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Osculatory Interpolation in the Complex Plane
Herbert E. Salzer'

Tables of coefficients to facilitate osculatory n-point interpolation (n=2(1)7) in the complex
plane are given,

The writer has described in a previous article [1] * a new method for osculatory interpolation
that can be applied also in the complex plane when one has an analytic function f(z), 2=z,
which is known for arguments z, at equal intervals along any straight line in the z-plane.
However, for the tabular arguments z,=ur;+y, in the form of a Cartesian grid of length A,
greater accuracy may be had by basing the Hermite osculatory interpolation formula upon
values of f(z;) and f’(z,) at points z;, which are closer together and not necessarily lying upon
a straight line (except, of course, in the 2-point case). For a detailed discussion of the Hermite
osculatory interpolation formula, the reader is referred to the previous article [1]. This
present paper merely aims to supplement that article which was intended primarily for real
functions, by giving here the corresponding auxiliary quantities, @, and b;, which are suited
better for complex interpolation. Whereas the quantities, @, and by, for real interpolation
were tabulated up to the 11-point case (21st-degree accuracy), this present tabulation for
complex interpolation does not go beyond the 7-point case (13th-degree accuracy), which is
more than adequate for most of the practical problems that would arise.

To interpolate for f(z), where z=z,+Ph and P=p-+iq is now complex, we choose the
zv=2z0+kh for k equal to certain small complex integers and such that z, will always be the
lower left corner point of the configuration of points, z, and z,. Also, in almost every example,
Ipl <1, |¢/ <1, so that the point z is usually not outside the square whose corners are z,, z;, 2,
and z., For each of the n-point formulas, n=2(1)7, the points z, are chosen to lie in the
following configurations:

Two-point Three-point Four-point Five-point
2 ‘Zq 2141 ‘21 ‘2141
2 2z 2 2
2o ‘21 2o 21 ) 21 2o ‘21 2y
Six-point Seven-point
224 221
*2i 2144 24 2141 ‘2541
z %
20 ‘Z1 22 2o 2 *2

! Present address: Diamond Ordnance Fuze Laboratory, Department of Defense.
2 Figures in brackets indicate the literature references at the end of this paper.
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Hermite’s n-point osculatory interpolation formula for f(z)=f, in terms of f(z;)=f. and
~’(zx) =/"s, is expressible in the concise form

.fN;(a&fk+h'BA“fli>/;ak; (1)
where
ar=a./(P—k)*+b/(P—k) (2)
and
ﬁl;;_—aic,‘/(])_k)y (3)

the summation being taken for % corresponding to the n-points z; of the configuration. The
dependence of ay, B, a;, and b, upon n is understood. The auxiliary quantities, a; and by,
are tabulated below for n=2(1)7 for each of the above n-point configurations of points z;.
The actual definitions of @, and b, are as follows:

@—C(m) / { ') }2, @)

/ 3
m—-za@){d% we-p} {Ig'ﬂc—j)}, (3)

where the product is taken for j corresponding to the n—1 points z;7z; of the configuration,
and where for each n, C(n) is chosen as the least integer which allows the quantities, a; and by,
to appear as complex integers.

and

Table of a; and b;

Two-point ‘ Six-point
| a 1 | b 2 | a — 500 by —2000—2000i
| @ 1 | b =% | a 1280-960i | by 1856 — 6208:
; a —30— 407 by 831269
‘ — — a —1280+960; | b; — 6208+ 18567
Tl]rCO-pOiIltr | Qy+4 —2000¢ | b1+i 6000+60002
‘ | 30—40¢ | b 269+ 83i
| a —2 ZU —4+44 l
a 0 1 =3} |
a; —1 b: 3—1 Seven-point
——— ap — 80— 607 bo — 648+ 647
Four-point | @ 480 — 6407 b — 3264 —2048;
| a 30+40: by —3—329; ‘
ay 5 bo S S) | a — 320+ 240¢ b, — 187247047 |
. —: ' by 34 @y —2000; | b 6000-2000i |
5 s | b 33 Toes 801 | bys  —240—448 |
"y 5 | Bres 3.3 o 10 | b 274574
Five-point ‘
a 1257 | bo 375+500; |
a =500 | b —1500+500i ||
a —20+150 by 117—44; ||
a; 80— 60: b, 508+447 ||
S — 250 | i 5001000/
I

Formulas (1), (2), and (3) for complex osculatory interpolation, which utilize the Cartesian
grid, will be especially useful in connection with such tables for complex arguments as (1)
logarithm of the gamma function, log I'(z), together with its derivative the psi function, ¥(z),
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(2) Bessel functions of the first or second kind giving Jy(z) and .J,(2)=—J;(z), Y,(z) and

z

> > . . . . . . 2 . .

Y1(2)=—1Y;(z), or linear combinations of them, (3) probability 11110g1'a,1 f e du with its
0

integrand, (4) miscellaneous tables of integrals of the more elementary functions where the

first derivative or the integrand, although not tabulated, is easy to calculate, namely, the funec-
lionf (e=*/u)du and (5) tables of solutions of important linear differential equations, together
2

with their first derivatives [2]. In all such tables, and in many others, the user will find these
complex osculatory interpolation formulas to be particularly convenient. They are especially
suitable in those cases where the grid length A is too large for sufficiently accurate complex
interpolation, using either tables of complex interpolation coefficients [3, 4] or formulas cor-
responding to (1), (2), and (3) above [5], where the tables or formulas involve the use of only
the functional values f,.

Illustration.—To demonstrate the use of these tables in formulas (1) to (3), consider
an example from [2], where the modified Hankel functions h;(z) =(3 2)!H (3 2%), j=1, 2, and
their first derivatives are tabulated over a Cartesian grid of length A=0.1 in the complex plane.
Suppose that it is required to find A, (1.24579 3164-0.96155 8037), using the four-point
osculatory interpolation formula and the tabulated values of hy, A7 at z,=1.24-0.97, z,=1.340.9¢,
2i=1.24+1.07, z,.,—1.3-+1.07 [2, pp. 21, 23]. Employing (2), (3) and a;, b; from these tables,
since P=0.45793 16+40.61558 037, one finds that

ao=1/(0.45793 16+0.61558 037)2+ (3+37)/(0.45793 16+0.61558 02i),

= —1/(—0.54206 84+0.61558 03)2+ (—3+31)/(—0.54206 84-+0.61558 037),

ai=—1/(0.45793 16—0.38441 974)2+ (3—31)/(0.45793 16—0.38441 973),
arp=1/(—0.54206 84—0.38441 97i)*+ (—3—31)/(—0.54206 84—0.38441 97i),

Bo=1/(0.45793 16+40.61558 03i), B;=—1/(—0.54206 84+0.61558 037),

Bi=—1/(0.45793 16—0.38441 973), Bri=1/(—0.54206 84—0.38441 974),

from which one obtains.

ay=17.09824 5538—1.29187 90231, Bo=1.04576 6212-+0.77794 78891,
a;=6.63654 08234-0.51581 369517, B1=—0.91498 3814+40.80571 7487x,
a;=9.82415 3465—1.10147 805174, B8:;=1.07536 0453—1.28099 97331,

a1 =8.43081 1380-1.81986 938517, Bi+i=—0.87048 2793 —1.22746 36671,

Then for (1) we employ the following tabulated values of A, and #;:

f,=0.19018 585—0.19313 8404, Fo=0.14952 614-40.33229 4614,
£=0.20311 754—0.15966 418i, £1=0.10901 235-0.33659 2311,
£,=0.15891 089—0.17847 850i, F1=0.14376 041-+0.29375 232i,

f1+:=0.17143 575—0.14888 1081, f1.:=0.10669 347-+0.29764 3461,

and also
> a=31.98975 121—0.05767 3994,
k

so that we have
h1(1.24579 316-+0.96155 803%) =f~[aofo+ aufi +aifi
‘|‘0!1+1f1+z"|‘0~1 { 50f(,1+31f1+3if:+51+if1+i }]/;am
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whose terms are

[(7.09824 5538—1.29187 9023i)(0.19018 585—0.19313 8407)
+(6.63654 0823-+0.51581 3695)(0.20311 754-—0.15966 4181)
+(9.82415 3465—1.10147 80514)(0.15891 089—0.17847 8507)
+(8.43081 1380-+1.81986 9385i)(0.17143 575—0.14888 108)
+0.1{ (1.04576 6212+0.77794 78897)(0.14952 614--0.33229 461i)
+(—0.91498 3814-+0.80571 74874)(0.10901 235-+0.33659 2314)
+(1.07536 0453 —1.28099 97337)(0.14376 041+0.29375 2327)
+(—0.87048 2793—1.22746 36674) (0.10669 347+0.29764 346i)}]
~+(31.98975 121—0.05767 399i),

or after multiplying,

[(1.10047 4414—1.61664 08967) -+ (1.43035 4817—0.95484 704017)
+(1.36457 4820—1.92843 70321) 4 (1.71628 6592—0.94319 7631%)
+0.1{(—0.10213 8505-+4-0.46382 60217)+(—0.37094 2846 —0.22014 33597)
+(0.53089 09034-0.13173 258117) 4 (0.27247 1703—0.39005 58687) }]
--(31.98975 121—0.05767 3991)
= (5.64471 8767 —5.44458 66627)/(31.98975 121—0.05767 3997),

or finally,
0.17676 025—0.16987 9164,

which is correct to within a unit in the last place, as was seen from the independent calculation
of h,(1.24579 316-+0.96155 8037) from the Taylor series around z,=1.240.91.
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