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An Algorithm for Solving the Transportation Problem 1 

A. Gleyza1 2 

This article describes a new computational sch eme for solving t he t ransportation problem 
(described below) in which combinatorial ideas, rather t han t he theory of Ji nell r inequalities, 
play t he major role. Whether t h e algol'it hm is superior to other method s previously 
employed or proposed m ust await computat ional experience, but preliminary inspection is 
encouraging. 

I. Introduction 

The t ranspor tation problem ( tated for integers) 
is the following: Let 0 be an m X n ma trix of in teger 
Cii> and let ail ... ,am, bl , •• • ,bn be positive 
integers such tha t al + .+ am= bl+ .. . + bn . 

We are r equired to fmd an m X n matrix X = (X;i) 
uch tha t 3 

(a) Xi! is a nonnegative integer, 

(i= l , ... ,m), 

'" ~Xij= bJ (j= l , ... ,n), 
i=! 

and the linear form l ,(x) = ~C;JXti is a minimum for 
i, j ." _ ____ ,", I ". " ~ 'lil!IIIi 

all matrices satisfying (a) and (b) .'! ~ 
Definitions: A matrix X satisfying (a) and (b) is 

called a selection. If X and Y are selections, we say 
X(C):SY(O) (read "X is preferable to Y with 
respect to 0") if l ,(x) ~ l ,(y) . If l ,(x) < l ,(y), we ay 
X(O)-<Y(O)("X is strongly preferabl e to Y with 
respect to 0"). It is clear that the r ela tion -< is 
transitive. If X is preferable to all selections with 
respect to 0 (i. e., X solve the problem), it is said to 
be optimal. 

If X is a selection, and i, j are indices such tha t 
Xti~ 1, then Cti is called an X -selected element of O. 
If rl, . . 1m, Sl,· . . ,sn are in tegers and D= (d iJ) = 
(CiJ+ri+si), then O",D ("0 and D are equivalen t"). 
It is easy to see tha t", is an equivalence relation . 
Further, one may prove tha t if O",D, then X(O) -<' 
YeO) if and only if X(D)-<'Y(D), and X(C) YeO) 

1 A code of th is method in the case of tho " personnel problem," using an 8X8 
matrix. has recently been com posed for SWAC (National Bureau of Standards, 
Western Automatic Compute,·). For a variant of the method in this case, which 
Is also applicable to matrices consisting of nonintegers, see Theodore S. Motzkin, 
'l' he assignment problem (Proceedings of the A merican Mathematical Society 
Sixth Symposium for Applied Mathematics, 1954). 

• Present addrcss: Naval Ordnance Laboratory, White Oak, ilver Spring, 
Md. 

, Other references to this problem and references to further literature are given 
by: George B. Dantzig, M aximimization of a linear [unction of variables su b· 
lect to linear inequalit ies (Simplex M ethod), chapter XXI , and Application of 
t be Simplex Method to a transportation pro blem, chap ter XXIII, both included 
in Activity analysis of productio n and allocation, ed ited b y 1' . C . Koop mans 
(Jobn Wiley & Sons, Inc., New York. N. Y., 1951); Merrill M . Flood, On t he 
Hitchcock distribution pro blem, Pacific J. Math . 3 , 369-386 (1953) . 

if, and only if, XeD) ./Y(D). Since throughout th e 
computation subsequen tly described we work only 
with matrices equivalent to 0, we shall henceforth 
wri te X(C) YeO) as X:SY (similarly, X-<'y). 

A closed circuit is a sci of selected elemen ts of th e 
form CilivCili2,Ci2J2,Ci2i3'. . . ,Citit,ettil' where i l,. . ., it 
are distinct indices and jl, .. . ,jt are distinct indices. 

2 . Summary of the Computation 

The compu tation consists of two parts, which are 
performed al ternately U11til an optimal selection is 
obtained. It will be seen that the algorithm itself 
yields the information that the op timal selection h a 
been reached. 

As a preliminary, we begin with some selection X. 
In par t I , we find a m atrix D", 0 and a selection 
Y:SX such that the Y-selected elemen ts of D are o. 
In- par t II, we discover if Y is optimal, and if not, 
obtain a selection Z-<Y. P uL Ling Z in place of X, 
we begin again with par t I and con tinue. As there 
are only a fini te number of selections, it i clear from 
the fact that Z-<,Y-<,X, that this process terminates 
in a fini te number of steps, and we thus arrive at an 
op timal election . 

3 . Summary of Part I 

With the pair of matrice 0, X, we associate a pair 
of nonnegative integers (c",x) defined as follows: 
c" is the number of nonzero X-selected elements of 
0, x is the number of nonzero elements of X. 

If c,,= O, we are finished with par t I (set D = 0, 
Y = X). If not, we construct, star ting with a non­
zero X-selected elemen t of 0 a "tree I ", which we 
discover to be ei ther in case IA or case lB. If in 
case lA, we find a matrix 0 ' such that 0 ' '" 0 and the 
number of nonzero X-selected elemen ts of 0' is less 
than c". If in case IB, we find a selection X' 
preferable to X such that the set of nonzero elements 
of X' is a proper subset of the set of nonzero elements 
of X. Thus, after completing IA or IB, we have a 
matrL"\,: 0 ' ", 0 and a selection X'-<.X such that 

(1) 
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and strict inequality holds in at least one of the two. 
If c;,>O, we begin again, obtaining 0", X", and 

so on. By virtue of (1), this cannot continue 
indefinitely. But we cannot have x (n)= o, -for this is 
inconsistent with (b); therefore, for some n, Cx (n) = O. 
Hence, the desired result of part I is achieved. 

4 . Summary of Part II 

In part II, we begin with a pair of matrices D, Y 
such that dy= O. Let eD be the minimum of all 
elements of D that are not Y-selected. Let JD be 
the number of elements of D equal to eD. 

If eD ~ 0, then, clearly, Y is optimal. Assume the 
contrary, therefore. Starting with an element 
dt!i! of D such that d t!i! =eD, we construct a "tree Ir." 
We examine this tree and discover whether we are 
in case IIA or case lIB. If in case IrA, 'Ne construct 
a matrix D' ~D such that the Y-selected elements 
of D' are 0, eD' >eD (and the behavior of J D is un­
specified), or 

(2) 

and we put D' in place of D and begin again with 
part II. It is obvious from (2) that we cannot 
continue to be in case IIA indefinitely, for eventually 
we would obtain eD(n) ~ 0, which implies that Y is 
optimal. Therefore, if Y is not optimal, we must 
at some stage enter case lIB. If in case lIB, we 
find a selection Z-<Y, and go back to part I , with 
any matrix equivalent to 0 (0 itself, if convenient) 
replacing 0, and Z replacing X . 

5. Detail of Part I 

Assume Ctoio is an X-selected element of 0 that is 
not zero. We define, inductively, the following 
" family tree I" : 

1. The "founder" is CtoJo ("first generation" ). 
2. Assume now that we have defined the kth 

generation, for k = l , .. . ,s. We now define the 
(s+ l )th generation; i. e., the union, over all mem­
bers of the sth generation of the "children" of each 
member of the sth generation. The "children" of 
such a member are: if s is odd, all other X-selected 
elements in the same row of 0 as the given member; 
if s is even, all other X-selected elements in the same 
column of 0 as the given member. If the (s+ l)th 
generation is vacuous, the tree terminates with the 
sth generation, and we say we are in case IA; if the 
(s+ l)th generation contains at least one member of 
a previous generation (possibly the sth) the tree 
terminates with the (s+ l )th generation, and we say 
we are in case lB. If the tree does not terminate, 
we continue. The tree must terminate, of course, 
after a finite number of generations. 

Oase IA: In this case, we shall show how to con­
struct nmnbers rl, . . . ,rm , SJ, •• • ,8n such that 
O'=(C:i)=(Ctj+ri+sJ)~O, and c;<cx (indeed, all 
the elements of 0' corresponding to the elements of 
the tree will be zero). 

Associated with each element of the tree, define 
inductively the following numbers N (t ): 

If p is the parent of t, define 

N(t)=-t - N(p ). 

"I'Ve note that because we are in lA, rather than IB, 
every element has a unique pm·ent. Now, let lX 

be any row index of some element C.(3 of an odd 
generation: for each such lX, define r a= N(ca(3). 
Observe that because we are in case lA, this defini­
tion is unambiguous. For suppose Ca(31 and Ca(32 were 
two elemen ts of row lX, each occurring in an odd 
generation, then it follows from the definition of the 
tree that since Ca(31 occurs in an odd generation, Ca(32 
is its child. Similarly, Ca(31 is the child of Ca(32' This 
would mean that we were in case lB. 

For every index i = l , .. . ,m, which is not a row 
index of an element of an odd generation, define 
rt= O. Similarly, let /3 be any column index appear­
ing in some element Ca(3 of an even generation: for 
each such /3, define s(3= N (ca{1 ). For ea.ch index 
j = l, .. . ,n, which is not a column index of an 
element of an even generation, define Si= O. 

It is now easily seen that 0' has the desired 
property. 

Oase IE: In this case, we shall show how to find 
a selection X'-<X such that x'<x. vVe first show 
how to find among the members of the tree a closed 
circuit. Let k be defined by the statement that the 
(k+ l )th generation is the first one that contains an 
element e of the rth generation, where r< k + l, and 
let ek be a member of the kth generation whose child 
is eT' (Although the knowledge is not necessary for 
the subsequent argument, it is convenient to note 
that k + l > 3.) In other words, it is at the (k+l )th 
generation that we discover that we are in case IE. 
Hence each member of generations k, k- l , ... ,2 
has a unique parent in the preceding generation, for 
if a· member of the tree has two parents in the pre­
ceding generation, then all three members are in the 
same row or column, one of the parents would be a 
child of the other parent, and we would have arrived 
at case IB earlier. 

Now let ek-l be the unique parent in the (k- l )th 
generation of ek, ek-2 be the unique parent in the 
(k- 2)th generation of ek_l, etc. There are two 
possibilities : either (a) eT is an ancestor of ek, or (b) 
eT is not an ancestor of ek. If (a) holds, then clearly 
ek, ek-l, ek-2, ... ,eT+I , eT is a closed circuit. If (b) 
holds, let s be defined by the statement that the sth 
generation is the last generation that contains a 
common ancestor e. of both ek and eT • Let e:_1 be 
the parent of eT in the (r - l )th generation, e:_2 the 
parent of e:- 1 , and so on until we reach e.. From 
this "line of descent" e" e:-l, e:_2 , ••• , e;+l, es and 
the previous ek , ek - 1, ek - 2 , ••• , e.+1 , e., noting that 
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e;+I , e., e'+1 are in the same row or column, it is easy 
to see that 

is a closed circuit. For the definition of k implies 
that the same row or column index occurs only in 
consecutive elements of this cycle, and if we con­
sider these elements as arranged in a cyclic order, 
the construction of the tree and definition of k 
imply that the same row or column index occurs 
only in consecutive elements. 

Let liS denote this closed circuit by 

as explained in the inLroductory definitions. 
Let 

Either ~l ~ ~2 or ~1> ~2 ' Assume the former, and 
let x2 = luin(xili2, ... ,Xi,i l )' 

Consider the new selection X' 

For all other pairs of indices i, j, X:i=Xi;. 
It is easy to verify that X' is a selection (i. e., 

satisfies (a) and (b), that X'-<X, and x' < x. 
If ~1> ~2' let xl= min(xi~' ... ,Xi,i, ). Consider 

the new selection X'. 

For all other pairs of indices i, j, X:i=:1;i' Then it is 
easy to verify that X' is a selection, X'-<X, x' <x. 

This completes the discussion of part 1. 

6. Detail of Fort II 

Assume di!i I is an element of D that is not Y­
elected, and such that O> di li! =eD= minimum of all 

clements of D not selected by Y. We construct in­
ductively, the following "family tree II" . 

1. The founder is dili !. 

2. Assume now that we have defined the kth 
generation, for k= I, . .. ,8. We now define the 
(8+ 1)th generation, the union, over all members of 
the 8th generation of the children of each member of 
the 8th generation. These are the children: If 8 
is odd, 8> 1 and there exists a Y-selectcd element of 
D whose cohunn index is jl, then this element is its 
child, the tree terminates, and we say we are in case 
IIB. If no such element exists or if 8= 1, then the 
children consist of all Y-selected elements in the 

same row as Lhe parent membcr, omitting, however , 
those who e column index i the arne a that of a 
member of generations 1, ... ,. If is even, the 
children of a member are all nonposiLive elemenL of 
D in the same column as the member, omitLing, how­
ever, those whose row index is the same as that of a 
member of generations of 1, ... , . 

Eventually, the tree must terminate, and if it does 
not terminate in case IIB, we say we are in ca e IIA. 

Case IIA: In this case, we shall show how to 
construct numbers 1\ , ... ,1'm, 81, ... , 8n such 
that D' =(d:i) =(dii+ l'i+ 8;) ~D , and D ' has the 
properties (2). 

Let a be any row index appearing in some number 
d"i3 of an odd generation. For all such a, define 
1',,=+ 1. For any index i= l, . .. , m not in­
cluded in [a], define 1'1 = 0. Similarly, let {3 be any 
column index appearing on some member dafJ of an 
even generation. For all such {3, define 8fJ=- 1. 

For any index j = 1, ... , n not included in {{3}, 
define 8 i= 0. 

We now show tha t D' has Lhe properties (2). 
First, the Y-selected clements of D' are 0 : For if 
d ;i is such an element, and if i resp . j appears as a 
row resp. column index of a m ember of an odd 
resp. even generation, then j resp . i appears as a 
column resp . row index of a member of an even 
resp. odd generation; hence, 1';+8i= 0. econd, if 
d;i<O and 8i= - 1, then by our constmcLion 1';= 1; 
hence the minimum of the clements of D' is not 
less than the minimum of the elements of D. In ad­
dition, becau e we are in case IIA, d: li l= di lil +l>eD' 
These two statements imply the remainder of (2). 

Ca8e lIB: Because we are in case IIB, it is clear 
how to find a closed circuit in the tree containing 
d i,l!' Let us denote this circuit by 

dilil , . . . ,d;,i l ' 

Then dil i" d i ,i3' . . . ,d i,i! are Y-selccted clements of 
D. Consider the new select ion Z: 

For all other pairs of indices i,j, define Zii= Y ii ' 
Then it is easy to verify that Z is a selection. 

Further, because all elements of the circuit are non­
positive, cl i !i2= . .. = dt,i! = 0, and d;!i!< O, it 
follows that Z-<x. 

7. An Example 

Consider the transportation problem with 

r25951 

C=L~~~~J' 
5972 , 

and ai=(3,2,3,3) , bj =(3,5,2,1). For purposes of 
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illustration, we assume an initial selection matrix, 

(
2100] 0020 

X= 0300 
1101 . 

It is convenient to indicate the selection by dots 
placed above the elements of the matrix 0, as follows, 

The steps in the solution and the operations associ­
ated with cases lA, lB, HA, and IIB will be clear 
from the following: 4 

c~:~ 
9 5 -2 CD 5 9 5 

5 8 8 3 5 8 
IB IA 
~ ~ 

4 3 4 

5<--9 7 2 9 7 2 
~ 

7 -I -I -I 

6 7 3 6 7 10 

3 -2 0 3 

\~' 
10 

IA lIA 
--0> ~ 

4 0 -2 4 0 -2 8 

-9 G)~2 I 8 0<--2 6 
~ 

-2 

6 5 8 0 5 6 

-2 0 10 2 @ 0 B 
IA lA 
--0> 

6 
--0> 

6 0 -2 8 6 -2 6 

- 2 0 @->o 0 0 0 

-I -I -I 

I 

(~'j ; 6 0 0 6 6 

8 0 3 II 8 0 4 II 
lA 

~ 6<-0 
-7 

7 6 0 6 

010 0 0 0 

'Numbers on borders at matrices are quantities added to tbe indicated row 
or eolumn. Circles drawn about an element indicate the first element of the trec. 

The last matrix is a solution. No closed circuit of 
zeros exists. Hence the solution is unique. For pur­
poses of illustration, we have followed the method 
explicitly. If one permits some flexibility in choosing 
the sequence of operations, much faster convergence 
may be obtained. 

The author expresses his gratitude to Alan J. Hoff­
man to whom he is indebted for transforming the 
method and proof into the algebraic form given here. 

0 3 7 0 3 7 3 

-5 8 ® 8 -2 0 3 
IA IA 
~ CD ~ 

7 3 4 -3 4 

9 7 2 9 7 2 

-I -I - I 

6 2 6 9 0 8 

4 -2 --'>0 10 5 

~'~'J m 

lIA lIB 
~ -7 

5 6 - 2 8 6 o -2 8 

I @ 0 -2 6 - 2 o<-@ ~6 
~ 

-I 

0 5 6 'T ; 6 

7 0 2 10 8 0 3 II 

i lIA lIB 

o<-@ -? 0<-8 -? 
6 6 7 7 

l' 
0 2 0 6 0 I 0 0 

~ 

WASHINGTON, April 23 , 1954. 
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