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Astigmatism of Skew Pencils in Qptical Systems 
Containing Toric Surfaces 1 

Walter Weinstein 2 

A method is described for tracin g skew rays t hro ugh toric refract in g surfaces and for 
determining the as t igmatism of pencils a round these rays . 

1. Introduction 

Toric refracting surfaces are used chiefly in two classes of optical systems, spectacle lenses, 
and anamorphotic photographic and projection objectives. In spectacles the toric surfaces 
are arranged to correct the axial astigmatism of t he eye, and in anamorphotic systems two or 
more toric (possibly cylindrical) surfaces are included to give stigmatic imagery with different 
magnifications in different directions in t he image plane. 

"When the axial pencil is refracted by a toric,3 some astigmatism is in trodu ced; if a pencil 
is incident obliquely, either cent rally or eccentrically , astigmatism of different magnitude is 
in troduced. It is therefore desirable in the case of both types of optical systems mentioned 
above to determine the astigmatism of obliquely incident pencils, in order to assess the imagery 
in the outer par ts of the field. This is t he problem which was studied in the work to be described. 

The problem arose in connection with spectacle lenses and may be outlined as follows: 
Figure 1 shows fron t and side views of a spectacle lens wit h toric surface ; 0 is the center of 

the lens, C is t he center of rotation of the eye, and PI, P2 , P3 are points of incidence of the chief 
rays of oblique pencils. L et the meridian and equatorial sections of the toric be, respectively , 
in the ver tical and horizontal planes OPt and OP3 • Then the problem for chief rays passing 
through the axis and tlu'ough PI and P 3 is t rivial. The chief ray itself can be traced by the 
ordinary ray-tracing formulas for meridian rays and spherical surfaces, and the astigmatism 
can be determined by the usual methods for close sagittal and tangen tial fans, with the sligh t 
difference that the curva tures of the refracting surface in tbe two directions are no t eq Llal 
(see eq (8) ). 

RAY 

FIG U RE 1 . 

If, however, the point of incidence of the chief ray does not lie in t he meridian or equatorial 
section, as, for example, P 2 in figure 1, t he problem becomes more complicated. In the first 
place, even if t he inciden t chief ray intersects t he axis of t he system , the refracted ray in general 
does no t, so that t he chief ray must for complete generality be considered to be skew; thus the 
first part of the problem is to t race a skew chief ray through the t oric. 

1 The work described in this paper was carried out while the author was a guest worker in the Opt ical Instruments bcction, l ational Bureau 
of Standards , from J anuary to July 1954 . 

, Present address: Im perial College, London, England. 
3 [n wha.t follows, "toric surface" will be abbrev iated to "lorie." 
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Second, with oblique incidence as at any of t he points PI, P 2, or P 3, astigmatism is produced 
in the refracted pencil for two reasons: (a) because the angle of incidence is not zero , as in the 
ordinary case of spherical surfaces, and (b) because t he refracting surface has two different 
principal curvatures at the point of incidence. In t he case of P 2 t he principal directions of the 
as tigmatism due to (a) are parallel and normal to t he plane of incidence of the chief ray, i . e., 
approximately parallel and perpendicular t o line, OP2 ; the principal directions of t he astigma­
tism due to (b) ar e, however , approximat ely par'111el to OPI and OP3 • Thus the resultant 
astigm atic pencil will have i ts focal lines in some intermediate directions, and t he determina­
t ion of these directions fur ther complicates the ealculation.4 It follows that t he formal dis­
tinction between sagittal and tangential directions can no longer be made; however , for the 
configurations of chief ray and t oric that occur in spectacle lenses t he rotation of the fo cal lines 
is unlikely to be above 10°, so that there is little difficulty in relating the results for skew chief 
rays to those for rays in ei ther principal section . 

The results of such calculations would consti tu te a survey of th e astigmatism of a toric 
spectacle lens at all obliquities and azimuths. They would help to answer questions such as the 
following : What is the best bending of a toric spectacle lens? What range of powers can b e 
manufactured with a cornman back curvature without depar ting appreciably from the best 
bending? I s there any advan tage in making both surfaces of a spec tacle lens to ric in shape? 
Such questions as t hese arise in the design of so-called best-form spectacle lenses. These h ave 
previollsly been designed on the basis of computations in the two principal sections only ." 6 

However , an illustration is given by H enkel' 6 showing the quality of an image produced by a 
pencil outside the principal sections of a typical sphero-toric lens of the Punk tal best-form 
series; this illustration suggests th at there is still room for improvement in t he image. The 
work to be described m akes i t possible to compu te the imagery by skew pencils and so determine 
whether any improvements can in fact be made. 

Sec tion 2 is a recapitulation of the proper ties of astigmatic pencils th at are required in 
deriving the astigm atism equations. In section 3 the equations of a toric are given , and other 
proper ties are derived , in section 4 the ray-t racing equations for th e skew chief ray are derived , 
and in section 5 the astigmatism formulas are derived. Section 6 deals with the forms in which 
the input data must be given . In section 7 the mode of presen tation of the results is discussed , 
the results of a numerical example are given, and the possible uses of the computation are 
discussed . 

2 . AstIgmatic Pencils 

For the purposes of the presen t paper a pencil will be considered to be made up of a n arrow 
bundle of rays originating from a poin t in the obj ect and surrounding a chief, or principal, ray, 
together with all the corresponding wave fron ts . The wave fro nts are surfaces of constan t 
op tical path length from the obj ect point, and the rays are normals to the wave fronts. 

Wi th a rectangular coordinate system wi th the x axis along the principal ray, the equation 
of the wave fron t p assing through the origin will take the form 

(1) 

linear terms are absen t because the yz plane must be tangent to the wave front at the origin. 
Also it is possible to rotate the y and z axes a bout the x axis, so that the coefficient of the term 
in yz vanishes when the equation takes the form 

(2) 

• Tbis difficulty does not arise for points on tbe principal sections of tbc toric, sncb as P i and P 3, because tben th e directions of tb e focal lines 
are k nown by sYlUlU etry to be parallel. and perpendicul ar to the principal sections. 

' H . H . Emslcy and W . Swaine, Ophtbalmic lenses, 6th ed . (London , 1951). 
6 O. Henker, Introduction to tbe theory of spectacles (Translated by R . Kanthack) (Jena, 1924). 
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Effects depending on terms in y and z of high er degree th n,n tbe second will be neglected. 
To this degree of approximation it is easily shown that all rays of the pe r::lCil ; i. e., normals to 
th e surface (2) intersect 011e line through th e poin t (l /c" 0, 0) parallel to th e z axis and another 
line through th e point (l lc., 0, 0) parallel to the y axis, these being t he two astigmatic focal 
lines. Thus this approximation takes account of astigmatism but not of aberrations such a 
spherical aberration and coma, which depend on higher powers of th e aperture of th e pencil. 
The coefficients have the significance th at CT is the curvature of th e section of th e wave front by 
th e xy plane n,nd c., that by the xz plane 

Som e results from differential geometry are now required. At any nonsingular poin t P 
of a surface the normal curvature (i. e., th e curvature of the section of the surface by a plane 
through th e normal) h as a m aximum and a minimum for two section planes which are at righ t 
angles to each other ; furthermore , if these two planes, together with the tangent plane at P, are 
taken as coordinate pl anes, the equation of th e surface in t he neighborhood of P takes th e form 
of eq (2), that is, the y z term is absen t. The m aximum and minimum normal curvatures are 
called th e principal curvatures, and the corresponding section planes meet th e tangent pl ane 
ttt P in lines that lie along the princip al directions at P . Thus the principal directions are along 
the y and z axes for eq (2) . 

It is a lso Imown, by Euler's theorem, that if a normn,l sec Lion plane makes an flngle a with 
the xy pln,ne, the curvature in this section is 

c(a) = Cr C082 a + cs sin2 a. (3 ) 

From this it follows that these quantities are required to characterize an astigmatic 
pencil: 

(a) The direction of the chief r ay; this will be given by a unit vector, Q, with components 
X, Y, and Z. 

(b ) The principal curvatures, CT and Cs, of the wave front at a point on the chief ray. 
(c) The principal directions on the wave front; these will be given by unit vectors R and S, 

and from the above it follows that Q, R, and S are all perpendicular Lo each oLher. 

3. Toric Surface 

A toric surface is generated by the rotation of a circle (the generating circl e, abbreviated 
to G. C.) about an axis in its plane but not passing through its centcr, a in figure 2, a and 
b. In optical applications tbe lens slU'face is , of COUl'se, only a cap-shaped porLion of t be 
whole surface, roughly centered on the point A. Such a surface is alinecl with a center ed 
system of sph erical surfaces by making the optical axis lie in the normal plane Lo the rotation 
axis, which contains lhe eentm' of the G. C. The optical axis then meets the toric in the 
pole A. 

OPTICAL 
AXI S 

G.C. 

ROTATION AXIS 

I , 

-L , 

I 
a 

RING TORIC 

ROTATION AXIS 

OPTICAL A 
AXIS 

b 
BARREL TORIC 

FIGURE 2. 
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The toric refracting surface has different powers (in the optical sense) in differen t sections 
through the opticv l axis: the powers are determined by the radius of the G. C. for the section 
in the plane of the rota tion axis and by the distance from A to t he rota tion axis for that 
porpendicula,r to it; these are known as the m eridian and equatorial sections, respectively. 

It can be seen tha t for given powers in the principal sections there are two possible forms 
of toric surface: t he radius of the G. C. can be either less than or great er t han the distan ce 
from A to the rotation axis , the two forms being known, respectively, as ring- and barrel­
shaped torics. The ring form seems to be used almost exclusively for spectacles in commercial 
practice, but to the best of the author's knowledge, this is merely because more rings than 
barrels of given curvatures can be surfaced in one operation, not for any optical advantage. 
The possibility of improvements from the use of the barrel shape seems not to be considered 
in the litera,t ure on "best-form" series. 

3.1. Equations of the Toric 

One can write down the equation of the toric surface by taking rectangular coordinate 
fixes wit h the origin at the pole A of the toric refracting surface (fig. 3), the x axis along the 
optical axis, the ?I axis parallel to the rota tion axis, and t he z axis in the equatorial plane. 
Let r y and r , be the radii of curvatlll'e in the xy and xz sections, respectively. Take angular 
parameters, 8 and tjJ, as in the figure, so that e is the longitude and tjJ the lat.itude of a point 
on t he toric. Then t he parametric equations of the toric are 

J'= TZ-.(rz~ Ty+ rv cos tjJ) cos 8} 
y = T" SIn cp 

Z= (rz- ry+ Ty cos tjJ) sin 8 

(4) 

It can be seen that eq (4) represent a ring- or a barrel-shaped toric according as 1'y is les 
than or greater than T z in absolute magnitude,? in both cases t he rotation axis is parallel t o the 
y axis. When the rotation axis is to be parallel to the z axis the equat ions are obtained be 
in te-"changing y and z t hroughout, including subscrip ts, in eq (4); t his is t rue also for the 
equations in the remainder of section 3. 

OPTICAL 
AXIS 

FIG URE 3. 

ROTATION 
AXIS 

An explicit equation can be obtained by eliminating e and tjJ in eq (4) and solving ror x: 

(5) 

The ambiguous signs are due to the fact that there are four (possibl,\' complex) values of 
x for any given y and z, since the Loric is a quartic surface; the required solution is that " hich 
tends to zero as y and z tend to zero, so that the correct signs are , respectively, minus and 
plus. When these are inserted the result is unsuitable for numerical computation " 'hen ?I and 

7 Provided T, and T, b ave tbe same sign , wbich is generally tbe case in spectacle lenses. 
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z are small compaJ'ed to Ty and Tz, as is generally the case. T hi s diffi culty can be circumvented 
by transforming the equation by means of conjugate surd s ill t he usual way and u ing curva­
tures instead of radii, giving 

(6) 

where 

In this fo rm the equation of t he toric is suitable for numeric!}.! computation with all 
relevant ronges of the variables. 

3.2. Princip al Directions and Curvatures 

In considering the refraction of an astigmatic pencil through a toric, it is necessary to know 
t he shape of the toric in the n eighborhood of the point of incidence. Thus, as in section 2, the 
following arc requi.red: 

(a) The direction of t he normal at the point of incidence; this will be given b? a unit 
vector , U, with components, A, }.l , and v. 

(b) The principal curvatures, Cv and Cre , at the point of incidence. 
(c) The principal directions 0 tthe point of incidence; these will be specified by unit vectors, 

V and W, and again the vectors, U, V, and W, form a trirectangular system . These quantities 
are eas ily determ ined for a cunent point (x,y ,z); if the tor ic has principal curvatures, Cy and Cz, 

at the origin and if I he rotation axis is parallel to the y axis, as in sect ion 2.1 , t he results are 

U = (cos </> cos II, - sin </>, - cos </> sin II) , 

Gcz cos ¢ 
G- Cycz y2 

~ 
) , 

V=(sin ¢ cos II, cos ¢, - sin ¢ sin II) ~ 

W = (sin II, 0, cos II) ) 

4 . Tracing the Skew Chief Ray 

(7) 

(8) 

(9) 

Using the quantities defined in sections 2 and 3.2, the problem can be stated as follows: 
Given Q and tbe coordinates of a point on the chief ray, the coordinates (x,y, z) of t he 

point of incidence of the rayon t he toric must be determined (transfer process) ; next U at the 
point of incidence must be found and Q'; the direction of the refracted chief ray, determined 
(refract ion process). The quan tities CT , Cs, R, and S will be known for the incident pencil 
and Cv, Ctc , V, and W can be found , since the point of inciden ce is known ; from t hese the 
quantities c;, c; , R', and S' for the refracted pencil must be determined. This last, the astig­
matism calculation , will be described in section 5. 

4. 1. Transfer Process 

The transfer problem is t hat of finding t he intersection of a straight line with a toric. A 
direct approach would require the solut ion of an algebraic equat ion of t he fourth degree; this 
would be a laborious process, so an iterative method was adopted. In addition to the general 
advantage of iterative methods, that mist!),kes in the e!)'lly stages of the calculation are auto­
matically eliminated at the cost of extra computing time, this me thod also selects the correct 
solu (ion from the fOUl" possible solutions. 
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Let P, be a point on the ray near th e required point of incidence.s A point P; on the 
toric is found with the same Y and z coordinates and the tangent plane T, at P; is determined. 
The next approximation P 2 is taken at t he in tersection of the ray wi th T, and t he 
cycle PZ---'7P;---'7 T2---'7P 3 ••• repeated until the coordinates of P n and P n+1 are the same to t he 
required number of significant figures. These are then t he coordinates of P , the point of 
incidence. 

Let the coordina tes of Pn be (xn ,Yn ,zn) and those of P~ be (x~ ,Yn ,zn ); then x~ is ob tained 
by substi tuting Yn and Zn in eq (6). The equation of the plan e Tn is An(X-X~)+ ,un (Y-Yn)+ 
Vn (z- Z" )= 0, 
where An, ,un, and ]IZ are given by eq (7) so that Xn +1 is given by 

Also , 

This completes th e iterative cycle. 
D" + 1 is of order of m agnitude D;;, so 
approximation is good enough. 

(10) 

(11) 

It can be shown to be a second-order iteration,9 tha t is, 
that it is always rapidly convergen t, provided the initial 

The choice of the ini tial approximation depends on the available means of compu ta tion. 
If a high-speed automatic-computing engine is available, PI may be taken as the point where 
the ray meets the y z plane. Let (xo,Yo,zo) be the coordina tes of the point Po wher e the r ay 
leaves th e previous refrac ting surface (or the entrance pupil ); 10 then PI is given by 

XI= O, } 

YI = YO-XOY jX , 

ZI=ZO-XOZ /X . 

(12) 

Star ting from this approximation, some four or fiv e iterations would probably be needed to 
reach a resul t correc t to six significant figures. 

If a desk computing machine is to be used, an appreciable saving in computing time can be 
effected by using an improved first estimate. It usually happens that chief rays directed at 
the same pupil have already been traced in the meridian and equatorial sections of the toric. 
Let the x coordinates of their points of incidence be Xy and x" respectively. The section of 
the toric by a plane through the x axis and making an angle 0' wi th the xy plane is approximately 
a circle, of curvature cycos2 o' + cx sin2 0' , so that a chief ray in this plane will m eet the toric a t a 
poin t of which the x coordinate is approximatel~T Xy cos2 O' + xz sin2 0' . This P , is given by 

Z + .? } 
XI=Xy cos 0' Xz sur 0' 

Y,= YO+(X,-XO) Y /X 

ZI=ZO+(Xt-xo)Z /X . 

(13) 

This approximation is usually so good that only one iteration IS needed to obtain SIX 

significan t figures in th e coordinates of P. 

, The method of obtaini ng P I will be d iscussed below. 
9 W. Wei nstein , Proc. Phys. Soc. (London) [8 ] 65, i31 (1952) . 
10 (xo, yo , zo) are taken in t he coord inate system referri ng to the current surface, not that on which P o lies. 

256 



4 .2 . Refraction Process 

The refraction calculation for the chief ray can now be carried out by well-known formulas. 
Let I be t he angle of incidence and n the index of r efraction of the medium in which the ray is 
inciden t; let primes denote corresponding refracted quantities. Then 

cos I = Q.U, (14) 

( n2 ) 1/2 
cos l' = + 1 - n,2 (1- cos2 1) , (15) 

Q '=~' Q+ (cos 1'-: ' cos I) U. (16) 

In eq (14 ) Q . U denotes the scalar product of Q and U. 
This completes the refract ion p rocess and the coordinates and direction cosines of the 

refracted ray are then used , with a suitable change of origin, for the incident ray at the next 
surface. 

5. Astigmatism Calculation 

In order to determine equations giving R' , S', c;, and c;, in terms of known quanti ties, a 
general theorcm i required . R eferring to figure 4, Jet P be the po int of incidence of the chief 
ray, andlct B be the point of incidence of another ray of the pencil. Suppose t be inciden t and 
r efracted wavefronts through P to be constructed, and let the ray t hrough B meet these in 0 
and 0', respectivclyY Then, since the op tical path length between two wavefronts is the same 
along any r ay, it follows t hat nOB = n' 0 ' B' or, if OB is denoted by q, 

Ll (nq)= O. 

H ere the symbol , Ll , means t hat t he refracted quan tity minus the incident quantity is to b e 
taken. This relationship is true for any relative positions of P and B and for any shape of 
refracting sUTface. 

In order to use eq (17) for the present purpose, q and q' will be expressed in terms of the 
coordinates of the point B on the refracting surface and t he pa rameters of the wavefronts. 
The result ing equation will give the normal curvature of the refrac ted wavefront in a section 
containing the ray through B and by differentiating with respect t o the az imuth of B th e maxi­
mum and minimum normal curvatures, c; and c;, can be found . The same calculation gives 
the directions R' and S ' of the principal sections. 

INCIDENT REFRACTED 

WAVEFRONT ~ WAVE\:ONT 

c' I 
C fo." B 

(n) (n' ) 

FIG UR E 4. 

11 rebe part of the refracted waverront shown in the diagram is virtual. 
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5.1. Normal Curvature of the Refracted Wavefront 

Figure 5 sho'ws the refracting surface near the point of incidence. Let P and B have the 
ame significance as in figure 4 and let Vand W be the unit vectors along the principal directions. 

Let Bl be the projection of B on the VW plane ; let a be the angle between PB l and V, and 
let PB be denoted by p. Then the position of B relative to P will be given by p and a as 
coordinates. 

FIGURE 5. 

In order to express q in terms of p and a, use is made of the fact that CB in figure 4 is a 
normal to the wavefront. It is found (see section 5. 1, a) that 

q= p(Q. V cos a+ Q· W sin a) + ! p2{ Q·U(c v cos2 a + cw sin2 a)-cr(R- V cos a+ R · W sinO'/ 

- cs(S · V cos a+ S· W sin a/} + terms in p3, 

and there is a similar equation for q' . 
Substituting for q and q' in eq (17), 

pf,n(Q· V cos a+ Q· W sin a)+ ~p2f,n { Q. U(c, cos2 a+ Cw sin2 a) -cr(R . V cos a + R · W sin a)2 

(18) 

- cs(8 ·Vcos a + 8·W sin a)2 } + terms in p3= O. (19) 

Only terms up to and including the square of p are taken since, as explained in section 2, 
this degree of approximation takes account of astigmatism. 

Equation 19 holds good for any values of p and a , so that the coefficients of different 
powers of p may be separately equated to zero. If this is done, the linear term yield s an altern­
ative form of Snell 's law and on putting 0' = 0 and 71"/2, the equations 

f,[n Q· V] = f,[n Q· W] = O (20) 

are obtained. These could serve as a check on the refraction calculation. 
Equating the coefficient of p2 in eq (19) to zero and dividing through by 1- (Q' . V cos 0' + 

Q' . W sin a)2 gives 

c;(R '. V cos a + R '. W sin a)2+c; (S '. V cos a+ S' · W sin a)2 
l -(Q'. V cos a+ Q' · W sin al 

ncr(R . V cos a+ R . W sin a)2+ ncs(S· V cos a+ 8 · W sin a)2+(cv cos2 a+ cw sin a)f,nQ . U 
n' [l -(Q'· V cos a+ Q'· W sin all . 

N ow the equation of the refracted wavefront can be shown to be 

[c; (R '. V cos a+ R '. W sin a)2+c;(8' . V cos 0'+ 8'· W sin 0')2] (X2+y~ 
X (R '. V cos a+ R '· W sin 0')2+(8 '. V cos a+ S '· W sin a )2 ' 

(21) 

taking the x, y, and z axes along Q', R', and S'. Thus the left hand side of eq (21) is c'(a), the 
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normal CUl'vatmc of the refracted wavefront in a section con taining the point B with angular 
coordinate a on the toric. 

Q. Derivation of Equation (18) 

Two auxiliary coordina te system are required, each with origin at P , the point of inci­
dence. One, t he x, y , z system, has its axes respectively parallel to Q, R, and S; the other, 
x' , y', and z' has its axes parallel to U, V, and W. The two are related by the equations 

x = (Q . U)x' + (Q. V)y' + (Q. W) z', y = (R . U)x' + (R- V)y' + (R· W )z', 
z= (S· U)x' + (S · V)y' + (S · W)z'. 

If the point B on the j·efracting sm f9.ce (fig. 4) has polar coordinates (p, a), its coordinates 
in the x', y', z' system are 12 

Let B have coordinates (u, v, w) in the (x, y, z) system ; then 

u = t(Q·U)(c. cos2 a + cw sin2 a)p2+ (Q. V)p cos a+(Q· W )p sin a + OCz)3) , 

v=(R · V)p cos a + (R · W )p sin a + O(p2) , 

W= (8- V)p cos a + (S. W )p sin a + O(P2) . 

Let (x, y , z) be the coordinates of 0 in the x, y, z system, so that 

The direction cosines of the normal to the wavefront at 0 are, to the approximation O(y2,Z2), 
(l, - cry ,-csz), and since OB is a ray, or wavefront normal, it follow that 

There arc now cnough relations to eliminatc x, y , z, u, v, and w. The resulting equaLion involy­
ing p, q, and a can be solved for q, remembering that terms which arc O(p3,q3) can bc ncglccted, 
since onl~· astigmatism is in question. The solution for q is fo und to be eq (18). 

5.2 . The Principal Curvatures of the Refracted Wavefront 

The principal curvatures c; rtnd c; are the maximum and minimum values of c'(a ). 
in ce all quantitics on the right of eq (21) arc known with the cxception of a , c; and c; can be 

obtained in the usual way b~' differentiating with rcspect to a and equating Lo zero . Let 

a= ![ncr( (R . V )2+ (R- W )2)+ncs( (8- V)2+ (S · W F) + (c .+cw) iln Q· Uj, 

b= ![ncr((R. V)2- (R · W )2)+ncs((S· V)2- (S· W F) + (cv+ cw) iln Q· UJ, 

c= ncr(R- V)(R · W )+ncs(S · V)(S· W ), 

d= H(2- (Q'. V )2- (Q'. W )2), 

e= t( (Q'· VF- (Q' . W F), 

/= - (Q'. V )(Q' · W ). 

Thc cquation for a is 
(ea- bd) sin2 a + (dc-aj) cos2 a=(bj-ec), 

" The ex pression 0 (1,-) used in tbis section denotes terms of order of magnitude po. 
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(23) 

(24) 

(25) 

(26) 

(27) 



and the two solu tions are 
'Y - {3 

0'1= - - ' 
2 

(28) 

where 13 

_ , . dc - aj 
{3- aI csm + [(ea- bd)2 + (dc - aj)2] ,2 (29) 

and 

(30) 

The values of c; and c; are then obtained by putting a = a1 and a 2 in the right hand side of 
eq (21) . 

5 .3. Principal Directions on the Refracted Wavefront 

In figure 6, let P be the point of incidence, PB the refracting sUTface, and P C' the r efracted 
wavefront. L et Q' be t he unit vector along the chief ray and let C' B be another ray of the 
astigmatic pencil. Let the projections of 0 ' and B on the tangent plan es to the wavefront and 
refracting surface be 0; and Bl respectively. Then V cos a+ W sin 0' is a vector in the direction 
PBI, so that a unit vector in the direction P C/ is given by 

V cos 0' + W sin a-Q' (Q'· V cos a+ Q' · W sin 0') 

[l -(Q' · V cos a+ Q' · W sin 0'/]1 / 2 
(31) 

Thus, the vectors R' and S' are obtained by putting 0' = 0'1 and 0'2 in t he expression (31) . It 
should be not iced that in this derivation it was assumed that t he points C' and B lie on a plane 
through Q', i . e. , t hat the ray through C' intersects the chief ray. This is not strictly true in 
general , but the error depends on terms in the equation of the wavefront of the third degree in 
the aperture, so that astigmatism calculations are not affected. 

REFRACTED 
WAVEFRONT 

C' 
I 

VcosotWslna 

-V - REFRACTING 

. ~ SURFACE 

Q' 

FIG U RE 6. 

This completes t he refraction computation for astigmatism. The R' and S ' vectors are 
transferred without change to be the new R and S vectors at t he next surface. In order to 
transfer the curvatures the distance L between surfaces along the chief ray is required ; this 
is easily found to be (x-xo) /X, in the notation of section 4.1. Th en the new curvatures are 
given by 

(l /c')+1 = (1/(;,): - L ~ 
( l /cs)+I= (l /cs) - L) 

13 Of tbe possible solutions for {J . one must be cbosen which sa tisfi es 

ea- bd 
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6. Input Data 

If the wavefront incident on the first surface is not already astio'll1at ic, some arbiLl'ary 
directions for R and S must be assigned. Similarly if a refracting sUl'face is spherieal, direc­
tions for V and W must be assigned. 

These pairs of vectors must form tril'eetangular sets wit h Q and U, respectively, but subj ect 
to this condition they can be chosen to suit computational convenience. Choosing R to b e 
coplanar with Q and the y axis, it is found that 

R C-XY,l - P, - YZ)} 
(1- y Z) I/2 

S (Z ,O,-X) 
(1_ P)I /2 . 

(33) 

Since y z is rarcly greater than 0.1 , the vectors so defined are well determined numerically. 
In a similar way V and W can be taken as 

(34) 

It is also necessary to choose between ring and barrel shapes for the toric surfaces. In the 
equations of section 3.1 the rotation axis of the toric is taken parallel to the y axis and the toric 
will be ring or barrel shape according as Cy is numerically geater or less than Cz • Thus, if it is 
required to have a barrel shape with Icy l>lczl or a ring shape with Icyl< Iczl , t he equations 
must be changed so that the rotation axis is parallel to t he z axis . This can be done by in ter­
changing y and z III the symbols and subscrip ts of eq (4) to (8), inclusive, as mention ed in 
section 3. l. 

7. Presentation of Results 

7.1. A Numerica l Exa mple 

In the application to spectacle lenses the results are presen ted in the form of a diagram 
giving the astigma tism of a number of pencils and the directions of the principal sections on 
t he wave front. An example is given in figure 7. 

RING TORle BARREL TORle 

F IGURE 7 . 
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The wavefront curvat ures are marked on the appropriate sections, in diopter~ with respect 
to the vertex sphere. The apparent rotation of the principal sections of the wavefront can be 
found from t he considerat ion that the vertical plane containing the chief ray contains t he 
direction which is apparently vertical to the eye. This plane is the plane through Q and 
parallel to the y axis. From this it can be shown that the angle, A , through which the R and 
S vectors appeal' t o be t urned is given by 

1'? tanA =...:, 
82 

where 1'2 and 82 are the y components of Rand S . 

(35) 

The nominal powers of t he lens in t h is example were 5.5 diopters in the vertical sect lon 
and 3.62 diopters in the horizontal section . The curvatures of the front (toric) surface were 
+ 0.2199 cm- I and + 0.1839 em-I, that of the back (spherical) surface was - 0.1147 cm- I, t he 
center thickness was 0.48 cm and the refractive ind ex was taken as 1.523. The chief ray was 
made to intersect the axis 27 mm b ehind the lens at an angle of 30°. The r esults for bo th r ing 
and barrel shapes with the sam e nominal curvatures are given. , 

Computations have also b een don e on the prescriptions of a number of lcnses and measure­
m ents have b een made on these with a vertex power measuring instrument. The agreement 
is sati sfactory within the limits of experimental error. 

7.2. Discussion 

In the numerical example given above the rotation of the focal lin es in intermediate 
azimuths is n egligible; this may b e expected to be the case for all but very h eavily cylindrical 
spectacle lenses of best-form type. It can also be seen that the variation of astigmatism over 
the field is less fo'· t he barrel than for t he r ing shape (0.14 D and 0.21 D , respectively). This, 
of course, is no t a gen eral conclusion, but it suggests that further computation would b e 
desirable. It is possible that for h eavy cylinders a considerable improvemen t might b e 
obtained by using barrel shapes, but this might be outweighed by the increased manufacturing 
costs. This would depend also on visual tolerances for astigmat ism ; it seems that more 
experimental wode is required on this subj ect. 

A differen t question is tha t of the accuracy with which t orics are produced . The principal 
curvatures check within t he limits of accuracy of a lens gage, and the sagittal curvatures change 
or remain constan t along t he meridan or equatorial sections, r espectively, to th e same accuracy. 
However, this may not be enough to prove that the lens surface is a true t oric to an accuracy 
which justifies the calculations for chief rays in intermedia te azimuths. The mode of manu­
facture is cer tainly such as t o produce a ver y close approximation to a t oric if the sm·facing 
machine really acts in the intended manner, but i t is quite possible that distort ions and non­
uniform wear in the tools and machine parts may cause departures from the t oric shape. No 
m easurem ents other than checks on the principal curvatures seem to have been m ade. A 
detailed check on the x coordinates of a network of points would b e nceded. 

Thanks arc due to my friends and colleagues of the Optical Instruments Section for their 
interest in t his work , in particular O. N . Stavroudis and Loyd Sutton ; the latter did the 
numerical computations and check ed the m athemat ics. 

I VASHINGTON, June 29, 1954. 
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