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Effect of Darling-Dennison and Fermi Resonance 
on Thermodynamic Functions 

Harold W . Woolley 

The effect on t hermodynamic functions due to resonance of the Darling-Dennison type 
for water and of the Fermi type for carbon dioxide is calculated working directly with 
the elements of the secu lar determinants that define the energy levels. 

1. Introduction 

In calculating thermodynamic functions for various molecular systems, the complication 
is sometimes encountered that the energy levels are expressed indirectly by means of a deter­
minantal equation. In many cases, the determinant will have nonzero elements only along 
and quite near to the principal diagonal. Frequently, no explicit general solu tion for the posi­
tions of tbe levels as affected by the off-diagonal elements may be known, so that an explicit 
determination of the related thermodynamic properties as influenced by the effect in question 
would seem difficult at best. In some of these cases, useful results can be obtained in a general 
form from the secular equation without making use of explicit individual solutions. 

2 . Secular Determinant Method 

If the secular determinant, IEi j-o ij lVI, is expanded in polynomial form, beginning with 
the highest power of the unknown, W, then the successive coefficients for the different powers 
of lV give the sum ofroots and sums of products of the roots, such as ~Wi' ~~lIVillVj, ~~~WiWjWk' 

i i<i i<i<k 
etc., when allowance is made for alteration of signs in the successive terms. 

In the calculation of thermodynamic functions, the intermediate step of obtaining parti­
tion functions involves the evaluation and addition of a large number of Boltzmann factors, 
using the energies of the various levels. This factor, e- w / kT, is expressible as a series so that 
the summation over a set of energy levels 

(1) 

may be found if the individual sums of powers of energy ~Wi' ~W;, ~W:, etc., are known. It 
is possible to find these quantities in terms of sums of products of the roots and hence in 
terms of the coefficients of the polynomial expansion of the secular determinant. In this process 
several algebraic steps are involved including the application of the multinomial theorem. 
The resul t can thus be put in the form 

337361- 55- 4 

+5 (L::: Wi)(L:::L::: WjWk)2-5 (L::: Wi) (L:::L:::L:::L::: WJWkWZWm) 
i i<k i i<k<l<m 

(2) 

(3) 

- 5 (L::: L::: W i Wj) (L::: L::: L::: Wt lIV l W m) + 5 L::: L::: L::: L::: L::: Wi W j Wk WI W m (5) 
i<i k<l<m i<j<k<l<m 
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These coefficients for the various terms of the polynomial expansion, ~~WiWh 
i < i 

~~~W;WjWk' etc. , can be obtained in the case of a specific secular determinant and 
i <i < k 

introduced into eq (2) to (6). If the secular equation 

IE iJ- oijWI= O (7) 

involves a determinant of the nth order with nonzero elements along the principal diagonal and 
along diagonals immediately adjacent to it, then it is possible to represent the coefficients 
explicitly and introduce them into eq (2) to (6) so as to represent the quantities ~wr directly 
in terms of the elements of the determinant. Thus for the symmetric determinant with Eii = 

k ;, Ei.i+l= Ei+l,;= ai, E i• i+2= E i+2.i= bi , E t.;+3=Ei+3• i = Ct, and with all other elements equal to 
zero, one may with considerable algebra transform from the previous equations to the following : 

(8) 

n n - l 11-2 n-3 

~ W;= ~k;+ 2~ a;+ 2 ~ bf+ 2~cf 
; ;= 1 ;= [ ;= 1 ;= 1 

(9) 

n n-l 11-2 n-3 

~ W~= L.k~+ 3~af(ki+ ki+ l)+ 3~M(ki+ ki+2)+3~cf(k;+ k;+3) 
i ;= 1 ~ j= 1 ;=[ . i= 1 

11-2 11-3 n-3 

+ 6~ai ai+ lbi +6~ai bi +1C, +6~ai+2b i Ci' (10) 
1=1 ;=1 ;=1 

including terms involving a's, b's and c's. If the c's are zero, then 

n-2 n-1 n-2 11-2 n-3 

+8~aiai+1 b ; (ki +ki+1 +ki+2)+2~at+ 2~bt+4~a;ar + 1 + 4~a; b7+1 
;=1 i=1 i=1 ;= [ ;=1 

n-2 n-2 n-3 n-3 n-4 

+4~a;b7+4~ai+1 b;+4~ar+2b;+8~ai ai+2b i bi +1 +4~ b;b;+2' (11) 
;= [ ;=t ;= 1 ;=1 ;= 1 

and if the b's also are zero 
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and 
n n-l n- l 

~ W~= ~kf+ 6 ~a~(kt+ krk; +1 + k~k: +1 + k; M +1 + kt +1)+ 3 ~at(3 k~+ 4k; k; +1 + 3 k~ +1) 
I j 1 1 

n-2 

+ 6~a:a~+I(k~+ 2k;k;+1 + k;ki+2+ 3k~ + 1 +2 ki+ lk; +2+ k~+2) 
1 

n-l n-2 n-2 n-3 

+ 2~a~+ 6 ~a:at+l + 6~ata~ +1 + 6 ~a~a;+ la; +2' 
j 1 1 1 

(13) 

Equations (8) to (13) may also be obtained by a matrix method with less effort. This is 
based on a theorem of Borchardt [1]1 and of Sylvester [2] which states that if A is a matrLx then 
the characteristic roots of An are the nth powers of the characteristic roots of A . Then if His 
the energy matrix, the sum of nth powers of roots WI of the secular equation is given by the 
trace of the nth power of the matrix H : 

~W:= trace Hn. (14 ) 
i 

so that eq (1) may also be written as 

~e-WdkT= trace e-H l kT 
i 

and, in effect, include all the results of eq (8) to (13). 

3. Application of the Method 

(15) 

Among cases in which molecular energy is given by a secular equation are resonances of the 
Darling-Dennison type and the Fermi type. In the case found by Darling and D ennison [3] 
for the H 20 molecule, occurring also in some other cases, the energy W is given by the secular 
equation 

W~-W W 12 0 0 

o o W~- Tr = 0, (16) 

where the energies for the individual interacting levels would have been W~ if the perturbation 
had b een negligible. The magnitude of the perturbation is indicated by the off-diagonal terms 

W i, HI = W i+1 , j= W:~~~::~'V3+2= t'Y..jVl(Vl- 1 ) (V3+ 1) (V3 + 2). (17) 

Any state indicated by VI, '/:2, V3 with vI> 1 is perturbed appreciably by a state vl - 2, V2, V3+2, 
because of the approximate equality of II I and 11 3 . For high er quantum numbers, large groups 
of levels will be perturbing each other, and the secular equation will involve a secular d eter­
minant of correspondingly high order as indicated by eq (16). In the discussion whir;h follows, 
the number of levels perturbing each other in a single group will be indicated by n , which will 
also be the order of the determinant. The mean value of the energy for the group of levels 
e)..'Pressed as wave numbers will be indicated as G. The increment in the vibrational partition 
function du e to the presence of the perturbation for a group of interacting levels is given by 

Q_ -hcG/kT [ hc "W + 1 (hc)2 "W2 1 (hC)3 A "wa ] .6. -e - kt.6.7' j '2 kT .6.7' ;-6 kT i..J.7' ; .... (18) 
----

',Figures in brackcts indicate the li terature references at the end of this paper . 
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According to the formulas derived and the definition of G, the various increments in the sums 
of powers of the energy W measured from the mean value G will be given by 

(19) 

In the remainder of the treatment for this case of resonance, only the effect of LlL: W~ on 
i 

the partition function and derived quantities will be considered. There is a basis for r egarding 
higher order effects, as of LlL: W~, etc., as negligible. The levels which are involved in a given 

i 

perturbing set have the same value of VI +Va and are subj ect to the additional restriction that 
either VI Ol' Va is only odd or only even within a single group. There are thus four cases to con­
sider: 

1. VI ranges from 2n - 2 to 0 while Va ranges from 0 to 2n - 2. 
II. VI ranges from 2n - 1 to 1 while Va ranges from 0 to 2n - 2. 
III. VI ranges from 2n - 2 to 0 while Va ranges from 1 to 271 - l. 
IV. VI ranges from 2n- l to 1 while Va ranges from 1 to 2n - 1. 

These four cases give, respectively, for W~.i+l 

2 

I. W~.i+l= ~ (2n-2i)(2n- 2i- l )(2i- l)(2 i) 

2 

II . W L +1 = ~ (2n + 1- 2i) (2n- 2i) (2i- 1) (2i) 

2 

III . W~.i+ l = ~ (2n-2i)(2n - 2i - 1)(2i)(2i+1) 

2 

IV. Wt i+l= ~ (2n + I - 2i) (2n - 2i)(2i)(2i + 1), 

n-I 

(2 0) 

(21) 

(22) 

(23) 

where in each case i ranges from 1 to n-l. The evaluationL: W~.i+1 is quite straightforward 
i=l 

and gives for these cases, respectively, 

')' 2. 2n(n-l) (n + 1) (4n2- 1 On + 9) 
4 15 

(24) 

')'2. 2n(n- l ) (n + 1) (2n - l ) (2n + 1) 
4 15 

(25) 

')' 2. 2n(n - l ) (n + 1) (2n-l) (2n + 1) 
4 15 

(26) 

and 

~2.2n(n-l1~(n+ l ) (4n2+ 10n+ 9). (2 7) 

Considering the molecular vibrational energy as if it were due to harmonic oscillators 
having frequencies WI and W3 wave number, for the two vibrations it is found that G, the average 
energy for the group of n levels is given in the various cases by 

1. G= (n - l ) ( WI + wa) 

II. G= nwI + (n - l )wa 
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III. G= (n - 1)wl+nw3 

IV. G= n(wl + W2) 

(30) 

(31) 

The expressions are now at hand to permit the es tima te of the rela tive increase in the 
partition function due to the perturbation. Continuing to treat the various cases eparately , 
there are obtained for case I , 

~2 e -~ (Wl +W3) (n- l ) (ffTY f 2n(n-11~ (n + 1) (4n 2- 10n + 9) 

he he 
~ ~e -k 7' W1Vl e - k7' w3 V3 

V3= 0 "1= 0 

(32) 

for case II, 

for case III, 

( he )( he ) he _ 2 --wI --"'3 --w1 he .... he he (he) l -e k7' l -e k 7' e k 7' [ - 2 - (w I+w3) -3-;- (w l +w3) - 4 - (W I+W3) J 
= 'Y2 - 3e k 7' + lOe k 7' + 3e k 7' , 

kT [ -~ (W I + W3)J6 
l -e k 7' 

(34) 

and for case IV, 

~e -~ (Wl + w3)n ( .;r,y f 2n(~25- 1 ) (4n 2+ 10n + 9) 

he h e 
~ ~ e -k 7' W l" l e - k 7' W 3V3 

"1=0 "3=0 
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Then, in lowest order of approximation, the total effect of the perturbation is indicated by the 
sum of the separate (t::.Q/Q) j for the four cases, to give as the approximate value of Ll In Q 

LllnQ = ~(LlQ/Q)j= "/ (~)2 (l- e -!Prl~(l_ e -~W3) [ e -:~ h+W3) 

I kT [ - - (Wl+W3) ] l- e kT 

--WI - -w3 -- (wl+"'3) -2 - ("' l+wa) -3 - (w '+"'3) ( he he)( he he he)] 
+ e k T + e k T . 3e k T + lOe k T + 3e k T • (36) 

If the approximate equality of WI and Wa is now taken into account, then letting u=hcw/kT 
represent either hcwl/kT or hcwa/kT or their average value, it is found that 

')'2 u2(1 e- U)2 
LlIn Q=- - - [e -2u+ 6e-3u+ L~e -4u+ 20e - 5u + 15e-6u+6e-7u+e - 8uJ 

w2 (l -e 2U)6 

')'2 u2e-2u 
w2 (l-e U)4 

(37) 

This is the approximate contribution to the Gibbs free-energy function, - FO IRT, due to 
the effect of the perturbation. The corresponding contributions to HO/RT and C~ /R are 

-u iu t::.ln Q and u2 dd~2 t::.In Q, which give 

')' 2 e- 2u {(I +e-U) } 
Ll(HO/R T) = w2 u 2 ( l-e U)4' 2 u (l-e u)-l (38) 

and 

(39) 

A value of 'Y of 77.52 cm- 1 has recently been given by Benedict [4] with higher order constants 
and has been used in the present calculation. For the present case, w may be taken as about 
3,650 em-I. As should be expected, the total effect is found to be small . This is due largely 
to the fact that the lowest levels showing t.his type of resonance are at about 7,300 cm- 1 so 
that a relatively high temperature is required before the levels in question are appreciably 
excited. The magnitude of the effect is indicated in table 1 for several temperatures. 

One may inquire as to the approximate behavior of the effect in the limiting condition of 
high temperatures. If one neglects higher order effects in the manner of the foregoing deriva­
tion, which would neglect an appreciable relative effect due to anharmonicity, then when the 
functions are expanded in increasing powers of u, the leading term gives the approximate values 

or 
TABLE 1. Effect of Darling-Dennison resonance on thermodynamic functions for H 20 

Temperature 

OK 
1,000 ___ . ___ . ______________ _ 
2,000 ______________________ _ 
3,000 ______________________ _ 
4,000 ______________________ _ 
5,000 ______________________ _ 

t;.(- F OIRT) 

2.6XIO-7 
L88XlO-' 
O.784XlO- 4 
l.75XI0- 4 
3.03XlO- 4 
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t;.(l-l°IRT) 

24XlO- 7 
7.81XlO-' 
2.37XlO- 4 
4.52X I0- 4 
7.23X I0- 4 

and 

206XIO-7 
33. 1X I0-' 
8.01 X 10- 4 

14.2X I0-4 
22. I X IO- 4 

(40) 

(41 ) 



The q uadl'atic power of temperature is a result of the fourth power dependence of Ll2: W~ upon 
the quantum numbers, which supplies a fourth power of T as a factor in the summation. This 
is cut down to the second power by the inverse second power in the coefficient of this term. 

Another case of resonating levels for which details have been worked out is that of Fermi 
resonance in the case of CO2• While the effect of the perturbation upon the thermodynamic 
functions can be expected to be fairly small in this case also, since the perturbation, as in the 
previous case, involves the displacement of some levels upward and some downward in such a 
way as to nearly compensate, it is nevertheless a larger effect than in the case of H 20 , mainly 
because the energy of the lowest resonating levels is near 1330 cm- I for CO2 as compared with 
the 7,300 cm- 1 for H 20, so that comparable excitation takes place at a lower temperature. 

It was shown by Dennison [5] and Adel and Dennison [6J that a satisfactory representation 
of the CO2 spectrum could be obtained if account were taken of perturbations within groups of 
levels with equal values of l, the azimuthal quantum number, and with equal values of 2vI +V2. 
Then the effect of the perturbation within a group of n levels of this kind is indicated by the 
shifts of roots of such a secular equation as (16) with corresponding effects on the thermodynamic 
functions indicated in terms of the partition function according to eq (18) and (19) . In each 
group of n levels, the value of VI ranges from zero to n - l, with V2 going from its maximum value 
to its minimum value which is equal to Ill. The number of levels interacting within one group 
is given by n = t(V -Ill) - 1. The elements of the determinant which are adjacent to the main 
diagonal were presented by Dennison in a form which can be so converted as to indicate that 

W~.i+l = W~i (n- l)(F+2-n-i), (42) 

where i ranges from 1 to n - l. For the evaluation of the principal contribution to the parti­
tion function according to eq (18), there is needed a knowledge of the distribution of the 
unperturbed vibrational levels. It is assumed that these are given in the somewhat uncon­
ventional form 

Then the average value of G for a given group of levels is given by 

G= wzF + w3v3+ wn(n - l ) + X 2z (Fz- F) +X33 (V~- V3) + X nn (n - l )2 

(43) 

+ X 23 Fv3+ Xv n F (n - l ) + X n3 (n - l )v3, (44) 

where 

(45) 

By simple summation, 

~ W 2 . = TVZ n (n2
- Jl[ l (F+ 2)_l ] {;;;t •.• + 1 0 2 3 2 n (46) 

and for the next term of (18) 

n - J ? . n (n2- 1) (4 - n 2 ) 

~ W ;'.i+1 (W?+ W ?+1)= W~ 30 [wn -o. F - X n3 V 3], (47) 
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1 2 1 
where 0'="3 X ll - "3 X 22 - 6 X 12. After multiplying by the exponential Boltzmalll factor for the 

average vibrational energy, the summation over F and n follow, but with the requiremen t that 
half values of the summand are to be used when F has its lowest value, 2(n- 1), in order to take 
account of the absence of l degeneracy for l= O. The choice of doing this rather than multiply­
ing by 2 for l ~ 0 comes about as the r esult of the fact that half of the rotational levels are 
absent due to the symmetry of the molecule and the zero nuclear spin for oxygen. Then this 
is compared with a total approximate Q similarly omit ting any factor for l doubling. If the 
effects for anharmonicity ar e disregarded, the leading term is obtained as 

(48) 

The effect of F ermi resonance, using u = hew2/kT and disr egarding the distinction between WI 

and 2W2, is thus given approximately [7] by 

t.(- Fo/RT) = ! W~ u 2e- 2u 
, 

2 w~ (1- e-2u)(1-e - u )2 (49) 

(50) 

and 

The effect can be obtained in more detail by including an additional contribut ion from eq 
(46 ). Using ui=hew;/kT and using WI= 2w2 after the first t erm, eq (48) is replaced by 

1 (he ) 2 TJl~ e-2U2(1- e-U1) 
t.ln Q= - -2 kT (1- e-2u2)2(1- e-U2)2 

x + 22 [e-2U2+ 1 0e-3U2+ 43e-4U2+ 88e-5U2+ 1 03e- 6u2+ 70 e-7U2 + 21 e-8U2] 
(1-e-2U2)5 

B + g22 [e-3U2+ 8e-4u2+ 41 e-5u2+ 1 04e-6u2+ 11ge- 7u2+ 9 2e-8u2+ 19e-9U2] 
6(1-e 2U2)5 

3X22e-4U2 X12 e-5u2 
(1- e-2U2) (1 - e-U2)4 (1 -e-2u2)2(1 -e-U2)3 

XI3 e-U3e-4U2 LYne- U3e -3U2 } 
- 2(1 - e-U3) (1- e-2U2)2(1- e- U2)Z - (1- e-U3) (1- e-2uz) (1- e-"2l (52) 
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A calculation was made for CO2 using as values for the constants (in cm -I) 

W I = 1342 .86 w2= 666.27 w3= 2349.15 

X ll=-2.20 

XI2=3. 76 

X 22 = - 0.75 X33 = - 12.46 

X 13= - 18.54 X 23= - 12.48 

with B + g22 =1.42 and W o=51.01 cm - I , giving wn= 3.39, X nn= - 4.24, X vn=3.38, and Xn3 = 3.21. 
With these constants, the magnitude of the effect as given by eq (48) is indicated in table 2 as 
the first column under each heading while the combined effect consistent with eq (52) is shown 
as the second column under each of the headings, t.( - F OjRT) , MHOjRT) and t.O; jR. The 
entire effect for CO2 is rather small and in many computations could be neglected. For elevated 
temperature, the leading term in this case is roughly linear in the absolute temperature rather 
than quadratic as was found to be the case for H 20. This is due to the essentially cubic 
dependence of W ;2.it l upon quantum numbers in the present case, as compared with the 
quartic dependence in the case of H20 . It is also seen that this simple dependence upon tem­
perature is modified greatly by the effect of anharmonicity. The large effect of anhannonicity 
at high temperature can be regarded as due to its lowering of entire groups of resonat ing levels 
with a resultant increased population in such groups, which provides an increase in thermody· 
namic effect. 

This treatment does not make any adjustment for the effect of resonance on the composi­
tions of states, since the rotational perturbation is quite small, and, in addition, the r esonance 
shifts have compensating effects in fiTst approximation as has been noted in deriving the larger 
contributions due to perturbation which have been taken into account. They would thus be 
quite negligible. 

TABLE 2. Effect of Fermi resonance on thermodynamic functions for CO2 

rremperature 

o J( 
200 ___________________ 
250 ___________________ 
300 ___________________ 
400 ___________________ 
500 ___________________ 

1,000 ________________ _ 
2,000 ______ • _________ _ 
3,000 ________________ _ 
4,000 ________________ _ 
5,O()(L _______________ _ 

t; (-Fo/RT ) 

5X IO-<l 
22XIO-< 
5XIO- ' 
18XIO-' 
33XlO-' 

0.0012 
. 0029 
. 0045 
. 0061 
. 0077 

0.0012 
.0030 
. 0048 
. 0067 
. 0087 

t; (/_[ 0/ R T ) 

36XIO-<l 
12XIO-' 
26XIO-' 
56X IO- ' 
85X I0-' 

0_ 0018 
_0033 
. 0048 
_0063 
. 0078 

0. 0018 
. 0036 
. 0056 
. 0078 
. 0103 

t; (Cp/R ) 

27XIO-' 
70XIO-' 
11 X 10- 1 

17XIO- I 
22XIO- I 

0. 0033 
_ 0062 
. 0093 
_ 0124 
_ 0155 

0_ 0035 
_ 0073 
_ 0119 
. 0173 
. 0233 

Equations (49), (50), and (51) also represent approximately the effect of Fermi resonance 
in H 20 involving levels for which 2vI +Vz is a constant, even though )1 2 is not degenera te as for 
CO2• Benedict [4] gives the matrix element (VI, v2 + 2 Ivl+ 1, v2) = !{ 200 (Vl + 1) (v2 + 2)(V2+ l) }! , 
indicating that W~=200 cm- 2 • A few values for the Fermi resonance effect for H 20 are given 
in table 3. The effect is much smaller than the Darling-Dennison r esonance effect at the higher 

TABLE 3. Effect of Fermi resonance on thermodynamic functions for H 20 

'rem peratu rC 

OJ( 
500 ________________________ _ 
1,000 ______________________ _ 
2,000 ______________________ _ 
3,000 _________ _____________ _ 
4,000 _______ _______________ _ 
5,000 __ ____________________ _ 

8X IO-8 
3X IO-< 
10-' 
2X lO-' 
3XIO-' 
4X lO-' 
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10- 6 

8XlO-< 
2XIO-' 
3XlO-' 
4X IO-' 
4X IO-' 

t;C ~/R 

4X I0- 6 

2X I0- 5 

4X I0- 5 

5X Io-' 
7X I0- 5 

9XIO-' 



l 

temperatures although it is the larger at 1,000° K and below. Its earlier rise is partly due to 
the resonance occurring first near 3,400 cm- 1 as compared with 7,300 cm- 1 for the Darling­
Dennison resonance. The magnitude of the resonance effects for H20 and CO2 are shown in 
figures 1 and 2, respectively. 

o 2 3 4 5 

T/I OOO 

FIGURE l. Effect of rcwnance on thermodynamic 
functions for H 20 . 

c\! h" ft: Contribution of Darling-Dennison resonance to CdR , 
\Ho-E~)/RT, and -(FO-E l)/RT. c, h , C: Contribntion of 
Fermi resonance to C UR, (H O-E )/RT, and -(FO-Eg)/RT. 

. 0 2 

. 0 1 

o ~~ __ ~ ____ ~ ____ ~ ______ ~ ____ ~ 

o 2 3 4 5 

T/I OOO 

FIGUHE 2. Effect of Fermi resonance on thermody­
namic functions for CO2• 

c, h , f : Contributions to C ./R , (H O- E l)/RT, and -(FO-E~)/RT. 
Upper branches with anharmonicity, lower branches neglecting 
anbarmonicity. 

4 . Conclusion 

A useful method of calculation of thermodynamic effects for levels defined b y a secular 
determinant equation has been demonstrated. 

Many other instances with similar perturbations are known and their effects on thermo­
dynamic functions should be calculable by similar methods if the theoretical description of the 
perturbation has been worked out and the spectra fitted in the detail that has been achieved 
for H 20 and CO2 • In particular, C2H 2 gives an example of Darling-Dennison resonance for 
which eq (37), (38), and (39) would apply. Other molecules with Fermi resonance similar to 
that for CO2 to which eq (49) , (50) and (51) apply include CS2, C2Ha, C2D 6 and N 20. 
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