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Effect of Darling-Dennison and Fermi Resonance
on Thermodynamic Functions

Harold W. Woolley

The effect on thermodynamic functions due to resonance of the Darling-Dennison type
for water and of the Fermi type for carbon dioxide is calculated working directly with
the elements of the secular determinants that define the energy levels.

1. Introduction

In calculating thermodynamic functions for various molecular systems, the complication
is sometimes encountered that the energy levels are expressed indirectly by means of a deter-
minantal equation. In many cases, the determinant will have nonzero elements only along
and quite near to the principal diagonal. Frequently, no explicit general solution for the posi-
tions of the levels as affected by the off-diagonal elements may be known, so that an explicit
determination of the related thermodynamic properties as influenced by the effect in question
would seem difficult at best. In some of these cases, useful results can be obtained in a general
form from the secular equation without making use of explicit individual solutions.

2. Secular Determinant Method

If the secular determinant, |F;,—d,;W|, is expanded in polynomial form, beginning with
the highest power of the unknown, W, then the successive coefficients for the different powers

of W give the sum of roots and sums of products of the roots, such as EW“ 22) wW.Ww,, ZZEW WW,
i i<j<

etc., when allowance is made for alteration of signs in the successive terms.

In the calculation of thermodynamic functions, the intermediate step of obtaining parti-
tion functions involves the evaluation and addition of a large number of Boltzmann factors,
using the energies of the various levels. This factor, e=% /*7 is expressible as a series so that
the summation over a set of energy levels

E (’/_Wi/kT:Z ( -ZCT) i

m=0 m!

2, wr (1

may be found if the individual sums of powers of energy ZW, W32 W3 etc., are known. It
is possible to find these quantities in terms of sums of products of the roots and hence in
terms of the coefficients of the polynomial expansion of the secular determinant. In this process
several algebraic steps are involved including the application of the multinomial theorem.
The result can thus be put in the form

3 W= Wy—2 3335 W W, (2)
1<J
X WI=( W= (2 WIS D W, W+3 3058 W, W, 3)

2 Wi=Gs Wyt—4 &0 W,-)“’(EKZ W Wo+4 (3 W) (ZZ_Z W, W, W))
22 Wl e 223 W, Wl - )

i<j<k<d

3 W= Wy—5 (5 W CE WWo+s (5 WSS W, WaW)
+5 (0 W) (S WW—5 (0 W) (S 25 W,WWiW,)
—5 SR WIS ODWW ) +5 TS S SSWWWW W (5)

i<j<k<I<m
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2 Wi= (iZ )= 6(12 Wt)%%; W, W+ G(Xi_‘, Wi)s(;<;<zl W, W. W)
+ 9(211 W1)2(12<Zk Wj Wk)Q_ G(Z Wi)2(12<;<21<; er va 1V1 Wm)
— 12 W) 2 W,Wo(C 2 2 W W, W,)
i i<k <m<n
Z WJ(ZZZZZ W,WiW W, W)

< m<n

= 2<;§ WP+ 6 S W W ) S S Wl W W)
AW W W65 S S W W, Wl o W W), (©)

1<j<k J<k<I<m<m
These coefficients for the various terms of the polynomial expansion, > > W, W,
e

SISISIWLW, Wy, ete., can be obtained in the case of a specific secular determinant and
i <j<k
introduced into eq (2) to (6). If the secular equation

involves a determinant of the nth order with nonzero elements along the principal diagonal and
along diagonals immediately adjacent to it, then it is possible to represent the coefficients
explicitly and introduce them into eq (2) to (6) so as to represent the quantities ZW7* directly
in terms of the elements of the determinant. Thus for the symmetric determinant with £,,—
ky Evopn=Ei, =04, By 1o=Ei0 1=b4, E; 113=FE;;3 1=c;, and with all other elements equal to
zero, one may with considerable algebra transform from the previous equations to the following:

n n—1 n—2 n—3
;W?=;k?+2§a?+2§b?+2i=zl‘,c? (9)

W= Z‘k3+32a2(1€ +ken)+ 3252(16 +k1+2)+326 ki+k; o)

=1 s i=1
n—2 n—3 n—3
+6'Zlaziai+1bi+62aibi+lci+621ai+2bici) (10)
1= 1= i=
including terms involving a’s, b’s and ¢’s. If the ¢’s are zero, then

2 Wi= Z}k‘+42a2(k2+k ki ket +1)+4Zb2(k2+k kiistkiss)

—-}-82@ a; b (k; +k,+,+k,+2)+22a4+22b4+42a az+1+4202b?+1

A b S b A B S b B, (11)
and if the b’s also are zero
W=k 5 a4 kst ik R
+5 5 allh k)55t (k- 2kt k) (12)
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and

n n—1 n—1
Ei W?:Zk?‘*‘ 6;&?(’6?—}— kik; +1+k?k?+1'}‘ kik?+l+k?+l)+321a?(:5k?+4kiki+l e 3"‘7?4-1)
n—2
+6Za?a?+1(k?+ 2kiki +1+kiki S 3ki2+1+2ki+lki +2+k?+2)

n—1 n—2 n—2 n—3
+2lea?+6;a?a;*+l+6;a;‘a?+l+GZI‘,a?a?Ha?H- (13)

Equations (8) to (13) may also be obtained by a matrix method with less effort. This is
based on a theorem of Borchardt [1]' and of Sylvester [2] which states that if A is a matrix then
the characteristic roots of A" are the nth powers of the characteristic roots of A. Then if H is
the energy matrix, the sum of nth powers of roots W, of the secular equation is given by the
trace of the nth power of the matrix H:

Xi)Wg‘ztrace Hr. (14)
so that eq (1) may also be written as
Zie“wi/”:tmce prdlite (15)

and, in effect, include all the results of eq (8) to (13).

3. Application of the Method

Among cases in which molecular energy is given by a secular equation are resonances of the
Darling-Dennison type and the Fermi type. In the case found by Darling and Dennison [3]
for the H,O molecule, occurring also in some other cases, the energy W is given by the secular
equation

w—w W, 0 0

Wy We—W Wy 0

0 W Wi—W W,

0 0 Wi e — ()} (16)

where the energies for the individual interacting levels would have been W7 if the perturbation
had been negligible. The magnitude of the perturbation is indicated by the off-diagonal terms

Wi, it1=Wit1,i= Wil 2 o ra=3vVm@:1—1) 0:+1) @:+2). (17)

Any state indicated by v, vs, v; with »,>1 is perturbed appreciably by a state v;,—2, v, 342,
because of the approximate equality of »; and v;. For higher quantum numbers, large groups
of levels will be perturbing each other, and the secular equation will involve a secular deter-
minant of correspondingly high order as indicated by eq (16). In the discussion which follows,
the number of levels perturbing each other in a single group will be indicated by n, which will
also be the order of the determinant. The mean value of the energy for the group of levels
expressed as wave numbers will be indicated as ¢. The increment in the vibrational partition
function due to the presence of the perturbation for a group of interacting levels is given by

he ISarcive L7 e
—_ ,—hcG/kT 1L = P (A W3
AQ—e b I:—k‘TAE,- W1+2 (kT A%;Wi 6<kT AZ{ k ] (18)

! Figures in brackets indicate the literature references at the end of this paper.
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According to the formulas derived and the definition of G, the various increments in the sums
of powers of the energy W measured from the mean value ¢ will be given by

AZi‘, W?=2;W7?,i+l (19)
AZ Wi= 32_ W?,i+1<W?+ W?+l)) etC.S

In the remainder of the treatment for this case of resonance, only the effect of A3 W7 on
1

the partition function and derived quantities will be considered. There is a basis for regarding
higher order effects, as of AS W, ete., as negligible. The levels which are involved in a given
7

perturbing set have the same value of »,+»; and are subject to the additional restriction that
either v, or »; is only odd or only even within a single group. There are thus four cases to con-
sider:

I. » ranges from 2n—2 to 0 while »; ranges from 0 to 2n—2.

I1. », ranges from 2n—1 to 1 while »; ranges from 0 to 2n—2.

III. », ranges from 2n—2 to 0 while #; ranges from 1 to 2n—1.

IV. », ranges from 2n—1 to 1 while »; ranges from 1 to 2n—1.

These four cases give, respectively, for W?,

L Wien=" (2n—20)(2n—2i—1)@i—1)(2) (20)
IL Wheon=1 @nt1—2i) @n—20) 2i—1)20) (21)
ML W2e0=" @n—20)@n—2i—1)20) i +1) (22)
IV. Wien=1 @n+1—20)@n—20)2i)@i+1), (23)

n—=1
where in each case 7 ranges from 1 to n—1. The evaluation> W?, ., is quite straightforward
i=1

and gives for these cases, respectively,

v 2n(n—1) (n+1)

7 15 (4n*—10m+9) (24)
:(4_.—2’”("”11; @) 9n—1)(@n+1) (25)

Z’;%ﬁ (2n—1)@n+1) (26)

and

1_2_2n(n— 1) (n+1) (4n

- e 24 10n+9). (27)

Considering the molecular vibrational energy as if it were due to harmonic oscillators
having frequencies w; and w; wave numbers, for the two vibrations it is found that @, the average
energy for the group of n levels is given in the various cases by

I. G=m—1)(w;4ws) (28)

II. G=nw+®n—1)w; (29)
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III. G=Mn—1)w;+nw;
IV. G=n(w+w)

(30)
(31)

The expressions are now at hand to permit the estimate of the relative increase in the
partition function due to the perturbation. Continuing to treat the various cases separately,

there are obtained for case T,

-5

_Lc. w . = 2 4 ik
o erbo 11 <ﬁ 7 200 1VVED) (s gy )

4 15

hcwv he oars
—— = w0 ——
3D

03=0 01=0

< )(l—e T )(1 —e kT >|: _ﬁ(wl+w3) 1 6e 27"'—;,—(w1+w3)+96—3

(w1+‘°3):|

for case 11,

:—;%2 e—{% (@1+wg)n (ﬁg 2y 2n(n*—1) (4n*—1)
= 4 15

€
(_A_Q_) ae
Q 2 2 Z e—:——;,wlvle—:——;,w;;v;;

03=0 91=0

kT

[t

for case 111,

kT 12@

(AQ) e =2

—:—; (@yFwg)n (@ 93 2n(n’—1)(4n’—1)
4 15

w0 hcwv
Z e kT ll AT 3Y3
n=0 v3=0

he he
— —_ W —_— "
< )(1_8 TGt 1 (o T 3>e kT l[gp—Z:—;(wl-l-wg)_{—lOg—S:—;,(w1+w3)

6
T (wy +°’3):|
and for case 1V,

>
-5

he
“%T (w1+w3)’n<h 4 2n(n 1) (4 2+10n+9)

he
Z Ee AT A e

=0 3=

( ) (1 e LT )(1 ¢ k_T >[96-—2:—;(u),+w3)+6e 3LT(°’1+‘°3)+

-k <w1+w3>]
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Then, in lowest order of approximation, the total effect of the perturbation is indicated by the
sum of the separate (AQ/); for the four cases, to give as the approximate value of A In @

) (1 kT )(1 € AT >[ AT(w1+“’3)
(w1+w3>]

AlnQ=33(aQ/Q ="

_H,)p—zk—; <w1+w3>+156—3%(w1+w3)+e—4% (w1+g)
he he he he
—}—(e e e ﬁuS)(Se_ﬁ(w‘+wa)+106_2"_T(wl+w3)+3e_3ﬁ(wl+w3))]. (36)

If the approximate equality of w, and w; is now taken into account, then letting u="hew/kT
represent either hcw, /kT or hews/kT or their average value, it is found that

u* (1 —e*
(1—e 245

2
Aln Q~7—2 2 [e=2 463 415044+ 20e =% 415054 + 6~ 4 ¢ =]

e

=F A= S
This is the approximate contribution to the Gibbs free-energy function, —F°/RT, due to
the effect of the perturbation. The corresponding contributions to H°/RT and (/R are

d d? . ;
—u A In @ and u? 2 A In @, which give

aEeRD =Yt 2 fu D) (39)

and

,)/2
AC,[B)="5u? +2u

L {1—4 (1+e”? (39)

T 2 U =)

A value of v of 77.52 cm~! has recently been given by Benedict [4] with higher order constants
and has been used in the present calculation. For the present case, w may be taken as about
3,650 em~!.  As should be expected, the total effect is found to be small. This is due largely
to the fact that the lowest levels showing this type of resonance are at about 7,300 em~* so
that a relatively high temperature is required before the levels in question are appreciably
excited. The magnitude of the effect is indicated in table 1 for several temperatures.

One may inquire as to the approximate behavior of the effect in the limiting condition of

high temperatures. If one neglects higher order effects in the manner of the foregoing deriva-
tion, which would neglect an appreciable relative effect due to anharmonicity, then when the

functions are expanded in increasing powers of u, the leading term gives the approximate values

, (1—}—3@‘“—{—@"2“)}_
(1—e%)?

2 2
—AF°/RT~ — AH°/RT ~2 u2, and ACS/R=6 C—OZU—Q (40)

or
TasrLE 1. Effect of Darling-Dennison resonance on thermodynamic functions for H,O

2.6 X107 24X10-7 206 X10-7

1.88X10-5 7.81X10-% 33.1X10-%
0.784 X104 2.37X10~* 8.01X10-#
1.75X10~+ 4.52X10~* 14.2X104
3.03X10+4 7.23X104 22.1X10~4

‘ Temperature ‘ A(—F°|RT) ‘ A(H°®/RT) ’ AC3/R
|
|

2 2 2 2 2 2
—aF°RT =Y, (’g) ) AHO/RT~2 1, (’%) and  ACHR=6T, (’%) L @)
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The quadratic power of temperature is a result of the fourth power dependence of AZW? upon
the quantum numbers, which supplies a fourth power of 7" as a factor in the summation. This
is cut down to the second power by the inverse second power in the coefficient of this term.

Another case of resonating levels for which details have been worked out is that of Fermi
resonance in the case of CO,. While the effect of the perturbation upon the thermodynamic
functions can be expected to be fairly small in this case also, since the perturbation, as in the
previous case, involves the displacement of some levels upward and some downward in such a
way as to nearly compensate, it is nevertheless a larger effect than in the case of H;0, mainly
because the energy of the lowest resonating levels is near 1330 em ™" for CO, as compared with
the 7,300 em~! for H,O, so that comparable excitation takes place at a lower temperature.

It was shown by Dennison [5] and Adel and Dennison [6] that a satisfactory representation
of the CO, spectrum could be obtained if account were taken of perturbations within groups of
levels with equal values of /, the azimuthal quantum number, and with equal values of 2v,4-v,.
Then the effect of the perturbation within a group of n levels of this kind is indicated by the
shifts of roots of such a secular equation as (16) with corresponding effects on the thermodynamic
functions indicated in terms of the partition function according to eq (18) and (19). In each
group of n levels, the value of »; ranges from zero to n—1, with », going from its maximum value
to its minimum value which is equal to |[/|. The number of levels interacting within one group
is given by n=%(V—|l|)—1. The elements of the determinant which are adjacent to the main
diagonal were presented by Dennison in a form which can be so converted as to indicate that

3 in=Wai(n—1)(V+2—n—1), (42)

where 7 ranges from 1 to n—1. For the evaluation of the principal contribution to the parti-
tion function according to eq (18), there is needed a knowledge of the distribution of the
unperturbed vibrational levels. It is assumed that these are given in the somewhat uncon-
ventional form

GU:Zwil‘i+ ZAY,'il'i(l,"i—1)+2XU‘U;I’1. (4:;)
Then the average value of @ for a given group of levels is given by

G=w V4wt wa(n—1) + Xpo(VE— V) + X333 — 03) + Xpa(n—1)*
+ X Voy + Xy Vin—1)+ Xos(n—1)v;, (44)

where
1 1o 5 =)
wnzé wl—wZ—'T;A\ll_*‘g‘/ 22—3;’4\12

> 1 - 4 A 2
‘\"":g‘\n‘*‘g‘\ze—g){“

: g (45)
Xvn=§aY12—L<Y22
Xg=s Xy—X
n3= 5 137\ 23.
3 2 3 3 )
By simple summation,
n—1 me=
5 W=D L (79— ] o
and for the next term of (18)
n—1 S —m2
SUWE ey (WO W= Wi %)0*(4 ™) [ty — 8,V — X, s03) (47)
i=1
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where 8,,=%X11——3— XQQ—E X After multiplying by the exponential Boltzmann factor for the

average vibrational energy, the summation over 1" and n follow, but with the requirement that
half values of the summand are to be used when V" has its lowest value, 2(n—1), in order to take
account of the absence of [ degeneracy for /=0. The choice of doing this rather than multiply-
ing by 2 for /70 comes about as the result of the fact that half of the rotational levels are
absent due to the symmetry of the molecule and the zero nuclear spin for oxygen. Then this
is compared with a total approximate @ similarly omitting any factor for / doubling. If the
effects for anharmonicity are disregarded, the leading term is obtained as

_2hcm1 hcwl
AQ 1/he\?> Wie *7 (l—e
Q"2 ‘k‘T)< )

2hcw2 2 hewg\ 2
1—e ) (1——6 >

The effect of Fermi resonance, using u=hcw,/kT and disregarding the distinction between w,
and 2w,, is thus given approximately [7] by

L L (49)
AH®/RT = A(— F°RT). 2[ (1+ + )-1] (50)

and
@/RZA("Fo/RD'2{2[“(”1:“ e ] [(1 eyt = _*2:“)2]_1}' D

The effect can be obtained in more detail by including an additional contribution from eq
(46). Using wi=hecw;/kT and using w;=2w, after the first term, eq (48) is replaced by

2 u’z ,—2u2(1_e—u1)
kT (1 —e=22)%(1 —e—¥2)?

Aln @

< I/Vz{ Wy -2u2)4 [e ur,_+_ 26‘3u2+6€_4u2+6€_5u2+36_6"2]

2(1—
X —2u —3u —4u —5u, —6 —8
+m[€ 2+2€ 2+]7€ 2+20€ 2+33€ u2+18€ 'u2+9€ u2]
i —)23"2“2)5 [e=22 4=5u24 1 Qg —4ua{ 30 —5u2 | 3Q¢—6u2| 24Tz} Qp—Sua]
Xose™4s
+ (1 ___e_u:;(l _6—2112)4 [e—2u2_+_ 46—3u2+ 86_4"2+ 86‘5"2+ 36—6u2]
X" 3¢ "3 —2u —3u —4u —5u —6
T ety (T (¢ T 20T GeTH GemRat 3o
X22 —2u —3u. —4u —5u, —6 -7 —8
+(1:8Tu2)5[e 2+10€ 2+43€ 2+886 2+103€ u2+70€ 'u2+216 u2]
B+g?2 —3u, —4u —5u —6u —Tu —8u, —9u.
—m[e 24 8e~42{-4]1e %24 104e %24 1197424 92¢ 8421 ] 9¢—%2]
. Xuye™2 3Xpemtr Xige =22
(1 —6_2”‘-’)3(1 2 p—zz,2)2 (1 _e—2u2) (1 _e—-ug)4 (1 _6_2u2>2(1 _e—ll2)3
)('139 ugp—4u Ry X23€_"36_3u2 (52
T 20 —e ") (1—e222(1—e%2) (1—e%)(1 —e~2us) (1 —e—t2)® )
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A calculation was made for CO, using as values for the constants (in em™!)
w; = 1342.86 w,=666.27 w3 =2349.15
Xn=—2.20 Xy =—0.75 (3= —12.46
X,=3.76 Xi3=—18.54 X,;3;=—12.48

with B-+g¢y,=1.42 and W,=51.01 cm ™}, giving w,=3.39, X,,= —4.24, X,=3.38, and X,3=3.21.
With these constants, the magnitude of the effect as given by eq (48) is indicated in table 2 as

the first column under each heading while the combined effect consistent with eq (52) is shown
as the second column under each of the headings, A(—F°/RT), A(H°/RT) and AC;,/R. The

entire effect for CO, is rather small and in many computations could be neglected. For elevated
temperature, the leading term in this case is roughly linear in the absolute temperature rather
than quadratic as was found to be the case for H,O. This is due to the essentially cubic
dependence of W? .., upon quantum numbers in the present case, as compared with the
quartic dependence in the case of H,O. It is also seen that this simple dependence upon tem-
perature is modified greatly by the effect of anharmonicity. The large effect of anharmonicity
at high temperature can be regarded as due to its lowering of entire groups of resonating levels
with a resultant increased population in such groups, which provides an increase in thermody-
namic effect.

This treatment does not make any adjustment for the effect of resonance on the composi-
tions of states, since the rotational perturbation is quite small, and, in addition, the resonance
shifts have compensating effects in first approximation as has been noted in deriving the larger
contributions due to perturbation which have been taken into account. They would thus be
quite negligible.

TaBLE 2.  Effect of Ferma resonance on thermodynamic functions for CO,

— =l e ——

_— =— e

| Temperature A(—F°/RT) A(H°/RT) } A(Cp/R) ‘
| |
5X10-6 36106 | 7103 \
22X 108 12X10-5 | 7010~ |
5% 105 26X 105 | 11104 ‘
18105 56105 [ 17X10~4 \
500 33X 105 85105 ’ 22X10~4 ‘
eq49) | eqs2) | ea0) | ea(s® | ead) | ea(s?) |
|

1,000 0.0012 | 0.0012 | 0.0018 | 0.0018 ‘ 0.0033 | 0.0033
2,000 -0029 -0030 - 0033 -0036 - 0062 0073 |
3,000 L0045 L0048 -0048 -0056 L0093 L0119 |
4,000 . 0061 L0067 - 0063 .0078 L0124 L0173 |
5 .0077 . 0087 L0078 L0103 L0155 | .0233 |

Equations (49), (50), and (51) also represent approximately the effect of Fermi resonance
in H,O involving levels for which 22,42, is a constant, even though », is not degenerate as for
CO;. Benedict [4] gives the matrix element (v, v.-+2[01+1, ) =3%{200( 4 1) (0,42) (0, +1) }3,
indicating that W2=200 cm~2. A few values for the Fermi resonance effect for H,O are given
in table 3. The effect is much smaller than the Darling-Dennison resonance effect at the higher

TasLe 3. Effect of Ferma resonance on thermodynamaic functions for HyO

e = e et e~ |

I | £
Temperature \ A(—F°/RT) | A(H°/RT) ‘ ACS/R
: e e el 8
| ‘K |
BOOL-SU0E el 0ii ™ & Bt 8X10-8 | 10-6 4X10-8
L000PSLSmd SRy e 2 LT i 3X10-6 | 8X10° 2X10-3 [
o1 10-5 : 2X10-5 4X10-5 [
3 2X10-5 | 3X10-5 5X10-3 |
4 3X10-5 | 4x10-5 7X10- ‘
5 9% 103

4X10-5 [ 4X10-5




temperatures although it is the larger at 1,000° K and below. Its earlier rise is partly due to
the resonance occurring first near 3,400 cm™! as compared with 7,300 cm™! for the Darling-
Dennison resonance. The magnitude of the resonance effects for H:O and CO, are shown in
figures 1 and 2, respectively.

| T T T I ! | I

.002

.001

(o}
(o} | 2 3 4 5
T/1000 T/1000
Ficure 1. Effect of resonance on thermodynamic Ficure 2. Effect of Fermi resonance on thermody-
Sfunctions for H,0. namic functions for CO,.
e1, hi, fi: Contribution of Darling-Dennison resonance to C;/R, ¢, h, f: Contributions to C./R, (H°—E%)/RT, and —(F°—E§)/RT.
(H°—E§)/RT, and —(F°-E$)/RT. c, h, f: Contribution of Upper branches with anharmonicity, lower branches neglecting
Fermi resonance to C3/R, (H°—E )/RT, and —(F°—Eg§)/RT. anharmonicity.

4. Conclusion

A useful method of calculation of thermodynamic effects for levels defined by a secular
determinant equation has been demonstrated.

Many other instances with similar perturbations are known and their effects on thermo-
dynamic functions should be calculable by similar methods if the theoretical description of the
perturbation has been worked out and the spectra fitted in the detail that has been achieved
for H,O and CO,. In particular, C;H, gives an example of Darling-Dennison resonance for
which eq (37), (38), and (39) would apply. Other molecules with Fermi resonance similar to
that for CO, to which eq (49), (50) and (51) apply include CS,, C;H;, C,Dg and N,O.

5. References

(1) C. W. Borchardt, J. Reine Angew. Math. 30, 38 (1846); J. Math. Pures Appl. [I] 12, 50 (1847).

(2) J. J. Sylvester, Nouv. Ann. math. 11, 439 (1852).

(3) B. T. Darling and D. M. Dennison, Phys. Rev. 57, 128 (1940).

(4) W. S. Benedict, unpublished data.

(5) D. M. Dennison, Phys. Rev. 41, 304 (1932).

(6) A. Adel and D. M. Dennison, Phys. Rev. 43, 716 (1933).

(7) Harold W. Woolley, The effect of Fermi resonance on the thermodynamic functions of gaseous CO,, Phys
Rev. 72, 183 (1947).

WasHIiNnGTON, February 11, 1954.

308

U S GOVERNMENT PRINTING OFFICE: 1955



	jresv54n5p_299
	jresv54n5p_300
	jresv54n5p_301
	jresv54n5p_302
	jresv54n5p_303
	jresv54n5p_304
	jresv54n5p_305
	jresv54n5p_306
	jresv54n5p_307
	jresv54n5p_308

