' + 3k) and OzdN = k/(k' + 3k). The total polariz
ability, O/ totaI, is given bv [Sk (k ' + k)/ (k' + 3k)2] 
(J12/3kT) or [Sg (l + g)/ (1 + 3g) 2] (l /3kT) where g= k/k' . 

2.5 . Characteristics of the Dielectric Relaxation 
Spectrum 

So far , we have given our r esults in terms of 
quantities tha t describe how the polarization will 
decay with time after the abrupt removal of a static 
field. It should be noted that the relaxation times 
and polarizabilities which describe the rate of decay, 
as well as the relative magnitude of each decay proc
ess, are expressed in terms of molecular properties. 
It is desirable to apply these r esults to macroscopic 
systems where the m easuring field is sinusoidal so 
that we may learn something of the shape of the 
regions of loss in the dielectric r elaxation spectrum. 

If the polarization of a macroscopic system decays 
a.fter the abrupt r emoval of a static field with time 
according to [ef. eq (8)]9 

pet) = ~P{3e-tj T~ , (19a) 
{3 

where T {3 is the macroscopic relaxation time for the 
11th mode of decay, we may write (assuming linear 
superposition) for sinusoidal fi elds 

f " (w) is the dielectric loss factor, w the angular 
frequency, and t:.f{3 the increment of dielectric con
stant associated with the 11th mode of decay. Equa
tion (19b) redu ces to the form of the D ebye equa
tion 10 for f" (w) when there is only one relaxation 
time. For an Onsager-like internal field, it has been 
suggested by Powles 11 that T{3 ~T{3 , and we will 
employ this approximation. Also, for this field i t is 
reasonable for the purposes of an approximate 
analysis to assume that t:.f{3~K' O/{3 where K is a con-

g The macroscopic relaxation time exceeds the molecular relaxation time owing 
to the tendency of the internal field to main tain itself, and the magnitude of 
the effect is proportional to the difference between the applied field E and the 
ill te rnal field F. 

10 See p. 94 of reference itl footnote 3. 
II J . G. Powles, 1. Chem. Phys. 21, 633 (1953). 
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stantY vVith these a PPl'oximaLions we have the 
working equa tion ,12,2 

(20) 

This equat ion, together with eq (9) and (18) can be 
used to predict t he general characteristics of the 
dielectric relaxation spectrum for the tetrahedral 
model. For t he present , we will restrict the discus
sion to the nature of a plot of e" against log w. This 
discussion will be facilitated by reference to table 1 
where the rat ios a2/a3 and 72/ 7 3 are given , together 
with values for th e tot al orientational polarizabilitr, 
atotal , for v arious values of k/k' . It is convenien t to 
discuss t he res ults in terms of what ha ppens as the 
ratio k/k' goes from zero to unity . 

When site 1 is relatively stable so that k/k' is 
small compared to unity, it is seen from the table 
that t he relaxat ion t imes are moderately far apar t, 
and t hat the polarizabilities are unequal but st ill 
of comparable magnit ude. Under these condit ions 
t he dielectric loss peak calculated with eq (20) is 
not only broader than that predicted by the D ebye 
equation with a single relaxation t ime, but is also 
lightly asymmetrical. Since the longer relaxation 

t ime, 72, is associated with the larger polarizability, 
a2, t he loss peak is somewhat steeper on the low 
frequency sid e (fig. 3, curve A) . Since the tot al 
polarizability is ra ther low wh en Ie /k' is small, that 
part of the dielectric constant res ult ing from orienta
t ion of dipoles will be small . 

If we now ra ise k/k ' to the value one-third, the 
relaxat ion t imes are somewhat closer together t han 
before, and t he polarizabilit ies are equal. The cal
cula ted loss maximum is still somewhat broader 
than one would predict from the D ebye equation , 
and is also symmetrical (fi g. 3, curve B ). 

TABLE J . Properties of the tetrahedral model 

Ratio of the Ratio of the rl'otal polariz-

g~klk ' re laxation poiarizabili ties abilit.y iXtotlll 
in unHs of times 7 2/T3 tX2/a a p.'/3k T 

0 4 2 0 
11100 3.88 1. 94 .08 
1/ 10 3.07 1. 54 .52 
1/3 2 1 .89 
1/2 1.00 . 80 .96 
3/4 1. 23 . 62 .99 

1 1 . 50 1 
, 

As k /k' is increased above a value of one-third, 
the relaxation times continue to converge so t hat 
the loss maximum becomes even narrower . The 
polarizabilit ies are again unequal so t hat the loss 
maximum again becomes asymmetrical, but owing 
to t he close spacing of the relaxat ion t imes the effect 
will hardly be no t iceable. I t should be observed 
that this slight asymmetry is of a type opposite 
to t hat found for values of k/k' <?~ . 

12 1:'hesc approximations a rc probably fairly accurate , especiall y in the case 
where the die lectric constant is low. 

-I o +1 
LOG w / w c 

F I G U R E 3. Sha pe oj the dielectric loss peaks for lhr tetrahedral 
model. 

Curve A, asymmetri cal and broadell ed peak calculated for y~O; curve B , 
broade ned bu t sym metrical peak calculated for g= ~-S: curve C, narrow and sym
metr ical peak for q= l (si ngle rr laxation time). w is the measu ring freQ ur!1cy, 
and We;S thr frequency w hrrc ~If is a maximu lll . For cOJl vcn iellc(' in comparing 
the sha pe of the curves, t he maxim um yalup for the loss has be('n matched at' X. 

Finally, as t hc ratio Ie /k' tends to uni ty, the total 
polarizability reaches t he full value JJ.2/3k T , and 
only a single relaxation t ime 72= 73= ~1e remains. 
Thus, the D ebye equation for e" (w) holds (fig. 3, 
curve C) . I t must be emphas ized t hat, alt hough 
the polal'izability becomes JJ.2/3k T, the value for a 
free rotator, we are dealing with hind ered rotation 
inasmuch as barriers still exist between t he sites . 
H ence, the observed mean relaxation t ime for the 
model will always considerably exceed that of a free 
rotator. 

The dependence of the shape, bread th , and magni
t ude of t he loss maximum wit h increase of tempera
t urc is easily obtained if we note that 

g= le /k' = e- Vlk T . (2 1) 

It is clear from this expression t hat t he ratio k/k' 
will increase wit h rising temperature even i f V is 
a constant. Therefore, t he previous disC llssion of 
the changes in the dielectric relaxation spectrum 
for the case of increasing valu es of Ie /Ie' also holds 
for the case of rising temperaturc. Thus, for t he 
tetrahedral mod el it is seeI'. that the loss maximum 
will generally tend to become narrower wi t h rising 
temperature. The loss peak will be steep er on t he 
low frequ ency side if ie/le i is between ~ero and one
third ; i. e., if V /kT lies between ex> and 1.] . H ence, 
for a very large range of temperature one should 
expect to find some asymmetry, and t his asymmetry 
should tend t o diminish as the temp erature is 
increased. An analysis shows that t he total polar
izability, and hence t he dielectric constan t, will r ise 
up to a temperature where T~V/1. 95k . Above this 
temperat ure the l /T term in t he polarizability begins 
to predominate so t hat t he total polarizability will 
fall with further increase of tempcrat ure. 
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3. Six-position Model With One Stable Site 

The details of the model are shown in figure 4. 
The dipole in any lattice point may lie in either di
rection along each of the Cartesian axes, x, y , and z. 
Site 1 is unique; all the other sites are equivalent and 
m ay be unstable with respect to site 1. The model 
might correspond, for instance, to the case where the 
central dipole in a body-centered cu bic lattice prefers 
to point toward one face of the cube, but may also 
point toward any of the five r emaining faces. 

The S- J hypothesis is assumed. A dipole can 
t urn from site 1 to any of the adjacent sites (2, 3, 4, 
or 5) with a probability k where k is defined as in 
eq (1) . All other reorienta tions to adj acent sites 
occur with a probability k' [eq (2)]. The assigned 
probabilit ies for the various elementary processes are 
shown in figure 4. It should be observed that the 
double jumps 1--76, 2--74, and 3--75 (or the reverse 
processes) are forbidden as elementary processes by 
th e S- J hypothesis . 

The rate equa tions are 

dNddt=-4kN l+k'(Nz+ N 3+N 4+ N 5) 1 
dNz/dt= kN l-4k'Nz + k' OV3+ N 5+ N 6) 

dN3/dt= kN 1 + k' N 2- 4k' N 3+ k' (N4 + N 6) 

dN4/dt = kN 1 + k' N 3- 4k' N 4 + lr' (N5+ N 6) J 
dN5/dl = kN l + k' (N z+ N 4) - 4k' N o+k' N 6 

aN6/dt = k' (Nz + N3 + N 4+ N o) - 4k'N6' 

The solutions may be written in the form 

.1. _ -4k't 
Y' 2- e , 

(22) 

(23) 

6 

z' 

FIG U RE 4. S ix-posi tion model with a single stable orientation 
(site 1) . 

Heavy straight arrows ind icate the equilibrium dipole orirn tation s. Light 
dashed arrows indicate elementary processes wh ich tak~ plaee with a probability 
I'. All other ju mps to ad jaccn L sit es (such as 2-7 1 or 2-73) ta ke place with a 
probabili ty r'. Jumps of the type 1-76 or 5-73 are forb id den as elementary 
processes. 'rhe coordinates used to denote the fif'ld di rcrt ion and orientations 
of the sites arc the sam e as those given in fi gure 2 (ri ght di agram), 

l.Vlocle 3. 

(25) 

Again, only dipol es in the plane containing sites 2, 
3, 4, and 5 are involved . This mode of decay is in
active in the dielectric relaxa tion spectl'um owing 
to a compensatory mo tion of the dipoles ; the sum 

--. 
of the vectors Ci3 is zero , so no polarization results. 
A similar situation arises for the single-axis ro ta tor 
with foUl' equivalent sites. 1 

1v[ocle 4. 
('24= 0 31= 0 44= 054 } 

0 14 = - 4 (l - l /H ) 0 24 

064=-40 24 /H 

(26) 

Substitution of the solutions Oi~h for (3~ 2 111 the 
d ifferen tial equations yields the foIlowingY where H = 2g - 1- q, q= Q/k', and g= k/k' . 

Mode 2. Nfode 5. 

(24) 

This mode of decay thus in volves only those dipoles 
reorienting in sites 2, 3, 4, and 5. The mode is 
active in the dielectric relaxa tion spectrum. 

13 Mode 2 is doubly degenerate, and is hand led in the same manner as modes 
3 and 4 fo r the te trahed ral model. 

0 25 = C15 = 045 = 055 l 
0 15 = - 4 (l - l /H') 025 r 
06.,= - 4 0 25/H ' ) 

(27) 

where H ' = 2g - 1+ q. Both modes 4 and 5 are 
complicated and involve dipoles in all of the sites. 

The polarizability associated with each mode of 
decay is readily calcul ated in the same manner as 
for the te trahedral modeL 'IV e summarize the 
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resul ts below toge thel' with the relaxation times. 

0!2= C ! g59) C~2T} 
0!3= 0, 

T2 = 1/4k' ; ~ 
T3 = 1/6k' ;) 

(28) 

0!4= g(q+ 3- 2g) [(2g- 1+ q)(2g+ 1)- 2(g- 1)] (L ), 
(1 + 5g)2q 3kT 

T4= 1/(2k+ 3k' - Q); 

g(2g- 3+ q) [(2g- 1- q) (2g+ 1)-2(g- 1)] ( Ii ) 
a s (1 + 5g)2q 3kT ' 

Ts= 1/(2k+ 3k' + Q). 

The to tal polarizability is given by [12g(1+ 2g)/ (1 + 
5g)2](J.1-2/3kT). Since the results are rather compli
cated, we resort to calculation of the polarizabiJities 
and relaxation times numerically for various values 
of k /k' . The results are given in table 2. 

It is convenient to discuss the results in terms of 
what happens as k /k' goes from zero to unity. It 
is seen in table 2 tha t the maximum separation of 
the relaxation times occurs wh en k /k ' tends toward 
zero . We then have T4/1".1 ~ 6.85. The two most 
important relaxation times, 1"2 and 1"4, tend to con
verge as k/k ' increases, with the result that the 
corresponding dielectric loss maximum will at firs t 
be somewhat broader than a Debye type peak, but 
becomes more narrow as k /k' increases, and finally 
assumes the simple Debye form when k = k' . The 
total polarizab1lity always increases with increas
ing lc /lc' . 

As in the case of the tetrahedral model, the loss 
peaks will be no ticeably asymmetrical for low values 
of k /lc '. Owing to the fact that the longes t relaxa
tion time is associated with the largest polarizability 
when lc /k' < 0.2, the loss maximum will be steeper 
on the low frequency side in this region. At about 
k /k' = 0.2 the p eak will be slightly broadened but 
nearly symmetrical since the dominan t polarizabilities 
are equal. A slight asymmetry ag ain appears when 
k /k' exceeds ",-, 0.2, but it will not be particul arly 
noticeable owing to the closeness of the relaxation 
times . It should be observed tha t the slight asym
metry tha t appears in this region is such tha t the 
loss peaks will be steeper on the high frequency 
side. The asymmetrv completely disappears when 
lc = lc' . "' . 

T ARLE 2.- Properties of the six-position model 

I 
]{rJaxation t im es Polar izabi li ties 

g=klk' 
( in unils of l /k' ) ( in units of p 2l3kT) 

I " " I " ", a~ 0a Q totlll 

-- ------ ----

0 0. 25 I. 31 0. 191 0 0 0 0 
1/100 . 25 I. 25 . 191 . 038 . 069 . 004 . 1! I 
1/ 10 . 25 . 88 . 190 . 2fi7 . 347 .026 . 640 
1/ .1 . 25 .66 . J89 . 400 .404 .036 . ~40 
1/2 .25 . 39 . 185 . 571 . 377 . 0:1 1 

I 
. 979 

1 . 25 . 25 . 167 . 666 
I 

. 3:13 0 I 

The expression k /lc ' = exp ( - V /k T ), where V is the 
energy difference between site 1 and each of th e oth er 
sites, gives th e dependence of lc /lc' on temperature. 
It follows tha t lc /lc' will increase wi th rising tem
perature, so th e discussion given above in terms of 
growlng values of lc /lc ' also holds for the case of 
increasing temperature. The dielec tric behavior of 
this mod el is qualitatively similar to tha t of the 
tetrahedral model. The total polarizabili ty rises 
up to the temperature T~V/2. 17k , bu t fall as the 
temperature is increased fur ther . 

4. Discussion 

It is clear from the resul ts ci ted above tha t an 
anisotropy 1n the crystalline fi eld can lead to the 
existence of a se t of discrete dielectric relaxation 
times for polar molecules tha t possess orien ta tional 
sites arranged in three dimensions. Th e separa tion 
of the relaxation times is a maximum when the 
crystalline field is Lighly anisotropic. The relaxa
tion times tend to merge as the tempera ture is 
increased . 

The following experimen tal predictions hold for 
both models: (1) The region of loss in the dielec tric 
relaxation sp ec trum will become narrower wi th 
increasing temperature. (2) At low temperatures 
the dielec tric loss peak will be s teeper on the low 
frequency side. This asymmetry will decrease as 
the tempera ture is raised , and practically completely 
disappear somewhat before the loss peak assumes 
the simple D ebye form. A t high temperatures the 
D ebye equations will be a good approximation . 
(3) The dielectric constan t will be small when the 
tempera turp is low, and \\~ill increase as th e tem
pera ture is raised ; a t tempera tures above T ", V /2k , 
the dielec tric constan t will decrease wi th r ising 
tempera ture. It should be noted that no real 
substance should be expected to show the en tire 
range of behavior men tioned above since mel ting or 
transition phenomena may in tervene. 

It should be observed tha t the effec t of a set of 
(discrete) active relaxa tion times on the shape of the 
loss regions is virtually indistinguishable from the 
effect of a suitably chosen con tinuous "distribu tion" 
of relaxation times. Also, it should be noted that 
the effects that have been predicted for the case 
of rising temperature wi th V constan t will occur in a 
more marked way if V decreases wi th rising tem
perature, as is often assumed for the case of coopera
tive in teraction. 

The models trea ted here are obviously ra ther 
specialized , and do no t neces arily correspond closely 
to any real crystal. F or instance, one might exp ec t 
the anisotropy of the crystalline field to be such 
that more than two transition probabili ties are 
required to represen t the ystcm. More general 
models are being studied . 

\iV ASHINGTO~, January 5, 1955. 
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