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Stress-Strain Relationships in Yarns Subjected to Rapid
Impact Loading: 2. Breaking Velocities, Strain Ener-
gies, and Theory Neglecting Wave Propagation'

Frank L. McCrackin, Herbert F. Schiefer, Jack C. Smith, and Walter K. Stone

The behavior of a yarn specimen fastened at one end to a head mass and at the

other

end to a small tail mass is analyzed for longitudinal impact of the specimen at the head.

The analysis leads to a basic formula for “limiting breaking velocity,
istic property of the material and independent of the dimensions of the specimen.
procedure is described for obtaining its value.

7 which is a character-
A simple
and undrawn

The values for cotton, nylon,

nylon yarns tested at room temperature are found to be 130, 228 and 550 meters per second,

respectively.
ing is shown by an example on safety lines.

The practical application of the limiting breaking velocity to safety engineer-
Formulas are derived for computing energy to

any strain under impact loading, and the computed values are found to agree with those
obtained from the area under the impact load-extension curves.

1. Introduction

The first paper of this series [1] * describes equip-
ment and procedures for studying the stress-strain
behavior of a yarn specimen %ublﬂl(\(l to tensional
impact. In a typical test, a 65-cm specimen was
attached at one end to a head mass and at the other
end to a tail mass. The head was impacted at
velocities between 10 and 100 m/sec, and subsequent
behavior was recorded by high- speed photography.

The behavior of the yarn specimen after longi-
tudinal impact is treated theoretically in this paper,
neglecting wave-propagation effects. The results
are compared with those obtained experimentally for
several materials. The practical application of this
work to safety engineering is indicated.

2. Theory

Figure 1 represents a test specimen terminated by
a head and a tail. The equations of motion of these
masses are derived in terms of the following symbols:

L=Length of specimen before impact.
w= Mass of specimen.
nw= Mass of tail.
mw= Mass of head.
x19= Position of tail before impact, relative to a fixed origin, 0.
5= Position of head before impact, relative to a fixed
origin, O.
= Time after impact.
x;=Position of tail at time, ¢, relative to a fixed origin, O.
x,= Position of head at time, ¢, relative to a fixed origin, O.
r.=Position of center of mass of the system at time, £,
relative to a fixed origin, O.
e=Strain in specimen.
F="Force acting on specimen at time, ¢.
vy= Velocity of head immediately after impact.

[t 1s assumed here that 3w is concentrated at
the head and the remaining 3w is concentrated at
the tail of the specimen. Thus the problem ac-

! This work was sponsored by the Office of the Quartermaster General, Depart-
ment of the Army, and was presented in part at the September 1953 and 1954
meetings of The 11hv| Society, and also at the November 1954 meeting of the
Society of Rheology.

2 Figures in brackets indicate the literature references at the end of this paper.
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Ficure 1.

tually treated is that of a mass-less specimen to
which a head mass (m-+3)w and a tail mass (n-+ 3w
are attached.

The force equations, neglecting air friction,® are
'.!
=(n-+3 )w ,’ (1)
l
and
(/2.1'~x
=—(m+4 3w e (2)
P

From definition of the center of mass, we obtain

(n+ 3w+ (m~+FHwr.= (n+m+1)we,.

Differentiating and eliminating w gives

. .
(nt+3) -+ (m+3 ) —(tm+DT @)
Because el.= (r,—x,) — (99— xy), we obtain by

differentiation

dey dzy I de

a —a - Lar (4)

Solving eq (3) and (4) for du,/dt and duxy/dt gives

dx !:(l.r f_('ii_é)é de (5)
dt — dt ntmi1dt

and
de, dx,  (n+3%) L de

dt — dt +'r{+ m—+1 dt (6)

3 The force on the tail due to air friction was calculated to be approximately
1 percent of the yarn tension.



At maximum strain e=e, and de/dt=0, therefore,
da,[dt=dx,)dt=dx./dt. 'That is, for a typical loading
and unloading test under impact conditions, the
velocity of the tail mass at the instant of maximum
strain 1s equal to the velocity of the head, and both
are equal to the velocity of the center of the total
mass. As the total momentum imparted by the
hammer to the head immediately after impact is
(m—%)ww,, 1t follows from conservation of momen-
tum  that dr./dt=(m-+3)v,/(n+m+1)=constant,
which is also the velocity of the head and of the
tail at maximum strain. The velocity of the head,
therefore, decreases from », immediately after im-
pact to (m+2)vo/(n—i—m—|—l) at the time of maxi-
mum strain. It is seen that this decrease is equal
to (n+%Hv/(n+m-+1) and thus depends upon
the values of n and m.

From eq (5) and (1), or (6) and (2), it follows that

& ntm+1 F
a2 (m+Hm+3)Lw

Integration gives

de\? 2 n+m+1
()=~ Lo s pn 5., FieHC
At t=0, e=0, and de/dt=uv,/L.. Therefore, C=
v3/L? and
de\? z(, 20 nEmiel J ol )
<(1t L Lwm+YH(m+) Fe (10)

At the maximum strain e=e¢, and de/dt=0. It
follows, therefore, that
oL [
/—J Fde. (11)
w Jo

RWNLESIUESY
n+m-+1

In an impact test the specimen will break if the

impact velocity, », is large enough that the rupture

strain, e, is attained. The minimum breaking ve-

locity, v,, for a given n is the velocity just sufficient

to cause the specimen to break when ¢,=¢,. Under
these conditions we have

+log

log vo=—

(n+$)(m~+3) /27Lif} -
i, e L Ty A SN o

log v, 12 log ot m 1 —}—logj\ R Fde. (12)
Equation (12) expresses the minimum breaking

velocity as a function of n. If €, and the shape of the
stress-strain curve are both independent of the rate
of straining, the expression under the radical sign is
a constant having the dimensions of velocity squared.
At high rates of straining the value of e, is less than
that obtained at conventional testing rates. Also,
the slope of the stress-strain curve is greater at higher
rates of straining. However, for rates of straining
of the same order of magnitude, these changes are
small, and their effects compensate each other. Con-
sequently, the area under the stress-strain curve
should be essentially constant for the rates of strain-
ing considered here. Under these conditions a plot
of log », versus log(n+3%)(m+1%)/(n+m-=1) would

be a straight line of slope—3.

By extrapolating from 1mpact test data to the
point at which log(n+13 )(m+3 )/m+m+1)=0, a
characteristic velocity, v,, 1s obtamod namely,

[2L [
l'b——»\, TUJ:) F(]e.

If we let p=density of the specimen and oc=stress,
eq (13) reduces to the form

z'b:\/gf “ode.
PJO

It is thus seen that », i1s a quantity characteristic of
the material itself, except for a possible dependence
on the rate of straining.

(13)

(14)

Equation (14) can be rearranged in the form

e
.
3 oUE= j ade,
0

which states that the kinetic-energy density in the
specimen when traveling at velocity », is just equal
to the strain-energy density required to break the
specimen. We thus see that if the specimen is
impacted at a velocity greater then v, it will always
be broken. For this reason, we call », the limiting
breaking velocity.

(15)

Von Kiarmédn [2] derived a critical velocity, »,, at
which a filament will break immediately upon
impact

1 ([0'
(16)

L \p(le

This equation was obtained from a consideration of
plastic and elastic wave propagation in a material
for which the stress-strain curve is concave down-
ward, and the stress i1s independent of the rate of
straining.

The results calculated from eq (14) and (16)
differ shightly. However, in the special case when
Hooke’s law 1s obeved both eq (14) and (16) reduce

to e
vt

— e 4 —-

p

This formula may be expressed in terms of the
more familiar textile quantities of tenacity and
percent elongation at rupture, namely,

(17

v'=29.7+/tenacity X elongation, (18)
where »” is in meters per second, tenacity is in grams
per denier, and elongation is in percent.

Meredith [3] has obtained evidence that at high
rates of straining the load-extension curves of some
materials become more Hookean. These formulas
thus assume considerable importance and by means
of eq (18), estimates of the critical velocities of
varns may be computed from their tenacities and
elongations at rupture under impact testing condi-
tions.
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Frcure 2. Relationship between impact velocity to rupture,

vy, and head-tail mass parameter, (n+3%) (m-+3)/(n+m+41),
for cotton sewing thread.

In a subsequent paper [4] the behavior of the
specimen after longitudinal impact is treated by a
theory that considers the effects of wave propaga-
tion. This treatment shows that the results given
in this paper for nonwave theory are valid when the
tail mass is greater than 40w. For tail masses less
than 40w, the effects of wave propagation may
become appreciable and must be considered in the
theoretical treatment.

3. Experimental Results

Experimental values of », corresponding to differ-
ent values of n were obtained on a number of dif-
ferent materials. These values of log », are plotted
in figures 2, 3, and 4 against log(n-+3%)(m-+3)/
(n+m-41). These plots are straight lines having
the empirical equations

(n+3%) (m+3%)

R —— -+Hlog 130

log »,——0.496 log

for cotton thread

(n+3) (m+1)

= 95 y 22§
log v, 0.495 log L +log 228
for nylon yarn and threads
o @AM
log »,=——0.500 log Pt +log 550

for undrawn nylon.

It should be noted that the slope of each line
represented by these equations is very close to
—3% in accordance with eq (12) for log v,.

4. Design of Safety Lines

The empirical equation derived for log », has many
practical applications. Consider, for example, a
safety line of length, L, that connects a construction
worker to a rigid point of the structure. Under
these conditions, m 1s infinite. The maximum free
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Ficure 3. Relationship between impact velocity to rupture,
U, and head-tail mass parameter, (n-+3%) (m+ 3 /(n+m+1),
for mylon yarns and threads.
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Ficure 4.  Relationship between impact velocity to rupture,

v, and head-tail mass parameter, (n+ %) (m—+3%)/(n+m-+1),
for undrawn nylon.

fall of the worker would be 2/, and the maximum

free-fall velocity 24/¢gL. As m becomes infinite,
eq (12) reduces to
log v,=—1% log(n+1) +log v,. (19)

Making the assumption (which must be checked by
experiment) that the safety line behaves under
impact like the single yarn considered in the deriva-
tion of eq (19), substituting »,—=2+¢l and solving
for n, one obtains

" _ n—2¢gL
- 4gL

If v, is 200 m/sec for the material of the safety line,
L=10m, and ¢g=9.8 m/sec?, the computed value of n
is 101. If the weight of the worker, nw, is 202 1b, the
minimum weight of 10 m of safety line, w, to just
support the worker at impact is 2 Ib, according to
this computation.

This weight is approximately that of a rope % in.
in diameter [5]. A nylon rope % in. in diameter has
a static breaking strength of 4,000 Ib [6], or 20 times

1/
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the weight of the worker. However, under the
dynamic conditions just assumed, a nylon rope with
1,=200 m/sec would have no factor of safety what-
ever according to this computation.

If », for the material of the safety line is 100,
n=25, and for the same weight of worker, w would
have to be 8 Ib. This weight is approximately that
of a rope about 1 in. in diameter [5]. A manila rope
1 in. in diameter has a static breaking strength of
11,000 1b, or 50 times the estimated weight of the
worker. Again, under dynamic conditions, this
manila rope would not provide a reasonable factor of
safety according to this computation. Results
obtained by Newman [6] showed that a %¢-in.-diam
sisal rope 10 ft long broke when a weight of 142 1b
was dropped a height of only 20 ft.

5. Energy of Straining

The energy per unit length, ¢}, to stress the speci-
men to a strain e is given from eq (10) by the equa-
tion

_ (pge=tw (nt3)(m+3) @>2“<£]E>2:|
Q“fome‘ 2 ntmtl [([ T Y,

where de/dt 1s the slope of the strain-time curve at
the strain e. If the specimen is not ruptured but
is loaded to a maximum strain, e,, and then unloaded,
the energy, ¢}, to the maximum strain, e,, is given
by the equation

Lw n+3(m+1) /0)\°
2 nt+m+l 7>’ (21)

Q= | "Fde="
0

since (de/dt)c—c iszero. If the specimen is ruptured,
the energy, ¢}, to the rupture strain, e,, is given by
the equation

" ae DR (Y (dey
o T2 T pntmti L dt Jee

(22)

The value of (de/dt).-, will be zero, if the impact
velocity of the head is just sufficient to produce
rupture. Above this velocity (de/dt)._. is a posi-
tive quantity.

By means of eq (20), (21), and (22), it 1s possible
to compute ¢, ¢}, and ¢, from the conditions of a
test. For ¢, it is only necessary to know the
velocity, v, of the head at impact. For ) and ¢,
the value of de/dt and (de/dt)... must be known in
addition to the value of #,. The values of », de/dt,
and (de/dt)._. are readily obtained from the posi-
tions of the head and of the tail on the high-speed
motion pictures taken during the test. The energy
values computed by means of these equations for
different materials and impact testing conditions are
plotted in figure 5 against those derived from the
area of the impact-load—extension curves. The
plotted points fall near a straight line having a slope
equal to 1.
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6. Summary and Conclusions

The theoretical treatment given in this paper for
longitudinal impact of a yarn leads to a formula for
the limiting breaking velocity that is a characteristic
property of the material and is independent of the
dimensions of the specimen. A specimen impacted
at_a velocity greater than its limiting breaking
velocity will always be broken. A simple procedure
is described for obtaining this limiting breaking
velocity from impact-test data, and results are given
for cotton, nylon, and undrawn nylon yarns. The
potential importance of the limiting breaking velocity
to safety engineering is indicated by its application
to estimates of margin of safety of rupture of safety
lines for construction workers. The theoretical
treatment also leads to formulas for obtaining
energy to any given strain, including rupture strain,
under different impact conditions. These values
agree reasonably well with those obtained from the
area under the impact-load-extension curves.
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