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An Algorithm for Solving the Transportation Problem'

A. Gleyzal *

Thisarticle describes a new computational scheme for solving the transportation problem
(deseribed below) in which combinatorial ideas, rather than the theory of linear inequalities,

play the major role.

Whether the algorithm is superior to other methods previously

employed or proposed must await computational experience, but preliminary inspection is

encouraging.

1. Introduction

The transportation problem (stated for integers)
is the following: Let €' be an m <7 matrix of integers
¢y, and let a,, apeahit .,0a be posmvc
integers such that a,-+ —}—am—bl-}— +b,.
We are required to find an mXn matrix ‘\z(xi,-)
such that?®

(a) @4 1s a nonnegative integer,

n
lei]:a’i (?.‘:1; ym)y
i=

m ¢
;xﬁ:b) (.7:17 Jn)x

and the linear form 1,(z) = Zc,]rw is a minimum for
T
all matrices satisfying (a) and (b) .Tal

Definations: A matrix X satisfying (a) and (b) is
called a selection. 1f X and Y are selections, we say
X(O)XY(O) (read “X is preferable to Y with
respect to C”7) if 1,(x) =1.(y). If l.(x)<l.(y), we say
X(O)<LY(O)(“X 1is strongly preferable to Y with
respect to 7). It is clear that the relation < is
transitive. If X is preferable to all selections with
respect to €' (i. e., X solves the problem), it is said to
be optimal.

If X' is a selection, and 4, j are indices such that
x,;=1, then ¢y 1s ca]led an )( -selected element of C.
s o Sk vs s 8y arer integarssandi D =—=i(d;,)) =
(cy+7ri+s;), then C~D (“C and D are equivalent’’).
It is easy to see that ~ is an equivalence relation.
Further, one may prove that if C~D, then X(()<
Y(C) if and only if X(D)XY (D), and X(C) Y(C)

1 A code of this method in the case of the “personnel problem,”” using an 8X8
matrix, has recently been composed for SWAC (National Bureau of Standards,
Western Automatic Computer). For a variant of the method in this case, which
is also applicable to matrices consisting of nonintegers, see Theodore S. Motzkin,
The assignment problem (Proceedings of the American Mathematical Society
Sixth Symposium for Applied Mathematics, 1954).

;dPrcsont address: Naval Ordnance Laboratory, White Oak, Silver Spring,

# Other references to this problem and references to further literature are given
by: George B, Dantzig, Maximimization of a linear function of variables sub-
ject to linear inequalities (Simplex Method), chapter XXI, and Application of
the Simplex Method to a transportation problem, chapter XXIII both included
in Activity analysis of production and allocatxon, edited by T. 'C. Koopmans
(John Wiley & Sons, Inc., New York, N. Y., 1951); Merrill M. Flood, On the
Hitcheock distribution problem Pacific J. Math. 3, 369-386 (1953).

if, and only if, X(D)<Y(D). Since throughout the
computation subsequently described we work only
with matrices equivalent to ', we shall henceforth
write X(O) <Y(( ) as X<Y (similarly, X<Y).

A closed circuit is a set of selected elements of the
form ¢,,5,,64,15,C1519:C 15159 5CidpCiyiys where ;. . .1
are distinet indices and 7;,. . .,7, are distincet indices.

2. Summary of the Computation

The computation consists of two parts, which are
performed alternately until an optimal selection is
obtained. It will be seen that the algorithm itself
yields the information that the optimal selection has
been reached.

As a preliminary, we begin with some selection X.
In part I, we find a matrix D~C and a selection
Y<X such that the Y-selected elements of 1) are 0.
In part 11, we discover if Y is optimal, and if not,
obtain a selection Z<Y. Putting Z in place of X
we begin again with part I and continue. As there
are only a finite number of selections, it is clear from
the fact that Z<Y<X, that this process terminates
in a finite number of steps, and we thus arrive at an
optimal selection.

3. Summary of Part I

With the pair of matrices ; X, we associate a pair
of nonnegative integers (¢,z) defined as follows:
¢, i1s the number of nonzero X-selected elements of
(), z is the number of nonzero elements of X

If ¢,=0, we are finished with part I (set D=C,
Y=X). If not, we construct, starting with a non-
zero X-selected element of (' a “tree I, which we
discover to be either in case IA or case IB. 1If in
case TA, we find a matrix ¢’ such that " ~C and the
number of nonzero X-selected elements of € is less
than ¢,. If in case IB, we find a selection X’
preferable to X such that the set of nonzero elements
of X’ is a proper subset of the set of nonzero elements
of X. Thus, after completing TA or 1B, we have a
matrix ¢/ ~C and a selection X’<X such that
(1)

chi=ec,, 3=,
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and strict inequality holds in at least one of the two.
If ¢,>0, we begin again, obtaining "/, X’/  and
so on. By virtue of (1), this cannot continue
indefinitely. But we cannot have 2™ =0, for this is
inconsistent with (b); therefore, for some n, ¢, =0.
Hence, the desired result of part I is achieved.

4. Summary of Part II

In part I1, we begin with a pair of matrices D, Y
such that d,=0. Let ¢, be the minimum of all
elements of D) that are not Y-selected. Let f, be
the number of elements of D equal to e.

If e5=0, then, clearly, Y is optimal. Assume the
contrary, therefore. Starting with an element
diljl of D such that d,m:eD, we construct a “tree 11.”
We examine this tree and discover whether we are
in case ITA or case IIB. If in case ITA, we construct
a matrix D’ ~D such that the Y-selected elements
of D’ are 0, ey >¢p (and the behavior of f, is un-
specified), or

fD' <fD,v (2)

and we put )" in place of D and begin again with
part II. It is obvious from (2) that we cannot
continue to be in case ITA indefinitely, for eventually
we would obtain e¢pm =0, which implies that Y 1s
optimal. Therefore, if Y is not optimal, we must
at some stage enter case IIB. If in case IIB, we
find a selection Z<Y, and go back to part I, with
any matrix equivalent to €' (C itself, if convenient)
replacing C; and Z replacing X.

eD’:eDy

5. Detail of Part I

Assume ¢; ;, is an X-selected element of €' that is
not zero. We define, inductively, the following
“family tree I"”:

1. The “founder” is ¢, (“first generation”).

- 2. Assume now that we have defined the kth
generation, for k=1, . . .;s. We now define the
(s-+1)th generation; i. e., the union, over all mem-
bers of the sth generation of the ‘“children” of each
member of the sth generation. The ‘children” of
such a member are: if s is odd, all other X-selected
elements in the same row of (' as the given member;
if s 1s even, all other X-selected elements in the same
column of ' as the given member. If the (s+1)th
generation is vacuous, the tree terminates with the
sth generation, and we say we are in case IA; if the
(s-+1)th generation contains at least one member of
a previous generation (possibly the sth) the tree
terminates with the (s-1)th generation, and we say
we are in case IB. If the tree does not terminate,
we continue. The tree must terminate, of course,
after a finite number of generations.

Case IA: In this case, We shall show how to con-
struct numbers 7, . . . s such ithat
C'= (ci;)=(cs;+74 +s,)~( and c.<c, (indeed, all
the elements of ¢ correspondmg to the elements of
the tree will be zero).

Associated with each element of the tree, define
inductively the following numbers N(¢):

N<C’070) o

—C1y5,-
If p is the parent of ¢, define
N(@)=—t—N(p).

We note that because we are in TA, rather than 1B,
avery element has a unique parent. Now, let «
be any row index of some element ¢, of an odd
generation: for each such «, define 7,=N(cqp).
Observe that because we are in case TA, this defini-
tion is unambiguous. For suppose cqs, and c.,, were
two elements of row a, each occurring in an odd
generation, then it follows from the definition of the
tree that since c.g, occurs in an odd generation, ¢,
is its child. Similarly, c.s is the child of ¢qs,. This
would mean that we were in case 1B.

For every index i=1, .,m, which is not a row
index of an element of an odd generation, define
r;=0. Similarly, let 8 be any column index appear-
ing in some element c.s of an even generation: for
each such B, define sg=DN(c.5). For each index
=1 .m, which is not a column index of an
element of an even generation, define s;=0.

It is now easily seen that (O’ has the desired
property.

Case IB: In this case, we shall show how to find
a selection X’<X such that 2’<z. We first show
how to find among the members of the tree a closed
circuit. Let £ be defined by the statement that the
(k+41)th generation is the first one that contains an
element ¢ of the rth generation, where »<’k-+1, and
let ¢; be a member of the kth generation whose child
is ¢,. (Although the knowledge is not necessary for
the subsequent argument, it is convenient to note
that £-+1>3.) In other words, it is at the (k+1)th
generation that we discover that we are in case IB.
Hence each member of generations k, k—1, . . . 2
has a unique parent in the preceding generation, for
if a member of the tree has two parents in the pre-
ceding generation, then all three members are in the
same row or column, one of the parents would be a
child of the other parent, and we would have arrived
at case 1B earlier.

Now let ¢;_; be the unique parent in the (A—1)th
generation of e ¢,_, be the unique parent in the
(k—2)th generation of ¢,_;, etc. There are two
possibilities: either (a) e, is an ancestor of ¢, or (b)
e, is not an ancestor of ¢,. If (a) holds, then clearly
ek, Cr_1, . ,eri1, €, 18 a closed circuit. If (b)
holds, let 5 be defined by the statement that the sth
gener&tlon is the last generation that contains a
common ancestor ¢, of both ¢, and ¢,. Let ¢/_, be
the parent of ¢, in the (»—1)th generation, ¢/ _, the
parent of ¢/_,, and so on until we reach ¢,. From
this “line of descent’ ‘e, e, 1, €=, < « =, elay, € and
the previous: e, €,_1, €,_a, - - « , €411, €, Doting that
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€1, €, €, 2re in the same row or column, it is easy
to see that
’ ’

Cr, ek—l) Cr—2, ) ps+1) s +1, y €r—2, Cr_1y Cr
is a closed circuit. For the definition of £ implies
that the same row or column index occurs only in
consecutive elements of this cycle, and if we con-
sider these elements as arranged in a cyclic order,
the construction of the tree and definition of £
imply that the same row or column index occurs
only in consecutive elements.

Let us denote this closed circuit by

cilfl’cil"z' hpers ’Ciljl’
as explained in the introductory definitions.
IJ(’,t
leci1j1+c1'2j._,+ +Ci,jl»
2y _‘(‘11],_‘_ ,jd+ +(Ii[jl-

Either 2, <3, or 2, >2,. Assume the former, and
let Ty=min(z; ;,, Zig,)-

Consider the new selection X’

’

a/ilil:xili‘+72v ezl xllll ‘I'I‘I‘_*_x?’
R R REC, W LA

z,;lfz——%l',-liz Tay « « 221”11 Iilil La.

For all other pairs of indices 7, 7, ;=
It i1s easy to verify that X’ is a selection (i. e,
satisfies (a) and (b), that /’éX, and 2’ <x.

If 2,>3,, let ,=min(2;,,. . .,%,). Consider
the new selection X7,
! ’
‘\ilil:w‘lil_xl' Ry .’L,-t,-t:%it,-t—xl
hd 4
leh_ 1112+11v Aoy Q‘,‘,l ztyl+'rl

For all other pairs of indices 7, 7, #/;=a;;. Then it is
easy to verify that X’ is a selection, X'<X, 2’ <u.
This completes the discussion of part I.

6. Detail of Part II

Assume d; ; is an element of D that is not Y-
selected, and such that 0>>d; ; =e,=minimum of all
elements of 1) not selected by Y. We construct in-
ductively, the following ‘“family tree 11",

l The founder is d; ; .

Assume now that we have defined the Fkth
gcnel ation, for k=1,. . .,s. We now define the
(s-+1)th generation, the union, over all members of
the sth generation of the children of each member of
the sth generation. These are the children: If s
is odd, s>1 and there exists a Y-selected element of
D whose column index is j;, then this element is its
child, the tree terminates, and we say we are in case
I[IB. If no such element exists or if s=1, then the
children consist of all Y-selected elements in the

same row as the parent member, omitting, however,
those whose column index is the same as that of a
member of generations 1,. . . ,s. If s is even, the
children of a member are all nonpositive elements of
D in the same column as the member, omitting, how-
ever, those whose row index is the same as that of a
member of generations of 1,. . . s.

Eventually, the tree must terminate, and if it does
not terminate in case IIB, we say we are in case 1TA.

Case ITA: In this case, we shall show how to
construct: numbers: £, = . 8 s, such
that D'=(d;;)=(d;;+ri+s;) ~D, and D’ has the
properties (2).

Liet @ be any row index appearing in some number
dos of an odd generation. For all such «, define
Tl Eoranylindex s 7—=1l 5 F it st mot N~
cluded in [a], define 7,=0. Similarly, let 8 be any
column index appearing on some member d.s of an
even generation. For all such g, define szg=—1.
For any index j=1, , n not included in {B},
define s;=0.

We now show that )’ has the properties (2).
First, the Y-selected elements of 1’ are 0: For if
d;; is such an element, and if 7 resp. 7 appears as a
row resp. column index of a member of an odd
resp. even generation, then j resp. ¢ appears as a
column resp. row index of a member of an even
resp. odd generation; hence, r,4s,=0. Second, if
d;= 0 and s;= —1, then by our construction r;=1;
hence the minimum of the elements of )’ is not
less than the minimum of the elements of D). 1In ad-
dition,because we are in case ITA, d; ; =d; ; +1>e¢p.
These two statements imply the remainder of (2).

Case 1IB: Because we are in case I1B, it is clear
how to find a closed circuit in the tree containing
cliljl. Let us denote this circuit by

diljl’ Ry ’(litjl'

Then d; ;.:d¢ 4, L., are Y-selected elements of
1791y 73 "1 dy

D. Consider the new selection Z:

Zflflzyi111+l’ ‘?itjt:yitjt+1’

Ziljz:yiljz_—]’ S e yizjl—l

For all other pairs of indices i,j, define z;=y,;.
Then it is easy to verify that Z is a selection.

Further, because all elements of the circuit are non-

positive, d; ;= =d;; =0, and d,;<0, it

follows that Z<X.

7. An Example
Consider the transportation problem with

2595
8358
7314
5972,

(j:

and a;,=(3,2,3,3), b,=(3,5,2,1). For purposes of
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illustration, we assume an initial selection matrix,

2100

| 0020
X= 0300
1101

It is convenient to indicate the selection by dots
placed above the elements of the matrix C, as follows,

95
58
14
7.9

Cte =9 00 o
Wi W ot.

O

The steps in the solution and the operations associ-
ated with cases IA, IB, TIA, and IIB will be clear
from the following: *

@—>5 9415 -2 @ 50 aiis
Sunra e g BEniSle
18 N 1A
s =
The s 3w PR S e R ]
5¢—9¥ 7 2 § X BG=d g ahe
e e
T = =l =1
(oY ot K e Ot S GO
3 =200 3 i| 3 4-2—0 10
1A oA
2 s, —
R {524 (o 2gione
-9 5 wz | 0«<-2 0
-2
Qi isteseny Ol 5 6
STy S i Lo 2 5 o 8
- @ i
St R GBSO IR
2 S @—>b (o Y S5l s o)
il =l i
i 0<—0Onr 5 6 T 0 0y G
| G s 1 e G B 10 Trantan |
1A
o g
Bl ée@ 7 TE O O B
I 0 - Tonesn 0 | I 0
\\—/

4 Numbers on borders at matrices are quantities added to the indicated row
or column, Cireles drawn about an element indicate the first element of the tree.
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The last matrix is a solution. No closed circuit of
zeros exists. Hence the solution is unique. For pur-
poses of illustration, we have followed the method
explicitly. If one permits some flexibility in choosing
the sequence of operations, much faster convergence
may be obtained.

The author expresses his gratitude to Alan J. Hoff-
man to whom he is indebted for transforming the
method and proof into the algebraic form given here.
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WasHINGTON, April 23, 1954.
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