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Waterdrop Collisions With Solid Surfaces
Olive G. Engel

An approach is described to the difficult problem of the dynamies of an impinging water

sphere.

The flow in the impact plane is traced chemically.

The stages in the collapse of the

water mass and of its radial flow are shown in photographs that were taken with a high-speed

motion-picture camera.

Empirical determinations of the time dependence of the impact

force and of the radial flow velocity are reported. The possible oceurrence of cavitation in

the radial flow is considered.

A semiempirical analysis based upon various simplifying

assumptions leads to equations for the maximum impact pressure and for the rate of spread

of the water after the collision.

1. Introduction

Erosion by waterdrop impact has recently received
attention because of the damage that is done to high-
speed aircraft on flying through rain. The problem
is not new. Similar ercsion is produced in steam
turbines by the waterdrops in wet steam.

The destructive force causing this erosion results
from the collision of the solid surface with the water-
drop. At high impact velocities a waterdrop acts
as though it were a hard sphere. Unlike a sphere
of hard material, it undergoes an outward radial flow
of very high velocity as a result of the collision.

The question as to the order of magnitude of the
pressure that is developed in collisions of waterdrops
against solid surfaces has been discussed since the
first studies of this erosion were begun approximately
30 years ago. Efforts have been made both to calcu-
late the pressure from theoretical considerations and
to measure it experimentally.

2. Behavior of a Liquid Drop on Collision
With a Flat Solid Surface

The process of collision of one solid against another
solid is well known in elasticity theory. The collision
of small solids with a body of liquid has also been
investigated in water-entry problems. The collision
of liquid drops against a solid surface, however, has
been studied very little. Some preliminary work for
the purpose of obtaining a better understanding of
waterdrop-to-solid collisions is described in this
paper. This work includes (1) a chemical mapping
of the radial water flow in the impact plane, (2) the
use of high-speed motion-picture photography to
“stop” the motion of the drop sufficiently during the
collision so that the stages in the transition from
vertical to radial flow can be observed, and (3) the
use of schlieren photography to study details in the
radial flow. The following discussion applies to the
casi: of collision of a waterdrop with a flat solid
surface.

2.1. Map of the Radial Water Flow

Worthington [1] ' with the aid of spark photogra-
phy made a study of the forms assumed by drops of

! Figures in brackets indicate the literature references at the end of this paper.

liquids (mainly milk and mercury) after a vertical
fall from heights up to 11 in. onto a horizontal sur-
face. A tendency toward formation of radial arms
was found by Worthington to increase both with the
height of fall and with the size of the drop.

The radial flow of a waterdrop was mapped chem-
ically at the National Bureau of Standards. To
accomplish this, a very small crystal of sodium di-
chromate held on the point of a needle was placed in
the bottom surface of a waterdrop just before it fell
from a flat-nosed pipet. The solution of this oxidiz-
‘ng agent is heavier than water and remained in the
bottom of the drop. The drop was then allowed to
fall onto a glass plate covered with a filter paper that
was previously wet with acidified starch and potas-
sium iodide solutions. A typical starch-iodide print
of the radial flow from a waterdrop that fell approxi-
mately 1.5 ft is shown in figure 1. The water that
struck first, and which contained the sodium dichro-
mate, washed to the periphery of the flow, as can
be seen by the stronger starch-iodide color there.
The water that struck last essentially did not flow.

Starch-iodide trace of the radial flow of a waterdrop
after collision with a solid surface.

Figure 1.
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The radial arms in the structure show that the flow
was channeled. Tt is conceivable that these channels
are a result of the viscous drag between the solid
surface and the flowing liquid, as was suggested by
Worthington [2]. On the other hand, the observa-
tion of Worthington that the number of channels
increases both with the size and with the height of
fall of the drop suggests that the number of them
may be related to the kinetic energy of the drop.

2.2. Stages in the Collapse of a Waterdrop After
Collision

High-speed motion pictures can stop sufficiently
the movement of a waterdrop after it has collided
with a solid surface so that the horizontal flow can
be observed. Figures 2, 3, 6, 7, and 9 are enlarge-
ments from high-speed moving pictures that were
taken by T. C. Helimers, Jr., and Harold Goodman,
both of the Diamond Ordnance Fuze Laboratory,
and by Warren P. Richardson of the NBS Technical
Reports Section. The camera used is capable of
taking 15,000 frames per second. The operating
velocity at which any incident is photographed can
be computed from the 60-cycle timer marks along
the border of the film.

The steps in the collision and flow of a waterdrop
after free fall through distances of about 1.5 ft and
of about 20 ft are shown in figures 2 and 3, respec-
tively. For the waterdrop collisions shown in these
figures a very small crystal of sodium dichromate
was placed in the bottom surface of the drop, and
the drop was allowed to fall against a glass plate
covered with a filter paper that was previously wet
with acidified starch and potassium iodide solutions.
A waterdrop oscillates between a vertical and a
horizontal elongation as it falls. The collision
shown in figure 2 occurred while the drop was elon-
gated vertically; that shown in figure 3 occurred
while the drop was elongated horizontally. It can
be concluded from these pictures that the bead of
liquid of the drop, before it enters into radial flow,
shows an ability to resist a change of shape during
collision with a solid. This may be a result of its
inertia, or of its viscosity, or surface tension.

2.3. Schlieren Pictures of Impinging Waterdrops

To accelerate waterdrops to their terminal velocity
in air by free fall under the force of gravity, a tube
was installed in a staircase well to extend through
three stories of the Industrial Building of the Na-
tional Bureau of Standards. This tube served the
purpose of shielding the waterdrops from air cur-
rents so that they could be made to fall with little
deviation on a predetermined spot on a glass plate
located at the lower exit of the tube. A flat-nosed
pipet, from which the drops originated, was mounted
at the top of the tube.

It the solid surface against which the waterdrop 18 | FIGURE 2. Stages in the flow of a waterdrop that fell from a
allowed to impinge is a glass plate, the stages in the height of approzimately 1.5 feet.
radial flow of the drop can be photographed through
the plate itself. A complete schlieren system was
found to produce pictures from which the most infor-
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Ficure 3. Stages in the flow of a waterdrop that fell from a
height of approximately 20 feet.
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Fraure 4.  Elements of a schlieren system for photographing

impinging waterdrops.

mation could be obtained. A sketch of the elements
of the arrangement that was used is shown in figure
4. The arrangement was planned by Roland V.
Shack of the NBS Optical Instruments Section.

a. Schlieren Arrangement for Photographing an Impinging
Waterdrop

The light source was a carbon arc searchlight that
operated on a 40-amp current. The light was colli-
mated by a parabolic mirror and was directed down
the tube, through which the waterdrops fell, by
means of a front-surface plane mirror. The tube
was dyed black on the inside to reduce light scatter-
ing. The degree of collimation of the light was
further improved by a circle of cardboard that was
fastened to the exit of the tube and that allowed only
the central core of the collimated beam to pass
through to the glass plate.

The collimated light was transmitted through the
glass plate and was focused by a lens. The sharp
spot of light, which formed at the focal point of the
lens, was received on an opaque barrier that had the
same size and shape as the spot of light itself. This
barrier was made by allowing the spot of light to
fall on a spectroscopic plate that was rigidly mounted
at the focal point of the lens in complete darkness.
The opaque barrier served the purpose of a schlieren
knife edge. The camera was mounted below the
opaque barrier and was focused on the upper surface
of the glass plate. Theoretically, only the light that
was scattered by the impinging waterdrop would be
deflected so as to enter the lens of the camera.

b. Interpretation of the Schlieren Patterns

To show how the light that was scattered by an
impinging waterdrop would appear in pictures taken
with the schlieren arrangement, four glass models of
waterdrops were fashioned by L. Testa of the
NBS Glassb lowing Shop. The models ranged
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from a solid glass sphere to an almost flattened glass
disk. They are shown in figure 5, along with the
corresponding photographs that were made when
they were placed on the glass plate of the schlieren
arrangement. The pictures numbered 1 through
4 in figure 5 are the glass models. The pictures
having the corresponding primed numbers are the
schlieren patterns that the models produced. A
50-mm lens was used to photograph the schlieren
patterns. The lens was kept at its widest aperture
so that the depth of field was very short.

In picture 1 of figure 5 a hollow glass bead (black
pointer) is shown with the solid glass bead. The
schlieren patterns obtained from these beads show
how difficult it is to tell the difference between a
bubble in water and a protuberance from the water
surface. The hollow bead produces only a secmewhat
larger high light in the schlieren pattern than the
solid bead produces. Picture 2 of figure 5 shows a
glass model of a waterdrop in the first stage of radial
flow. The schlieren pattern preduced by it is the
same as that produced by the solid glass sphere but
has a slightly larger diameter. A small difference in
diameter is meaningful in this case because the
geometry of the schlieren arrangement remained
constant.

Pictures 3 and 4 of figure 5 show glass models ot a
waterdrop in more advanced stages of radial flow.
The glass model in picture 4 has a ridge at the periph-
ery of the radial flow, whereas that shown in picture
3 does not. Comparison of the structure of these
models with their schlieren patterns shows that a
flat area appears light in the schlieren pattern, regard-
less of whether it exists on a ridge or in a depression,
whereas an area that has any degree of inclination to
the reference plate on which the glass model is
resting appears dark. Apparently the only way

that the presence of a ridge or a depression can be
identified is by the sloping area leading to it. The
spherical residue in the center of the glass models in
pictures 3 and 4 represents an inclined area and
appears dark in pictures 3’ and 4’. In pictures 1’
and 2’ the schlieren patterns are also dark as is now
expected because the glass models that produced
them (pictures 1 and 2) have no area that does not
have an inclination to the reference plane.

c. Increase in Size of the Central High Light

The schlieren patterns shown in pictures 17 and 2’
of figure 5 have a central high light as do also those
shown in pictures 3’ and 4’. This results because
the glass sphere or spherical residue acts as a lens.
If the spherical residue should become progressively
more flattened, it should behave as a lens of longer
focal length, and the high light should be seen to
become larger and more diffuse. Although this
effect is observed in schlieren pictures of the collision
of real waterdrops with the glass plate, it is not
observed in pictures 1’ through 4’ probably because
the degree of curvature of the spherical residue in
the glass models is not sufficiently different.

The first 10 frames of a collision incident of a real
waterdrop impinging against a glass plate as photo-
eraphed at a small oblique angle above the glass
plate are shown in figure 6. As soon as the water-
drop contacts the glass and flows at all, it becomes
a combination lens in which the lower lens has a
small central flat area. Under this condition two
foci exist, namely, that of the double-convex lens
and that of the single planoconvex lens. As the
solid surface moves further through the waterdrop
the intensity at the focus for the double-convex lens
decreases and that at the focus for the single plano-
convex lens increases. When the head of water that

Ficure 5.

Glass models of waterdrops and their schlieren patterns (primed numbers).
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remains of the drop has decreased to a hemisphere,
only the focus for the single planoconvex lens exists.

The focal length of a sphere of water measured
from the point of contact with the flat surface on
which it is resting, for rays making a small angle with
the axis, is equal to its radius. The radius of curva-
ture of the top of the drop in the first frame of figure
6, as found by trial and error with dividers, was
0.36 em. The focal length of a single plancconvex
lens of water measured from the plane side, which is
in contact with the flat surface on which it is resting,
for light that is incident on the curved surface of it,
is 2.25 times its radius of curvature. As the radius
of curvature of the water hemisphere that remains of
the drop in the fifth frame of figure 6 was 0.51 cm,
its focal length at this stage of the collision was about

0

Ficure 6. Stages in the collision of a waterdrop with a glass
plate.

1.15 em. The difference in the focal length of the
water lens as it exists in frame 1 and in frame 5 is
0.79 em.  As the depth of field of the camera used to
take the schlieren photographs was less than 0.2 ¢m,
it seems reasonable that a perceptible increase in the
size of the high light in the center of the schlieren
patterns of a waterdrop should be observed during
the course of a collision between the waterdrop and a
glass plate. This effect can, indeed, be observed in
frames 1 to 13 of figure 7.

d. Lifetime of the Head of Water of a Drop That Collides at Its
Terminal Velocity in Air With a Glass Plate

The glass models were placed directly in the center
of the schlieren arrangement in line with the opaque
barrier and with the center of the camera lens.  The
waterdrops were usually displaced from this position.
This may explain why the schlieren patterns of the
waterdrops show an additional high licht on the side
of the head of water of the drop as long as it exists as
such.  When the head of water just disappears so
that only a disk of water in radial flow remains, the
side high light and the central high light merge. For
waterdrops impinging againsi a glass plate at their
terminal velocity in air, the number of frames from
the first point of impact to the merging of the two
high lights indicates that the time required for the
disappearance of the head of water of the drop is
about 1 msece (millisecond).

The merging of the high lights seems to be accom-
panied by a flash of light, which unfortunately ob-
sceures the details in the radial flow for a space of 6 or
7 frames. The explanation of the light flash seems to
be that the water lens at this stage of the flow of the
drop acts in conjunction with the glass lens of the
schlieren system to allow light to pass around the
opaque barrier. The event occurs consistently.

e. Structures in the Radial Flow

On inspection of schlieren patterns produced by
collision incidents between a glass plate and imping-
ing drops, such as those shown in figure 7, it is
seen that the radial flow of the liquid appears dark.
With reference to the observations made in regard to
the schlieren patterns produced by the glass models,
this appears to indicate that the radial flow of the

liquid has some degree of inclination with respect

to the glass plate. Worthington [1] made observa-
tions with drops of milk and mercury for low heights
of fall that show that the liquid 1n radial flow is
deepest at the periphery (see fig. 15).

In the schlieren pictures the periphery of the
radial flow is bounded by a beady white line. The
beady character of the periphery of flow can be
detected as early as frame 5 in figure 7. With
reference to the schlieren patterns produced by the
glass models, a white area is either the top of an
elevation or the bottom of a depression. In the
case ol the white boundary of the radial flow it is
most likely an elevated ridge. This conclusion
seems to be supported in the pictures shown in
figure 2.
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Ficure 7. Schlieren patterns produced by the collision of a waterdrop with a glass plate
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Ficure 8.

Ridges formed in the flow of a deforming lead pellet
after collision.

Waves that run out over the radial flow can also
be seen when high-speed pictures of a collision of a
waterdrop with a glass plate are viewed with a
projector.  This effect is not wvisible in still
enlargements.

Finally, inspection of pictures of various collision
mcidents between waterdrops and a glass plate
shows that structures of some kind develop in the
radial flow. The development of these structures
follows the same general course. The central high
light increases in size and finally takes on a definite
structure. The structure grows in complexity and,
after the central and side high lights of the drop
merge, finally appears as separate white spots. That
these white spots or areas are probably ridges and
depressions can be seen from the flow that a de-
forming lead pellet undergoes after impact at very
hich speed against a metal plate. The flow of a
deforming lead pellet is shown in figure 8. In the
case of the radial flow of water after impact, these
ridges eventually vanish.

The explanation of why these ridges should form
is not clear. The compressional wave started by the
impact moves through the drop at the speed of
sound in water and reflects from the opposite side
of it as a tension wave. Thereatter it changes
from tension to compression and back to tension
alternately at the end of each round trip through the
head of water that remains of the drop. It is possible
that a standing wave may be produced as a conse-
quence of the boundary conditions imposed on this
alternate wave of compression and tension. On the
other hand, it 1s possible that a solution that would

predict standing waves may result from the con-
tinuity equation and the boundary conditions of the
radial flow in the impact plane.

f. Cavitation in the Radial Flow

One of the most difficult aspects to understand in
the problem of the erosion of durable structural
materials as a result of high-speed waterdrop
impingement is how initiation centers develop. It
has been suggested by Albrecht Herzog of the Wright
Air Development Center that incipient cavitation
erosion may provide a first surface roughness from
which erosion that results from waterdrop impinge-
ment could progress. A first surface roughening is
observed both in the case of cavitation erosion and
in the case of erosion by waterdrop impact. From
this standpoint it is of interest to know whether or
not any evidence of cavitation can be detected in the
radial flow of a waterdrop after collision with a solid
surface.

Cavitation is the formation of bubbles in a liquid.
[t occurs when the pressure on a liquid or in a small
volume in a liquid drops below the value of the vapor
pressure of the liquid at the temperature in question.
The cavitation process itself is the spontaneous
growth of gas nuclei (which already exist in the
liquid) due to vaporization of the liquid across the
liquid-vapor interface that each growing nucleus
provides. When the pressure on the liquid is raised,
or when the bubbles move out of a local low-pressure
region in the liquid to a region of high pressure, the
bubble-cavities collapse. It is the collapse of the
avities that produces the type of damage known as
cavitation erosion,

There are at least two ways by means of which it is
possible to explain theoreticallyhow the conditions that
produce cavitation may develop in a liquid drop after
it collides with a solid surface at a velocity of suffi-
cient magnitude. The first possible explanation is
based on the very rapid radial flow of the liquid.
It suggests that when the head of liquid of the drop
has just disappeared into radial flow, the continued
outward flow of the liquid under its own monemtum
will produce a drop in pressure at the center of the
spreading liquid disk. If the pressure at the center
of the spreading liquid disk should fall below the
vapor pressure of the liquid in question, cavitation
may occur. This explanation has been advanced by
Dr. Herzog. That a liquid drop may break in the
center of the radial flow is shown in the work of
Worthington [1]. He found that impinging drops
of mercury break in the center and form a ring rather
than a solid disk of liquid.

The second possible explanation of how cavitation
conditions may be realized is based on the alternating
wave of compression and tension that exists in the
head of liquid that has not yet become part of the
radial flow of the drop. At the first instant of col-
lision a wave of compression, which is initiated by the
impact, moves through this head of liquid to the top
of the drop. Here it reflects from the free liquid-to-
air surface as a tension or negative pressure wave.
This negative pressure wave moves back through the
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drop to the impact surface. It must, in fact, be
focused to a very small area of the impact surface by
the curvature of the top of the drop in much the same
way as ultrasonic waves in water may be focused by
a watch glass.  The returning negative pressure wave
adds algebraically to the compressional wave that is
still being initiated at the impact surtace as a resvlt of
the collision. Since, however, the impact pressure
has been decreasing steadily during the time interval
in which the first compressional wave front made its
round trip through the waterdrop and returned as a
negative pressure wave, the net pressure is negative.
The extent to which the net pressure is negative
depends on the rate of decrease of the impact pressure
with time. This explanation of how cavitation con-
ditions may be produced in a liquid drop after
collision with a solid surface is due to the late Fraucis
E. Fox of the Catholic University.

Some slight evidence was found for what might be
cavitation in schlieren pictures of a waterdrop col-
lision with a glass plate. At the suggestion of
Virginia Griffing of the Catholic University, water-
drops saturated with argon gas were used in an effort
to show that the evidence that was observed was
actually produced by bubbles in the water. D,
Griffing has found that cavitation occurs readily in
water that has been saturated with argon gas.

Enlarged pictures of 75 consecutive frames from
one of the collisions of a drop of argon saturated
water with the glass impact plate are shown in figure
9. In this figure the life cycle of a bubble can be
followed from frame 19 to frame 33. The appear-
ances, which are described here, are more readily seen
in the original photographs than in the halftone re-
productions. The bubble appears slightly to the
right of and below the center of the radial flow in
frame 19. It grows in size and distinctness, then
diminishes, and eventually vanishes in frame 33. As
the time per frame for this collision incident was 93
usec, the lifetime of this bubble was 1.4 msec. This
is a reasonable lifetime for a cavitation bubble [3].
This bubble made its appearance shortly after the
head of water of the drop vanished into radial flow in
frame 14.

A second bubble life cycle can also be followed in
figure 9. This bubble appears in frame 24 on a level
with the bubble that has just been discussed but
about % in. from the periphery at the left side of
the radial flow. Tt increases in brightness and then
dims virtually to extinetion in frame 34. The life-
time is 0.9 msec. In frame 42 a white spot, which
may be the same bubble, starts to increase in bright-
ness. It is about Y in. from the left periphery of
the radial flow. It continues to increase in bright-
ness and, at frame 60, that is, 1.7 msec after its
reappearance, it drifts into the left periphery of the
radial flow.

Two bubbles slightly below and to the leit of the
center of the radial flow can be observed from frame
31 to frame 45. In frame 46 the characteristic white
semicircle which seems to be associated with a surface
bubble (possibly due to the raised rim of water that
accompanies such a bubble) appears. One of the

bubbles has broken by irame 52, as is seen by the
train of ripples that forms from the white semicircle.
The other bubble becomes obscure at about frame
59 or 60. A bubble floating on a liquid surface de-
presses the liquid level below it and is accompanied
by a stable meniscus or raised rim of liquid at its
periphery. TIf the bubble collapses, the differences
i liquid level are no longer stable. This condition
will produce waves. These waves are predominantly
capillary waves since the wave length is small.

The collision incident. for a drop of ordinary hy-
drant water against the glass impact plate is shown
in figure 7. A small white spot can be seen very
slightly to the right of the center of the radial flow
in frame 14. This spot grows in brightness to about
frame 25. It then becomes progressively dimmer
until it disappears at about frame 40. This 1s a
lifetime of about 2.5 msec. The rise of a bubble to
the surface and its collapse in the surface can also
be traced in this figure. The first evidence of this
bubble is in frame 29 at about the center of the
radial flow. By frame 42 it has developed into two
white semicircles enclosing a small white spot. As
has already been noted, this structure seems to be
typical of a surface bubble. In frame 46 the tiny
central white spot is more diffuse and the enclosing
semicircular white spots have started to split into
semicircular lines. In the succeeding frames these
lines spread out. In frame 54 they are almost con-
centric circles such as are formed when a pebble is
dropped in a pool. Some vestige of this configura-
tion can still be seen in frame 73.

The fact that the bubble life cycles that have
been pointed out seem to start after the head of
water of the drop has vanished must not be con-
strued as invalidating the second of the explana-
tions of how cavitation conditions may be realized
in a liquid drop after impact against a solid surface.
This was called to my attention by Phillip Eisenberg
of the Office of Naval Research. 1t may be neces-
sary for the negative pressure wave to return to the
impact surface many times before the bubble nuclei
have sufficient time to grow to a size that can be
seen.

In evaluating the evidence, which has just been
presented, for the possible existence of cavitation in
a waterdrop after collision with a solid surface, it 1s
important that the effect of the impact velocity
should be considered. The terminal velocity of a
large waterdrop in air is [4] about 26.9 ft/sec (820
cm/sec). One can hardly extrapolate the evidence
for cavitation found at this velocity to what may be
found at airplane flicht velocities, for example,
which are of the order of 900 ft/sec. At the high
impact velocities at which erosion is actually ob-
served as a result of waterdrop impact the negative
pressure would be very much increased and the
possibility that cavitation may occur consequently
much enhanced. This would follow from either of
the explanations of how cavitation conditions may
be produced as a result of the impact of a waterdrop
against a solid surface.
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Frcure 9. Schlieren patterns of the collision of a drop of argon saturated water with a glass plate.
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2.4. Time Dependence of the Impact Force

It is of interest to know something about the order
of time during which the impact force developed by
the impingement of a freely falling waterdrop
against a solid surface is effective. A preliminary
attempt to measure this has recently been made by
Lawrence Fleming of the Diamond Ordnance Fuze
Laboratory, using a thin disk of barium titanate
ceramic.

The barium titanate disk that was used was about
1 em in diameter. It was coated with silver on both
sides to make it conducting and was fastened with
polystrene adhesive to a small metal base. The
complete unit was then coated with polystyrene
lacquer to prevent the water of the drop from short
circuiting the silver layers. Leads from the silver
layers were connected to a Dumont 304 oscilloscope.

The barium titanate unit was placed on a glass
plate that was located below the exit of the tube
through which the waterdrops were allowed to fall.
The waterdrops struck the barium titanate disk
after a free fall of approximately 40 ft. The traces
that appeared on the oscilloscope screen as a result
of the waterdrop collisions against the barium
titanate were photographed directly. One of these
traces with the time base marker is shown in figure
10. The time between cycles in the time base marker
18 100 usec.

It can be seen from the oscilloscope trace that the
impact force is applied very suddenly. The move-

ment of the point of light on the oscilloscope screen
due to the increasing force was too rapid to leave a

;»._nmw.u.,,,.wm(mm%
.

Ficure 10.

Oscilloscope trace of the decay of the force produced
by a waterdrop collision.

trace in the photograph. The decay curve only is
visible. The force undergoes a rapid decay to zero
in approximately the space of 1 msec. As has been
noted in section 2.3, d, thisis also approximately the
time during which the head of water of the drop just
vanishes.

2.5. Time Dependence of the Flow Velocity

The experimental values of radius of flow at
regular intervals of time for the spread of a drop of
water after impact at its terminal velocity in air
against a glass plate are shown graphically i figure
11. The data for this graph, which are given in
table 1, were secured from 50 consecutive pictures
of the history of the collision of a waterdrop against
a glass plate. The pictures were the first 50 frames
of figure 7. The measurements of the diameter of the
radial flow were made under low magnification with
dividers and a steel rule graduated to 0.01 in. Each
experimental diameter is the average of two measure-
ments. The values plotted on the graph have been
multiplied by a magnifying factor of 2.7. The
magnifying factor was determined from a series of
measurements of the diameter of the maximum
spread of drops that were obtained from the same
pipet and that fell approximately the same distance.
The maximum radius of flow found in this way was
2.3 cm. The maximum radius of flow in the schlieren
photographs occurred at frame 44 and was 0.85 cm.
The quotient of these values of the maximum spread
radius produced the magnifying factor.

Ambiguity exists as to the exact time at which
the flow was initiated. Any radius of flow that is
less than the radius of the drop itself is obscured
by the drop. Extrapolation of the curve indicates
that flow began not at time equal to zero on the graph
but at a time equal to approximately 152 usec.
That is, the origin of the curve is translated 152
usec along the abscissa because, of necessity, the
radius of flow is zero at zero time, which is taken to
be the first point of impact.

The slope of the curve of radius against time is the
velocity of the radial flow. This curve is also shown
in figure 11. The observed points are those ob-
tained directly from the radius-against-time curve.
The velocities are plotted in terms of the terminal
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Frcure 11.  Time dependence of the radius of flow and of the

flow velocity of an impinging waterdrop.
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Tasre 1. Values of the radius of flow for the waterdrop
collision shown in figure 7
Experi- l Experi- Calcu-
Frame Time nl,“m‘,” ‘Magmfy-‘ | mental lated real
measured | ing factor \ real radius | radius
radius [ ¢ S
sec cm cm cm
1 0 0.15; 210 0.41;
2 . 000035 .15 2.7 .41,
3 . 000133 . 267 2.7 .72
4 . 000225 .32 2.7 | 871
5 . 000323 . 350 2.7 | . 945
6 000415 0.400 | 27 | 1L0s
7 | . 000513 .43 | 2.7 | 1Ll
8 | . 00060s . 457 2.7 | 1.23
9 | . 000703 .49, | 2.7 1.33 |
10 . 000798 .51y 2.7 1.3s ‘
11 . 000893 . 544 | 2.7 1.47
12 . 000983 L6 | 2.7 1. 53
13 . 00105 .58 | 27 1. 59
14 | . 00113 . 59 2.7 1. 61
15 . 00127 . 617 2.7 LG e
16 . 00137 .64y 2.7 1.74 R
17 . 0014s . 663 2.7 IS To R R s
18 . 0015 . 673 | 2.7 1.82 1.84
19 . 00165 . 675 | 2.7 1.83 S
20 . 00175 . 107 2.7 1.9y | ..
21 | . 00184 ik 2.7 1.92
22 | . 00194 .12 2.7 1.9
23 . 00203 . 739 2.7 2.00
24 . 00213 . Tds 2.7 2.02
25 . 00222 .57 207 2. 04
26 . 0023 . 763 2.7 2.0s 2.1
27 . 0024 T 2.7 Phlny S
28 . 00251 LT84 2.7 2.1z
29 . 00269 . 195 2.7 2.15
30 | . 00270 . 803 2.7 2.17
31 . 00279 . 813 2.7 2.19
32 . 00289 .82 2.7 2.23
33 . 0029 . 82 | 2.7 2.23
34 . 00308 . 82¢ 2.7 2.22
35 . 00317 . 827 2.7 D 2 R
36 . 00327 . 823 2.7 2.2¢ | ...
37 . 00335 . 833 2.7 2.25 | _o.-_.
38 . 0034 . 836 2.7 2. 26 2.2¢
39 . 00355 . 844 2.7 2.2s s
40 . 00365 .84, 2.7 2270
41 . 00374 . 83 2.7 2.2 | oeoo--
42 . 00384 . 844 2.7 2.29 2.29
43 . 00393 . 843 2.7 2.29 e
44 . 00403 . 851 2.7 2. 30 2.30

velocity, 1, of the waterdrop, which was approxi-
mately 26.9 ft/sec (820 em/sec). KExpressing the
radial flow velocity in terms of velocity V" that the
drop had acquired at the instant at which it impinged
against the glass plate makes it possible to see at a
glance how much larger the radial flow velocity is
than the impact velocity, for times just after the
collision incident. It can also be seen at a glance
that the radial flow velocity has dropped to the value
of the impact velocity in less than 1 msec, that is,
before the head of water that remains of the drop has
disappeared into the radial flow. To express the
values of the radial flow velocity in feet per second
or in centimeters per second it is only necessary to
multiply the values of the ordinate by 26.9 or by
820, respectively.

The central and side high lights for this waterdrop
merged, that is, the head of water of the drop van-
ished, at the end of 1.2 msec. Furthermore, the
oscilloscope trace of force as a function of time shown
in figure 10 for a waterdrop, that was obtained from
the same pipet and that fell through the same dis-
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tance, indicates that the impact force vanished at the
end of 1 msec. The velocity-against-time curve
shown in figure 11 has the same shape as the oscillo-
scope trace of the force as a function of time shown
in figure 10. This seems to indicate that the radial
flow is propelled outward by the force of the impact.
After the impact force vanishes the outward flow
must continue, although at a much reduced velocity,
under its own momentum.

2.6. Collisions of Waterdrops Against Surfaces Hav-
ing Different Degrees of Resilience or Smoothness

That the flow characteristics of an impinging
waterdrop depend strongly on the type of surface
against which the collision occurs as well as on the
velocity of the impact can be seen by comparing
figures 2, 3, and 6. For the study of this effect the
high-speed camera was placed at a slight angle above
the surface against which the waterdrop would im-
pinge. The camera was placed rather far from the
area on the surface where the waterdrop was expected
to hit in order to increase the probability of getting
a picture of the collision incident. Unfortunately,
this resulted in a loss of detail so that enlargements
of a few frames from the film in the region where the
collision occurred proved to be of little value. The
films were therefore studied in motion, using a
motion-picture projector.

a. Natural Rubber and GR-I Synthetic Rubber

Impingement of a waterdrop on a sheet of natural
rubber about 80 mils thick and on a sheet of GR-I
synthetic rubber of the same approximate thickness
resulted in flow configurations of the same general
appearance. Quite a bit of spray in upward motion
was produced in the first stage of the impact. This
spray moved out with the periphery of the radial
flow of the waterdrop. See, for example, the com-
parable configuration that resulted in the case of
waterdrop impingement against wet filter paper
shown in figure 3. The upward splash was more
nearly vertical in the case of waterdrop impinge-
ment against natural rubber than in the case of
waterdrop impingement against the synthetic rubber.
Natural rubber is much more resilient than GR-I
rubber. A steel sphere dropped on a sheet of natural
rubber undergoes a considerable rebound. The same
steel sphere dropped on a sheet of GR-I synthetic
rubber hardly rises from the surface. It is possible
that the difference in resilience of the two rubbers
may explain the more nearly vertical spray in the
case of the natural rubber. On the other hand, it
is possible that the depression formed in the natural
rubber as a result of the impact of the waterdrop
was deeper and that the spray was directed up the
more nearly vertical sides of the depression to pro-
duce the configuration of spray that was observed.
The Shore “A’ hardness of the natural rubber was
about 30, whereas that of the GR-I synthetic rubber
was about 20. Although this static hardness
measurement would seem to indicate that the
greatest deformation should occur in the GR-I



synthetic rubber, it cannot be taken as a certain
indication of what to expect under dynamic con-
ditions of loading.

b. Dry Clean Glass

The collision and radial flow of a waterdrop on a
dry clean glass plate was smooth. There was a
slight spray formation around the head of water
of the drop as it was driven into radial flow (see fig. 6).
The glass plates that were used for this study con-
tained scratch blemishes.

c. Iron Buffed and Iron as Received

One side of an iron plate was buffed, the other
side was retained in the as-received condition.
Comparison of the flow configurations that resulted
from the impingement of a waterdrop on each of
these iron surfaces showed marked differences. In
the case of the buffed surface there was essentially no
upward splash of the water as a result of the collision.
There was only a slight disturbance around the
vanishing head of water of the drop with a very
smooth outward radial flow of the water. Impinge-
ment of a waterdrop on the iron plate in the as-
received surface condition resulted in considerable
upward splash of the water. The amount of spray
that is formed as a result of a waterdrop-to-solid
collision seems to be a function of the smoothness of
the surface. The spray formation probably occurs
at the time of maximum pressure.

d. Fine Sand in a Petri Dish

The collision of a waterdrop against fine moist
sand in a petri dish appeared like an underground
explosion of dynamite in diminutive. A crown of
upward moving water splash and sand grains was
produced by the impact. The print made in the
sand by the collision consisted of a circular trench
around a more or less undisturbed mound of sand in
the center. The central mound of sand probably
marked the stagnation point of the water flow from
the drop. The circular trench was dug by the radial
flow of the water. The configuration is quite inter-
esting from the standpoint of how impinging water-
drops may dig pits in soft materials.

3. Equation for the Impact Pressure Result-
ing From Waterdrop-to-Solid Collisions

An early estimate of the mean pressure that re-
sults from the collision of a solid surface with a water
sphere was made by Honegger [5]. 1In his treatment
the velocity of the center of gravity is the impact
velocity, V, when the time, ¢, is zero (at the first point
of impact). The velocity of the center of gravity
1s V/2 at a time At later. He assumed that the
center of gravity during the time At was displaced
by the distance d/4, where d is the drop diameter.
He then applied the impulse momentum equation

in the form?
M V/[2=PfAt, (1)
where M is the mass of the drop, P is the pressure,

2 The notation of other authors has been transcribed into the notation used in
this paper.

and f is the mean contact area between the drop
and the surface. He obtained in this way the equa-
tion for the pressure

P=4X10"%V?, (2)

where P 1s given in kilograms per square centimeter,
if V' is expressed in centimeters per second.

De Haller [6] has written as an estimate of the im-
pact pressure when a solid surface strikes a cylinder
of water from the side the equation for the collision
of two flat elastic bars. This is

o Vpiex S
L+ (pic1/ p2c2)

®3)

where p; and p, are the density of the flat water bar
and of the solid bar, respectively; ¢; and ¢, are the
speed of sound in water and in the material of the
solid bar, respectively; and V is the relative speed
of the water bar with respect to the bar of solid ma-
terial. This equation neglects the curvature of the
water cylinder.

From the results of the experimental work, which
have been discussed in section 2, it seems reasonable
to think that a treatment similar to that of the elastic
impact of solids may provide a reliable estimate of
the impact pressure. However, the spherical shape
of the waterdrop, which imposes the condition that
compressional waves initiated in it by the collision
are not all started simultaneously, must be taken into
account.

Let the following assumptions be made:

(A) The first effect of the collision is the initiation
of a compressional wave that starts to spread through
the water sphere (see fig. 12). The water molecules
of the spherical drop in the region traversed by the
compressional wave attain a velocity in the direction
in which the impinging solid surface is moving. This
region of the drop consequently becomes slightly
flattened. The velocity taken on by the water mole-
cules in this region of the drop is dependent on the
velocity of the impinging solid surface, but it is less
than this velocity. Only a thin layer of water in
direct contact with the impinging solid surface takes
on a velocity that is identical with that of the solid

Ficure 12.  Schematic drawing indicating that the water sphere
18 flattened as a result of compressional wavelets initiated in it.
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surface. There is, furthermore, a velocity distribu-
tion among the water molecules in this region of the
waterdrop. The following treatment is restricted
to a consideration of the average velocity given to
the water molecules in this region.  Only the velocity
in the direction in which the impinging solid surface
is moving is considered.

(B) Maximum pressure, which is assumed to be
reached at the end of the time interval Af, is defined
by the condition that the radiating compressional
wavelet initiated at a point in the first instant of
impact should just reinforce the compressional wave-
let that is started at time At later in producing mo-
mentum in the water sphere (see fig. 13). That 1s,
the rate of change of momentum of the water mole-
cules in the region where this reinforcement occurs
is greater than that of any other of the water mole-
cules of the drop because it is produced by the com-
bined effect of the wavelets.

(C) The second effect of the collision is that the
first liquid of the drop that encounters the solid sur-
face during the time mterval At is displaced to form
a thin cylinder under the drop (see fig. 14). The
water of the shaded cap of the flattened drop of
figure 14 is displaced into the ring the triangular cross
section of which is bounded by the solid surface, the
vertical boundary of the cylinder of water, and the
curved boundary of the flattened waterdrop. The
thin eylinder of water that forms and the region of
the drop that is traversed by the compressional wave
during the time interval Az are stippled in figure 14.
The thin eylinder of water is assumed to be in radial
flow. The upper surface of it is termed the N-plane.
The head of water that remains of the drop (and
which is separated from the surface of the impinging
solid by the radially flowing thin cylinder of water)
retains its shape except for a slight flattening (see
figs. 2 and 3).

(D) As the collision continues, compressional
wavelets are initiated at points of contact of the
remaining water sphere with the A-plane. In this

o —>,
—e|

X
B 28 'T
S 28=2(1-a) v At

Freure 13. Schematic drawing that illustrates the assumption
made in regard to the maximum pressure.

sense the N\-plane, or upper boundary of the radial
flow, may be considered as an effective striking
surface.

Consider that the flat surface of a massive solid,
moving with velocity V" in the z-direction, is just at
the point of collision with a stationary water sphere.
If the first point of contact between the water sphere
and the flat solid surface is made the origin of a
rectangular coordinate system, the equation of the
sphere at the origin of the coordinates is

2y (z—r)i=r" (4)

where the z- and y-coordinates are in the plane of
the colliding surface, and 7’ is the radius of the water
sphere before the collision. For all points for which
y=0, eq (4) reduces to the circle

2+ (z—r")P=r" (5)

in the zz-plane. The first point of collision between
the solid surface and the water sphere is given by
the equation for the circle of contact during the
collision

2y =R, =

with R’(z) equal to zero.

Consider that the first result of the collision is the
initiation of a compressional wave that immediately
begins to spread through the water sphere (see fig. 12
and assumption A). The water through which the
compressional wave passes is given a velocity in the
z-direction in which the surface of the massive solid
was moving. As a result of this, the region of the
water sphere that has been traversed by the com-
pressional wave is slightly flattened in this direction.
The radius of this flattened portion of the water
sphere is 7, and r is greater than 7.

The average velocity of the water in the region of
the water sphere that has been traversed by the
compressional wave may be written as aV, where «

AZ

Ficure 14. Cross section of the water sphere that shows sche-
matically the locus of the vertical components of the compres-
stonal wave and the formation of the thin cylinder of water
that is in radial flow.
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is a coefficient that tells what fraction of velocity V'
is imparted to the water molecules on the average.
As there is no marked attenuation of the amplitude
of a compressional wave in water, the coefficient «
must be governed mainly by the extent of divergence
of the compressional wave as it spreads through the
spherical drop. As the impact velocity inecreases
for a series of waterdrop-to-solid collisions, the extent
of flattening in the region of the drop that has been
traversed by the compressional wave increases, the
amount of divergence of the wave decreases, and the
value of the coefficient @ approaches unity.

Consider that the second result of the collision in
the time interval Af, during which the pressure
reaches a maximum, is the displacement of the first
water of the sphere that encountered the solid sur-
face into a very thin cylinder of water that is in
radial flow (see fig. 14 and assumption C). The
average velocity at which this displacement occurs
is (1—a) V. It can readily be shown that in the limit
the volume of a very thin slice cut off a sphere is
one-half the volume of a cylinder that has the same
height and base area. Consequently, in the time
At m which the solid surface moving at the displace-
ment velocity (1—a)V has moved a distance &
through the water sphere, where 6 is the thickness of
the cap of the flattened portion of the water sphere
that is shaded in figure 14, the A-plane has moved a
distance 26. If the displacement velocity is con-
stant, then the velocity 7 of the N\-plane is given by

=2(1—a) V. (7)

The massive striking surface is not at all slowed
down as a result of the collision. It continues to
move at the velocity V in the fixed coordinate sys-
tem. In the fixed coordinate system, therefore, it
has traveled the distance 6”, where

5" =VAt (8)

through space in the time interval Af. It has, how-
ever, only displaced the water of the drop which has
been traversed by the compressional wave (and
which is moving in the same direction that it is
moving) the distance

d=(1—a) VAL (9)
Hence
i=(1—a)d’. (10)
It can, furthermore, be shown that the radius, 7, of
the flattened portion of the water sphere, through
which the compressional wave has passed and in
which the water has the average velocity «V in the
z-direction, 1s given by
r=r'/(1—a). (11)
After the short time A¢ the solid surface has moved
a distance 6 through that part of the water sphere
that has been traversed by the compressional wave,
the A-plane has moved a distance 28, and the com-
pressional wavelet that was started at the impact

instant at point A of figure 13 has moved ¢/» times a
far as the N-plane has moved, that is, 2é¢/7, and has
reached point B. Here ¢ is the speed of the com-
pressional wave in water. The radius of the circle
of contact that is given by eq (6) with R’(z) replaced
by R(z) is now xy. This, on assumption B, is the
point of maximum pressure because at this instant
water molecules are being accelerated both by their
own impact in the collision direction z and by the
compressional wavelet that was started at the im-
pact instant and that has just arrived in their
locality.

It is possible to solve for §, the thickness both of
the shaded cap of water in figure 14 and of the disk
of water in radial flow in the impact plane after the
time At, in terms of the radius, », of the flattened
portion of the water sphere, the velocity of the
striking surface, V, and the speed of the compres-
sional wave, ¢. That is, using the right triangle
shown in figure 13,
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cty=er 45 (12)
and from eq (5) with #* replaced by 7,
2=r2— (z—r)?=2rz— 2%, (13)
so that
2% =4ro—46%. (14)

By subtracting eq (12) from eq (14), it is seen that

——9
[
C

According to assumption B, maximum pressure
occurs after time At. It is noteworthy that this
maximum of pressure has been defined by an arbi-
trary assumption and is not to be regarded as neces-
sarily coincident with the maximum of total force in
figure 10. Actually, since the time Af¢ as evaluated
in section 4 for a collision of a waterdrop at its
terminal velocity in air is 0.04 wsec, and since the
time between cycles of the time base marker in
figure 10 is 100 wsec, it is conceivable that it may
exist at the left of this maximum. Furthermore,
the maximum pressure as it is evaluated at the time
At in the following treatment is not an instantaneous
maximum pressure. To obtain it the total mass of
water set in motion during the time interval Af, and
consequently all the force that has acted to produce
water momentum over the time interval Af, is con-
sidered. The instantaneous.force that is acting at
the last instant of this time interval is not considered.

The average rate of change of momentum of water
in that portion of the drop that has been traversed
by the compressional wave over the time interval
At 1s maV /At, where m is the total mass of water in
the drop that is set into motion as a result of the
collision. If all of the force that has acted to
produce water momentum over the time interval
At, at the end of which the radius of the circle of
contact between the drop and the surface is x5, is
written as wr,s2 P, then

P=maV /[mx5At].

(15)

(16)
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It is necessary to evaluate the mass of water, m,
that was set in motion in the z-direction as a result
of the collision. After the time Af, part of this
total mass of water, the mass m’, is moving in hori-
zontal flow in the impact plane as a result of the
impact pressure. The mass moving horizontally is
given by

m’ el
T

X 2571'[)(26) =T )57!'/)5 (1 7)

because in the limit, as has already been noted, a
slice of thickness 26 and radius 2y cut off a sphere
1s just one-half the volume of a cylinder of the same
height and base radius. Although the mass of water,
m’, is moving horizontally after the time At, it was
given a velocity in the collision direction z during
this time interval because it was traversed by the
compressional wave.

There is also the mass of water m’/ in the head of
water remaining of the drop that has a velocity in
the z-direction because it has been traversed by the
compressional wave. After the time At the N\-plane
has moved distance 26, and the compressional wave
has moved to the curved boundary of the stippled
area of figure 14. It may be assumed that this
volume of water has received the signal that collision
has occurred. The lower boundary of this volume
of water is the plane z=24, where the flattened
sphere is at the origin of the coordinates. From
eq (5) the z-coordinate of the points on the circle of
radius 7 from which wavelets of compression origin-
ated is

z=r—(r*—a?)V2, (18)
Az is the distance the N-plane moved up since the
time that a compressional wavelet was started at the
corresponding value of z. Then
Az=26—r+ (rP—a?)'/2, (19)
Let 2z’ be the distance traveled above the plane z=24
by the compressional wavelet. Then

|z ] o G

The locus of the points z” gives the envelope of the
components of the compressional wavelets in the
collision direction z. Substituting the value of Az
from eq (19) into eq (20),

2':[%—1] [2o=pt i uti ], 21)
Rearranging,
I:czl—il 2'—25+r=(r*—2)"2. (22)
Letting
gﬁ;z 1/8 (23)

and squaring both sides of the equation

:_[f::|2+4,551_2_’i_452+45,. (24)
B B B

Equation (24) is an expression for z° in terms of z’;
the enclosed volume of water, on substituting this
value of 27, is

2/ =p(23)
rf 22dz =Br [—~ 6‘—{—4521]- (25)
2 =0

The limit of the ratio of this volume over the volume
of a cylinder of the same height and base area is also
found to be one-half. Consequently, the mass of
water having the average velocity oV in the
colhsmn direction z after the time At is

™ v
= p B x3; (26) = pwBa3;0, (26)
and the total mass of water that was set into motion
in the z-direction through having been traversed by
the compressional wave is from eq (17) and (26)

m=m'-+m" =(1-B) x3;m po. (27)
The pressure, P, is then from eq (16)
(14B) a3 wpd] V' c
p=lrhimepil b, 28
X2, TAL (28)
Since
26=2(1— o) VAL=TAL (29)
and since _
c—7
—{57]
so that (1+8)=c/v,
P=Z[coV]. (30)
This is the well-known water-hammer equation

multiplied by the factor «/2, which comes from the
spherical shape of the waterdrop. It is noteworthy
that the result that the pressure is some multiple of
the water hammer pressure because of the spherical
shape of the waterdrop could have been written down
at once. There would, however, be no rational basis
for guessing at the value of the multiple. The value
of the coefficient @ can be found empirically for
waterdrop-to-solid collisions that can be stopped by
high-speed motion pictures as is shown in section 4.

For collisions at very high impact velocities, the
coefficient « is probably close to unity. Conse-

quently, for these collisions a reliable estimate of the
impact pressure can also be made from eq (30).
Equatlon (30) has been verified indirectly by
de Haller [6], who has measured the impact pressure
between a flat surface and a jet of water struck from
the side, using a piezoelectric pressure gage having
a piston diameter of 1.5 mm. With his experi-
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mental arrangement he was really measuring the
pressure under short water cylinders struck from the
side. Since the side of a cylinder contains both the
element of circle of a sphere and the element of
straight line of a plane, the pressure under such
water shapes should be greater than that given by
eq (30) but less than that given by eq (3), which is
the equation de Haller was using for the impact
pressure. With his piezoelectric pressure gage
de Haller found the highest pressure value for a
velocity of 35 m/sec to be 310 kg/em®* For this
velocity eq (3) would predict a pressure of 490
kg/cm? if one assumes that the denominator on the
richt-hand side is essentially unity, that the speed
of sound in water is 5,000 ft/sec, and that V is aV/,
where « is about 0.9. Equation (30) would predict
a pressure of 245 kg/em?, assuming again that o is
about 0.9. The pressure that is developed when a
flat solid surface strikes a cylindrical water surface
should be between that which is developed when it
strikes a flat water surface and that which results
when it strikes a spherical water surface. De Haller’s
experimental measurement shows that this is essen-
tially the case.

4. Equation for the Flow Velocity at Maxi-
mum Pressure

Experimental measurements of the radius of flow
of a waterdrop at regular intervals of time after
collision at its terminal velocity in air with a glass
surface were discussed in section 2.5. Figure 11 con-
tains the curve of radial flow velocity against time.
The data from which this curve was plotted are given
in table 1. With eq (30) of section 3 the radial flow
velocity at the time of maximum pressure can be
calculated.

Assume that the radial flow from an impinging
waterdrop has axial symmetry and that the effect of
viscosity may be neglected. Because the pressure
at the periphery of the radial flow is atmospheric
and may be taken as zero, and because the center of
the flowing disk is a stagnation point, the equation
of flow in cylindrical coordinates is

st—f r“v(lH» pj K g; dr;
“Jo 0 2

where P is the pressure at the center of the disk,
p is the density of the liquid, », is the observed
velocity of spread, and 7, is the observed radius of
spread. It may be assumed that at the instant of
maximum pressure Ov/0t is zero. Integration and
substitution of the expression for P given by eq
(30) then yields

(31)

vo=[ac V]2 (32)

The value of a can be calculated from the velocity
at which the glass surface moved through the water-
drop. This velocity is (1—a)V. The central and
side high lights on the waterdrop for the collision
incident shown in figure 7 merged in frame 14,
which was 0.00115 sec from the point of impact or
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time zero. As the average waterdrop from the pipet
that was used is 0.57 em in diameter, the velocity at
which the glass moved through the waterdrop was
484 cm/sec. The terminal velocity for a large water-
drop [4] 1s about 26.9 ft/sec (820 cm/sec). Hence,

(1—a)820=484,
a=0.4.

From eq (32), assuming that ¢ is about 5,000 ft/sec,
V about 26.9 ft/sec, and using the value of 0.4 for
a, the radial flow velocity for this waterdrop at the
time of maximum pressure was 232 ft/sec, or 8.6V.
In order to plot this point on the velocity-against-
time curve shown in figure 11 it is necessary to know
the time at which maximum pressure existed, that
1s, At must also be evaluated. From eq (9),

§=(1—a) VAL
From eq (7) and (15)
d=4r(1—a)’[V/c]".
From eq (7), (9), and (15)

At=4r(1—a) V/c2. (33)
The radius 7" of the waterdrop was about 0.29 em,
so that the radius of the flattened waterdrop from
eq (11) was about 0.5 em. Using the value of 0.4
for «, At=0.04 usec. The calculated velocity is
plotted on the velocity-against-time curve shown in
figure 11 and is enclosed in a circle to distinguish it
from the measured values.

The radial flow of the waterdrop is a direct con-
sequence of the impact force. This force goes to
zero in about 1 msec as is apparent from figure 10.
The head of water of the drop also goes to zero in
approximately this same time interval, and the
radial flow velocity drops from 8.6 times the value
of the impact velocity, V, to less than V.  After this,
the water in radial flow continues to move outward
under its own momentum until the flow is completely
checked by its internal resistance and by surface
tension.

5. Equation for the Time Dependence of the
Flow Radius

The observed values of the radius of flow at regular
intervals of time for the spread of a drop of water
after collision at its terminal velocity in air against a
glass plate are shown graphically in figure 11. Tt is
possible to calculate the radius of flow.

At the instant at which it just collides with the
glass plate, the energy of the falling waterdrop con-
sists of its kinetic energy and its potential surface
energy. As soon as it begins to spread on the glass,
the kinetic energy begins to be transformed into po-
tential energy of surface and into dissipated energy.
As long as any part of the head of water remains, the



terms of the energy equation are (1) the energy
(kinetic and potential) remaining in the head of water,
(2) the potential energy of surface of the radial flow,
(3) the kinetic energy of the radially flowing water,
and (4) the dlsmp&t(‘(l energy. At any instant of
time the sum of these energy terms must be equal
to the total energy of the falling drop at the instant
of its collision with the glass plate.

The first of these energy terms would be difficult
to evaluate. However, for all times after the head
of water has vanished, that is, for all times during
which the radial flow is moving outward under its
own momentum, this energy term is zero. This is
the case that will be considered.

At any instant at which an observation is made,
the potontml energy of surface of the radial ﬂow
PL, is given by

PE=(y.+v,) 73, (34)
where v, is the surface tension of water against air, v,
is the interfacial tension between water and glass,
and 7, is the observed value of the radius of spread.

To develop an expression for the kinetic energy it is
necessary to make some assumption about the shape
of the cross section of the radial flow. From the
work of Worthington [1] it appears that the flow of
a drop of milk is shallowest in the center and deepest
at the periphery. Figure 15 (a) is an enlarged repro-
duction of one of the sketches given by Worthington.
As a simple approximation to this shape the assump-
tion has been made that the radial flow is an extreme-
ly flat cylinder except for an empty cone that ex-
tends through half the thickness of the cylinder.
The assumed cross section of the flow is shown in
figure 15 (b).

The kinetic energy, K/, at the instant when the
radius is 7, is given by -

KE=£ J "Qnrhdr?, (35)
0

&

where & and » are the thickness of the flow and the
radial flow velocity, respectively, and p is the density
of the water. As v is zero at the center of the flow,
and » is », at the periphery of the flow,

r :
Z/‘:r‘o Vo, (36)
where

S— (37)
Thickness goes from £,/2 at the center of the flow to
hy at the periphery, so that

7 ho | ho ’
h= RN (38)
In terms of the mass, M, of the drop,
/I,():GJ[/[S‘ITPI'E], (39)

(a)
4
ho
?hO/Z T
(b)

Frcure 15.  Cross section of the flow of a liquid drop.

(a) Crosssection of the flow of a drop of milk as observed by Worthington; (b)
assumed cross section of the flow of a drop of water.
since the volume of water is §(mrih,).
the expressions for ¢
the kinetic energy,

Substituting
v, h, and A, in the expression for

Mr?

’n
Me~7p

el ‘)()0

(40)

At any instant of observation the dissipated energy,
DE is the accumulated dissipation during the time
interval . This dissipation is

t Q
DE—2x f f bdad.
0 0

where @ 1s the rate of dissipation of energy per unit
time per unit volume, and @ is the volume of the
boundary layer attached to the solid. The thickness
of this layer is o, and ¢ is roughly less than A,. Since
in an axially symmetrical flow it suffices to consider
only the variation of the radial flow velocity » with
the flow thickness z, for this case

where u is the viscosity. Resorting to dimensional
analysis and eq (41) and (42), it is seen that

(41)

oo (Y ;
DE—C J” (U) P2odt, (43)

where 7, 1s the observed radius of flow and (' is a
constant containing the viscosity u and having the
dimensions of viscosity. It may be supposed that
o varies linearly with ¢, and, since », is 7/t

DE— kf oy

where £ i1s a new constant.
The energy equation after the head of water re-
maining of the drop has vanished is

(44)

J“——}-47rr Ya, (45)

b1y "’+k J "o g
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where 7/ is the radius of the original drop, and V'
is the velocity at which the waterdrop strikes the

surface. Differentiation with respect to time pro-
duces
dro Mrodre Mri kr
21r(7a—{—’yg)r0 2 2d 3 t3+—vtf~——0. (46)
The solution of this equation is
i i _
= K 47
M M !
okt A 2wt

where K is an integration constant. The expression
for the integration constant is found from the con-
dition that when 7y=7m,x, t="tnax, Where 7y, iIndicates
the maximum spread of the drop and #,,, the cor-
responding time. Substituting the expression for
the integration constant in eq (47), the equation for
7o In terms of the time and constants is

2 (%-ki’?,) I'max { +27r(’ya+7g)tmax}
re=
M max { *_—krmax }

——|—27r(7a+7,1)t2

The equation is valid for all times after the head
of water of the drop has vanished until the maximum
spread is reached. It is necessary to evaluate the
constant & from the data. For the collision incident
shown in figure 7 the central and side high lights on
the waterdrop merge, that is, the head of water re-
maining of the drop has vanished at frame 14. At
frame 14, 70=1.6, cm, t=0.0011; sec. The mass M
of an average drop from the pipet that was used is
0.0989 ¢. The maximum spread was reached at
frame 44, where 7y=rmax=2.30 cm and f=tn,x=
0.0040; sec. At present there is no way of measur-
ing directly the interfacial tension between water
and glass experimentally, and the value of 27 (v,+1v,)
can only be estimated roughly. Measurements of
the surface tension of liquid glass against air have
been made. Morey [7] lists the followmg values for
a commercial soda-lime-silica glass: 404.3 d/em at
1,225° C, 406.2 d/em at 1,125° C, and 407.8 d/cm at
1,025° C. From these data it appears that the
value may be about 420 d/cm at room temperature.
It is impossible to know and hence to take into ac-
count any change that may be associated with the
increased rigidity of the glass on cooling. Antonow’s
rule states [8] that for two liquids that are mutually
saturated with each other, the interfacial tension 1s
equal to the difference between the surface tensions
of the two liquids separately. To this degree of
approximation, 27(vy,+v,) ~2,638d/em. Thismethod

- (48)
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of approximating the value of (v,+v,) was suggested
by William W. Walton of NBS Surface Chemistry
Section.

To evaluate %, eq (48) was put in the form

2121 —k 92 +27r('ya+’yg)

Vimax 2t max

M =
2],(2)'—]0 W‘i‘QT('Ya‘FYg)

Substitution of the values of M| 7.y, 70 at frame 14,
fmax, ¢ at frame 14, and 27 (y,+v, produced the
result, £=0.0076; cgs units.

The values of 7, calculated by use of eq (48) are
listed in table 1 with the measured values. The
measured values have been multiplied by a magni-
fying factor. The method of determining this fac-
tor 1s discussed in section 2.5. The calculated
values are in almost perfect agreement with the em-
pirical values, which appears to justify, a posteriori,
the assumptions that were made. The calculated
values of 7y are indicated with crosses in figure 11.
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