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Dielectric Relaxation for Spherical Molecules in a
Crystalline Field: Theory for Two Simple Models

John D. Hoffman and Benjamin M. Axilrod

A theory of dielectric relaxation is given for two simple models where the dipoles may
occupy orientational sites arranged in three dimensions. In the first model, the dipole may
point toward the corners of a regular tetrahedron, and in the second, toward the faces of a
cube. Both models are simplified to the extent that only one of the sites can differ in energy
from all the others.

The calculations show that these models lead to a discrete set of dielectric relaxation
times when the sites are not equivalent. The effect of the set of relaxation times on the
characteristics of the dielectric relaxation spectrum is examined. The relaxation times are
always sufficiently close together so that the dielectric loss is confined to a single region.
However, the separation of the relaxation times is sufficient to cause the dielectric loss peak
to be considerably broader than that predicted by the Debye equations. In addition, it is
found that the loss maximum will frequently be asymmetrical. The variation of the di-
electric constant with temperature, and the breadth and asymmetry of the loss peaks are

discussed.

1. Introduction

Our basic viewpoint is that an anisotropy in the
crystalline field hindering the rotation of a dipole in
a lattice can be the source of a set of discrete dielectric
relaxation times. This viewpoint has already been
explored in some detail for a single-axis rotator.'*
The main objective of this paper is to show how one
type of calculation used with the single-axis rotator
can be extended to include two simple models where
each dipole in the lattice, by turning about a lattice
point, can occupy orientational sites arranged in
three dimensions. A model permitting such ori-
entations in space may be a reasonable representation
for certain molecular crystals composed of polar
molecules that are approximately spherical.

The theory presented here and in the papers men-
tioned above may be regarded as an extension of

1J. D. Hoffman and H. G. Pfeiffer, J. Chem. Phys. 22, 132 (1954).
2 J. D. Hoffman, ibid. (in press).

Figure 1.

Debye’s two-position model.? The two-position
model gives only a single ! 3 * relaxation time; how-
ever, a set of relaxation times frequently appears for
a single-axis rotator when more than two sites are
involved.' > We have also modified Debye’s theory
to the extent that transition probabilities of the
elementary process for dipole reorientation have been
defined along the lines proposed by Kauzmann.’

2. Tetrahedral Model With One Stable Site
2.1. Model

In this model the dipole possesses four equilibrium
orientations (sites) designated 1 through 4 which
are arranged in a tetrahedral manner (fig. 1). The
permanent dipole moment has the magnitude .

3 P. Debye, Polar Molecules, p. 104 (Dover Publications, New York, 1945).
4 H. Frohlich, Theory of Dielectrics, p. 83 (Oxford University Press, 1949).
5 W, Kauzmann, Rev. Mod. Phys. 14, 12 (1942).
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Elementary processes for the tetrahedral model.

Left diagram: Heavy straight arrows indicate equilibrium dipole orientations, light curved arrows the ele mentary
processes k (- ——) and k’ (—>). Site 1 is the stable orientation. Right diagram: Details of the barrier system for site 1
relative to sites 2, 3, and 4. The barrier between sites 2, 3, and 4 (not shown) is W, and the corresponding transition

probability is k’.
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Sites 2, 3, and 4 are equivalent; site 1 is unique, and
may be more stable than the others.

The dipole can turn in a single jump (elementary
process) from site 1 to either site 2, 3, or 4 by sur-
mounting a local free energy of activation barrier
W4V, W and V are shown in figure 1 (right
diagram). The barrier system is considered to be
the result of the crystalline field imposed on the
dipole by its neighbors in the lattice. It is assumed
in this simplified treatment that there is no correla-
tion with the motion of neighboring dipoles.

The probability that a dipole will jump from site
1 to either site 2, 3, or 4 is given by

k=R e~ W+ V)/kT (1)

where B is a frequency factor, k is Boltzmann’s con-
stant, and 7" the absolute temperature. The dipole
must surmount an activation barrier W in order to
turn from either site 2, 3, or 4 back to site 1, and the
corresponding probability is

k'—=DB e~ WIkT, (2)

The bacrier between any pair of the sites 2, 3, and 4
is also W so that the probability of the reorientations
2—3, 3—4, and 2=—4 is k’. 1t is readily seen that
when V>0, so that site 1 is relatively stable, we
have k’>k. The assigned transition probabilities
for reorientations between the various sites are
shown in ficure 1 (left diagram.)

2.2. Rate Equations

The molecular relaxation times associated with the
model are calculated by constructing and solving
the differential equations that describe the rate at
which dipoles enter and leave each site in terms of
the elementary process transition probabilities given
by eq (1) and (2). The number of dipoles leaving a
site 7 and entering another designated 7 is the product
of the probability of the transition 7—j and the pop-
ulation, N;, of site 7. In our problem each £ repre-
sents the probability that a dipole will leave a site
in a specified direction and turn to an adjacent site
(single-jump hypothesis, S—J)."?

Consider the net rate at which dipoles enter and
leave site 1.  According to our hypothesis the num-
ber per second leaving site 1 and entering site 2 is
kNy; the total number leaving to enter sites 2, 3,
and 4 is 3kN,. Similarly, the number returning
from site 2 to site 1 is k’N,. The corresponding
numbers leaving sites 3 and 4 to enter site 1 are
k’N; and k’N,. Hence the net rate for site 1 is
given by dN,/dt=— (number leaving) -+ (number en-
tering) = —3kN,;+4'(N,+N;+N,). Similar reason-
ing leads to the differential equations for the net
rates for the other sites. Thus we find

AN, /dt=—3kN, +&’ (N,-+N;+N.)
AN, /dt=kN,— 3k’ Ny+ 1 (Ny+N,)
AN, /dt=kN,+#'Ny— 3k’ Ny+ &’ N,
AN, Jdt=kN,+ &’ (No-+N;) — 3k’ N,

3)

The solutions of eq (3) will provide the molecular
(intrinsic) relaxation times, 73, where 8 is the mode
of decay, and will also give considerable information
regarding the nature of the modes of decay.

2.3. Relaxation Times and Modes of Decay

Solutions of the equations of the type illustrated
in eq (3) are of the form'-*°

A/\Ti:EO{_B‘pS; Q.:l,.?, L] Q, (4)
B

where 7 refers to a particular site, 2 is the number of
sites, B 1s the mode of decay, and ¥5 is a decay func-
tion of the form

Vg, ®
The set of discrete relaxation times is given by
ms=—1/Fs(k, k’). (6)

The solutions of eq (3) are obtained by forming the
characteristic determinant of the differential equa-
tions, and solving for eigenvalues of the operator
D=d/dt. 'These eigenvalues, which are always found
to be negative or zero, are the f3(k,k”). One of the

fa(k,k’) is always zero, and this mode is designated

by 8=1; the corresponding (';; are the equilibrium
values of the N, The relationships between the
(5 for each mode where 8=2 are determined by sub-
stituting each solution Cg; into eq (3). On carry-
ing out the above steps we find that the solutions of
eq (3) may be written’

Mode 2 Mode 3
Ni=Cy + 3 (722% S 0
N=0Cy — Cupp + Ciays _
o , , @)
N,=0C3 — Copy  + 23¥s
A\H = (7‘“ — ( v_)‘gl//g oTa (7‘43¢3

where ¢,=exp[— (k’+3k)t] and y¢;=exp(—4k’t).
;\ISO, we may note that (,,Vn:(j;n:(‘“:(\'” eXp(~r/
kT), and thatr 023’{“(‘33—% C43:0.

Equation (7) desecribes the rate at which equilib-
rium is established after the abrupt removal of a dis-
turbance at t=0. In the present case the displace-
ment from equilibrium at t<0 will be assumed to be
the result of a static electric field. The quantities
(s and O 1n eq (7) represent the (small) number of
dipoles that are displaced from their equilibrium
orientations by the field.

If we form the vectors C,, where each Cj has the
direction of a dipole in the ith site and the magnitude

6 Ince, Ordinary Differential Equations, p. 144 (Dover Publications, New York,
44).

7 The eigenvalue of the characteristic determinant D=—4k’ occurs twice. In
the case of such doubly degenerate roots we actually have N;= Ci+ Cizgo+ Cizls
+tCisps. However, it is found by substituting this solution into the original
differential equations that the Cj are identically zero.
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(5, the sum of the Cy is a measure of the polarization
associated with mode 2. A similar relation applies
to mode 3. Thus, eq (7) indicates that, owing to the
return of the displaced dipoles to their equilibrium
orientations, the polarization will decay with time
according to

P(t):PZe‘(’°'+3"”-}—P3e‘4"". (8)

P, and P; are the polarizations associated with modes
2 and 3 at {=0. The actual values of P, and P; are
calculated in a following section. Since the dielectric
relaxation time is defined as the time the polarization
takes to fall to 1/e times its original value, it is seen
that the molecular relaxation times are

T2:1/(k,+3k>
T3:1/4kl

(9)

in accord with eq (6).

Information regarding the nature of the modes of
decay can also be obtained from the solutions. The
constants (' in eq (7) show that mode 2 promotes
the attainment of equilibrium by permitting a flow
of dipoles from site 1 equally to sites 2, 3, and 4 (or
vice versa). Similarly, it is seen that mode 3 involves
reorientations among the equivalent sites only; site
1isnotinvolved. The uncertainty (which is removed
when we place an electric field on the system) regard-
ing the exact nature of the motions for mode 3 is a
result of the fact that this mode is degenerate.

2.4, Polarization and Orientational Polarizability
Associated With the Relaxation Times

It is desirable to know the polarization and po-
larizability associated with each mode of decay.

Ficure 2.

Left diagram: Heavy arrows represent the equilibrium dipole 01‘i,entati0,ns.
The same angles with the notation E‘. and 6, are used to define the equilibrium dipole

to define the field direction.
orientations.

This means that we must evaluate the (3 in eq (7)
for =2. To do this we first calculate the new
equilibrium number of dipoles, €7, in each site when

a static electric field F is present, where /' is the
magnitude of the field.

According to the Boltzmann distribution law we
may write

CanCk=(, lg(:;")i/kT/O“e(:;")l/kT (10)

where Cf is the equilibrium number of dipoles n
site 4 in the presence of the field F, and Cf is the

corresponding number for site 1. The quantity [J'F

1s given by

(uF),

=k [sin & cos 0. sin £ cos §-}

sin & sin 6 sin £sin 6-+cos & cosf].  (11)

The angles & and 6. define the angular position of

the 2th site, while ¢ and 6 define the field direction

(ﬁg 2).  After calculating the ratio Cfj/CY; for i=2,
, and 4, and applying the condition 2, “—N where

N is the total number of dipoles in the lattice, we
obtain

Clﬁ;:011+4('yu ,Ygl,U.Iﬂ cOSs E/va T A
Cfi = Cy—4C, Oyl cos £[3NkT—
Oyl sin \sin £(cos 04 +/3sin 8) )2k T
OF = Cy—4C,, Oy uF cos §/3NET— - (12)
CouF sin \sin £(cos 6— +/3sin §)/2k T
OfF=Cy—4C, Oy uF cos §/3NET+
CypF'sin Xsin ¢ cos 0/kT J

|
|
<. !
I
I

ot
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Arrangements of the sites and field direction for the tetrahedral model.

Right diagram: Polar coordinates used
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to an excellent approximation.® N\ is the tetrahedral

angle.

The actual number of dipoles displaced by the
field into each site for each mode is readily obtained
if we note, as implied in sections 2, 3, that

N,=Cf at =0

(13)
Ni=0Cj at t=w.

With the CF, given in eq (12), application of these
boundary conditions to eq (7) yields
012:4 (ju (JQ] M F cOS E/3 N kT
Cy3=—Cy p Fsin A sin £ (cos 0++/3sin6)/2 kT
Cy3=Cy p Fsin \ sin £ (/3 sin 6—cos 6)/2 kT
Ci==04 p Fsin \sin £ cos 0/kT
Now that the coefficients O have been evaluated
for the case of an applied electric field, the polariza-
tion and polarizability associated with each mode
at /=0 may be calculated. For each mode we
obtain the components of the polarization in the
x, 9, and z directions with
P,=u > N;sin & cos 6,
—u > N, sin & sin 6
P,—=;. > N, cos i

(15)

where the N; (at (=0) are given by eq (7) after
relations (14) have been inserted. To obtain P,,
P, and P, for a given mode, only the part of the
N; involving that mode is employed. The com-
ponents of P,, F,, and P, in the field direction are

P =P, sin ¢ cos 0§
P m=P,sin £sin ¢
P(z,p):PZ CcOS E

(16)
J
The average value of the polarization for all orienta-

tions of the applied field is given by

Py=Pn+Pun+Pon. (17)

The averaging over all orientations of the applied

field implies that the sample is polyerystalline.
Following the above procedure we obtain for

mode 2
P (190G C (8
3kT)

® In applying eq (10), the exponentials have been expanded and terms O(u-F)
kT)Yand higher dropped. This is permissible since for ordinary field stri engths

'8 F/kT<<l.

(18a)

and for mode 3

(18b)

<SO2I> (%kT

These are the polarizations referred to in eq (8).
Using the defining relation Ps=Nasl', we find the
molecular orientational polarizabilities to be

16011021 k k, ,l.t2
“="3N? ><5kT [(k'+‘312>“2] (’s,lc“T pEEC)

8021) (%kT> [Uf’ 3")] <?kT>

where we have made use of the fact that C\,\/N=Fk’/
(k' +-3k) and Cy/N=Fk/(k’+-3k). The total polariz-
ability, o1, 18 given bv [8k(k’+k)/(k"+3k)%
(,uZ/SkT) or[8g(1 -1‘—.])/(1—{—3(]) | (w2[3kT)where g=Fk/k’.

(18d)

2.5. Characteristics of the Dielectric Relaxation
Spectrum

So far, we have given our results in terms of
quantities that describe how the polarization will
decay with time after the abrupt removal of a static
field. It should be noted that the relaxation times
and polarizabilities which describe the rate of decay,
as well as the relative magnitude of each decay proc-
ess, are expressed in terms of molecular properties.
It 1s desirable to apply these results to macroscopic
systems where the measuring field is sinusoidal so
that we may learn something of the shape of the
regions of loss in the dielectric relaxation spectrum.

If the polarization of a macroscopic system decays
after the abrupt removal of a static field with time
according to [cf. eq (8)]°

Pl) =3 PsetI"s, (192)
B

where Tg is the macroscopic relaxation time for the

Bth mode of decay, we may write (assuming linear

superposition) for sinusoidal fields

=> AgwTs/(1+w’T3).
B

E”(CU)

(19b)

¢’(w) 1s the dielectric loss factor, » the angular
frequency, and Aes the increment of dielectric con-
stant associated with the gth mode of decay. Equa-
tion (19b) reduces to the form of the Debye equa-
tion for €’(w) when there is only one relaxation
time. For an Onsager-like internal field, it has been
suggested by Powles ' that Ts~75 and we will
employ this approximation. Also, for this field it is
reasonable for the purposes of an approximate
analysis to assume that Aeg~ K-as where K is a con-
mpic relaxation time exceeds the molecular relaxation time owing
to the tendency of the internal field to maintain itself, and the magnitude of
the effect is proportional to the difference between the applied field £ and the
internal field F.

10 See p. 94 of reference in footnote 3.
1], G. Powles, J. Chem. Phys. 21, 633 (1953).
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stant.””  With these approximations we have the
working equation,'*?

e"(w)gK-dZaﬁwTd/(l + w’7d). (20)

This equation, together with eq (9) and (18) can be
used to predict the general characteristics of the
dielectric relaxation spectrum for the tetrahedral
model. For the present, we will restrict the discus-
sion to the nature of a plot of ¢’ against log w. This
discussion will be facilitated by reference to table 1
where the ratios a/as and 7,/73 are given, together
with values for the total orientational polarizability,
Qyotar, TOr various values of k/k’. It 1s convenient to
discuss the results in terms of what happens as the
ratio k/k’ goes from zero to unity.

When site 1 is relatively stable so that k/k" is
small compared to unity, it is seen from the table
that the relaxation times are moderately far apart,
and that the polarizabilities are unequal but still
of comparable magnitude. Under these conditions
the dielectric loss peak calculated with eq (20) is
not only broader than that predicted by the Debye
equation with a single relaxation time, but is also
shghtly asymmetrical. Since the longer relaxation
time, 7,, is associated with the larger polarizability,
a,, the loss peak is somewhat steeper on the low
frequency side (fig. 3, curve A). Since the total
polarizability is rather low when k/k” is small, that
part of the dielectric constant resulting from orienta-
tion of dipoles will be small.

If we now raise k/k’ to the value one-third, the
relaxation times are somewhat closer together than
before, and the polarizabilities are equal. The cal-
culated loss maximum is still somewhat broader
than one would predict from the Debye equation,
and is also symmetrical (fig. 3, curve B).

TaBLE 1. Properties of the tetrahedral model

Total polariz-

Ratio of the ability atotal |

Ratio of the

g=k/k’ relaxation | polarizabilities “: e
times 79/73 azfas ' ;.ll;:;,t;,lf)f

0 4 ‘ 2 0
1/100 3. 88 1.94 .08
1/10 3.07 1. 54 .52
1/3 2 [ 1 .89
1/2 1. 60 .80 .96
3/4 1.23 .62 .99

1 1 .50 1

As k/k’ is increased above a value of one-third,
the relaxation times continue to converge so that
the loss maximum becomes even narrower. The
polarizabilities are again unequal so that the loss
maximum again becomes asymmetrical, but owing
to the close spacing of the relaxation times the effect
will hardly be noticeable. It should be observed
that this slight asymmetry is of a type opposite
to that found for values of k/k’< 1.

12 These approximations are probably fairly accurate, especially in the case
where the dielectric constant is low.

T T
e
—NA
A,B

\ e

I | |

-1 o] +1

LOG w/we

Shape of the dielectric loss peaks for the tetrahedral
model.

Frcure 3.

Curve A, asymmetrical and broadened peak calculated for g=0; curve B,
broadened but symmetrical peak calculated for g=14; curve C, narrow and sym-
metrical peak for g=1 (single relaxation time). « is the measuring frequency,
and w. is the frequency where ¢’ is a maximum. For convenience in comparing
the shape of the curves, the maximum value for the loss has been matched at X.

Finally, as the ratio &/k’ tends to unity, the total
polarizability reaches the full value w*/3kT, and
only a single relaxation time 7,=7;="%k remains.
Thus, the Debye equation for €’(w) holds (fig. 3,
curve (). It must be emphasized that, although
the polarizability becomes p?/3k7T, the value for a
free rotator, we are dealing with hindered rotation
inasmuch as barriers still exist between the sites.
Hence, the observed mean relaxation time for the
model will always considerably exceed that of a free
rotator.

The dependence of the shape, breadth, and magni-
tude of the loss maximum with increase of tempera-
ture is easily obtained if we note that

=l == I, (21)
It is clear from this expression that the ratio k/k’
will increase with rising temperature even if V" is
a constant. Therefore, the previous discussion of
the changes in the dielectric relaxation spectrum
for the case of increasing values of k/k" also holds
for the case of rising temperature. Thus, for the
tetrahedral model it i1s seen that the loss maximum
will generally tend to become narrower with rising
temperature. The loss peak will be steeper on the
low frequency side if k/k’ is between zero and one-
third; i. e., if V/kT lies between « and 1.1. Hence,
for a very large range of temperature one should
expect to find some asymmetry, and this asymmetry
should tend to diminish as the temperature is
increased. An analysis shows that the total polar-
izability, and hence the dielectric constant, will rise
up to a temperature where 7'~ V/1.95k. Above this
temperature the 1/7 term in the polarizability begins
to predominate so that the total polarizability will
fall with further increase of temperature.
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3. Six-position Model With One Stable Site

The details of the model are shown in figure 4.
The dipole in any lattice point may lie in either di-
rection along each of the Cartesian axes, z, 7, and z.
Site 1 is unique; all the other sites are equivalent and
may be unstable with respect to site 1. The model
might correspond, for instance, to the case where the
central dipole in a body-centered cubic lattice prefers
to point toward one face of the cube, but may also
point toward any of the five remaining faces.

The S-J hypothesis is assumed. A dipole can
turn from site 1 to any of the adjacent sites (2, 3, 4,
or 5) with a probability & where k 1s defined as in
eq (1). All other reorientations to adjacent sites
occur with a probability £ [eq (2)]. The assigned
probabilities for the various elementary processes are
shown in figure 4. It should be observed that the
double jumps 1—6, 2—4, and 3—5 (or the reverse
processes) are forbidden as elementary processes by
the S—J hypothesis.

The rate equations are

lel/d’ = -“4]6'AI1 +k, (2\72 + Z\‘Yg +J\“Y4 + Avs)

AN, /dt=kN,— 4k’ N, + k' (Ny+ N5+ Ny)
AN, /dt=k N+’ Ny— 4k’ Ny (N Ny)

22
AN Jdt=kN,+k'Ny— 4k’ No+k (No+Ny [ P2
dN;/dt=kN,+k’ (Ny+N,) —4k' N;+k’ N
aNg/dt=k’ (Ny+ N3+ N4+ N;) — 4k’ Ng.
The solutions may be written in the form
Ni=Cu~+Co¥o+ Cisyps+ Cols+ Ciss; (23)
lp‘l =@ w )
¢3 =0 o )

‘// — — k3K Q)¢
4— )

Ys=e~ G Q1
9 )

Q=~/4k? — Sk’ + 5k

Substitution of the solutions Csys for 8=2 in the
differential equations yields the following:®

Mode 2.

CIZ =C s2=0
022—_— e j42 (24)
(Y:sz == 052-

This mode of decay thus involves only those dipoles
reorienting in sites 2, 3, 4, and 5. The mode is
active in the dielectric relaxation spectrum.

13 Mode 2 is doubly degenerate, and is handled in the same manner as modes
3 and 4 for the tetrahedral model.

a
y
%
T
Frcure 4.  Siz-position model with a single stable orientation

(site 1).

Heavy straight arrows indicate the equilibrium dipole orientations. Light
dashed arrows indicate elementary processes which take place with a probability
k. All other jumps to adjacent sites (such as 2—1 or 2—3) take place with a
probability /. Jumps of the type 156 or 553 are forbidden as elementary
processes. The coordinates used to denote the field direction and orientations
of the sites are the same as those given in figure 2 (right diagram).

Ci3=Cg=0 }
('V-z:s: — ('33 - 043: - Yﬁ

Again, only dipoles in the plane containing sites 2,
3, 4, and 5 are involved. This mode of decay is in-
active in the dielectric relaxation spectrum owing
to a compensatory motion of the dipoles; the sum

Mode 3.

(25)

of the vectors Cy3 is zero, so no polarization results.
A similar situation arises for the single-axis rotator
with four equivalent sites.!
Mode .
( 4= (Va.a = (fyu =( v54

Cu=—4(1—1/H) Cqy (26)
o= —4Co/H
where H=2g—1—gq, q=Q/k’, and g=Fk/k’.
Mode 5.
=0 =00 =0
Cis=—4(1—1/H") Cy; 27)
bs=—4Cos/H’ Y
where H'=2g—1+q. Both modes 4 and 5 are

complicated and ivolve dipoles in all of the sites.

The polarizability associated with each mode of
decay is readily calculated in the same manner as
for the tetrahedral model. We summarize the
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results below together with the relaxation times.

e S
“2"<1+5ﬂ> <3kT>’ re=1/4k l

(28)

=0, r=1/6k’; )
a9 t3—29) [(2!1—1+q)(2!/+1)—2(.(/—1)]< w >
! (1-F59)%q 3kT)

re=1/(Ch+3% —Q);

0929319 [29—1—¢9)2g+1)—2(g—1)] (u_‘)
(1+59)q 3kT
rs=1/2k+3k'+Q).

The total polarizability is given by [12¢(14-2¢) /(14
50)°)(w*/3kT). Since the results are rather compli-
cated, we resort to calculation of the polarizabilities
and relaxation times numerically for various values
of k/k’.  The results are given in table 2.

It 1s convenient to discuss the results in terms of
what happens as k/k’ goes from zero to unity. It
is seen in table 2 that the maximum separation of
the relaxation times occurs when k/k” tends toward
zero. We then have 74/7,~6.85. The two most
important relaxation times, 7, and 7, tend to con-
verge as k/k’ increases, with the result that the
corresponding dielectric loss maximum will at first
be somewhat broader than a Debye type peak, but
becomes more narrow as k/k’ increases, and finally
assumes the simple Debye form when k=£k’. The
total polarizability always increases with increas-
ing k/k’.

As in the case of the tetrahedral model, the loss
peaks will be noticeably asymmetrical for low values
of k/k’. Owing to the fact that the longest relaxa-
tion time is associated with the largest polarizability
when k/k’< 0.2, the loss maximum will be steeper
on the low frequency side in this region. At about
k/k’=0.2 the peak will be slightly broadened but
nearly symmetrical since the dominant polarizabilities
are equal. A slight asymmetry again appears when
klk’ exceeds ~0.2, but it will not be particularly
noticeable owing to the closeness of the relaxation
times. It should be observed that the slight asym-
metry that appears in this region is such that the
loss peaks will be steeper on the high frequency

side. The asymmetry completely disappears when
e=ro
TarLE 2.—Properties of the six-position model
Relaxation times Polarizabilities ‘
(in units of 1/k’) (in units of u2/3kT)
g=kik’ S |_ Sl
| [
G 4 5 ‘ %, &y ay ‘ %total ‘
AT T o e Lane A P
0 | 0.25 ‘ 1.31 [0.191 [0 |0 0 0
1/100 .25 | 125 | .191 | .038 | .069 | .004 | .111
‘ 1/10 .25 | .8 | .190 | .267 | .347 | .026 | .640
‘ 1/5 .25 .66 189 | .400 | .404 | .036 <40
\ 1/2 .25 .39 ‘ 185 | .571 | .37 0L | 979 |
1 25 .25 | .167 | .666 | | 1
|

. 333 ‘ 0

The expression k/k’=exp(—V/kT), where V is the
energy difference between site 1 and each of the other
sites, gives the dependence of k/k’ on temperature.
It follows that k/k’ will increase with rising tem-
perature, so the discussion given above in terms of
growing values of k/k’ also holds for the case of
increasing temperature. The dielectric behavior of
this model is qualitatively similar to that of the
tetrahedral model. The total polarizability rises
up to the temperature 7'~ V/2.17k, but falls as the
temperature is increased further.

4. Discussion

It is clear from the results cited above that an
anisotropy in the crystalline field can lead to the
existence of a set of discrete dielectric relaxation
times for polar molecules that possess orientational
sites arranged in three dimensions. The separation
of the relaxation times is a maximum when the
crystalline field is highly anisotropic. The relaxa-
tion times tend to merge as the temperature is
increased.

The following experimental predictions hold for
both models: (1) The regions of loss in the dielectric
relaxation spectrum will become narrower with
increasing temperature. (2) At low temperatures
the dielectric loss peak will be steeper on the low
frequency side. This asymmetry will decrease as
the temperature is raised, and practically completely
disappear somewhat before the loss peak assumes
the simple Debye form. At high temperatures the
Debye equations will be a good approximation.
(3) The dielectric constant will be small when the
temperature is low, and will increase as the tem-
perature is raised; at temperatures above 7'~ V/2k,
the dielectric constant will decrease with rising
temperature. It should be noted that no real
substance should be expected to show the entire
range of behavior mentioned above since melting or
transition phenomena may intervene.

It should be observed that the effect of a set of
(discrete) active relaxation times on the shape of the
loss regions is virtually indistinguishable from the
effect of a suitably chosen continuous “distribution”
of relaxation times. Also, it should be noted that
the effects that have been predicted for the case
of rising temperature with V' constant will occur in a
more marked way if V decreases with rising tem-
perature, as is often assumed for the case of coopera-
tive interaction.

The models treated here are obviously rather
specialized, and do not necessarily correspond closely
to any real crystal. For instance, one might expect
the anisotropy of the crystalline field to be such
that more than two transition probabilities are
required to represent the system. More general
models are being studied.

WasHINGTON, January 5, 1955.
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