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A Study of Absolute Standards of Mutual Induct-

ance and in Particular the Three-Section
National Bureau of Standards Type

Frederick W. Grover *

The results of a study of the number and location of the circles of zero field surrounding a multisection
coil are presented. The configuration of the field surrounding the equatorial region of several three-section
coils has been partially mapped out. One arrangement yields a design in which the mutual-inductance con-
tribution of any secondary turn differs but little from that of the median turn. By locating the secondary
symmetrically about the circles of zero field, the correction for winding distribution can be made small, and the
effect of uncertainties in location of individual secondary turns minimized.

1. Introduction

Certain absolute measurements, as for example, the absolute measurement of resistance,
depend upon the use of a mutual inductance whose value can be calculated from its geometrical
dimensions and the number of turns on primary and secondary.

In order to minimize the effect of dimensional uncertainties the standard should be of
fair size with relatively large separation between primary and secondary. Further, to obtain
sufficient sensitiveness in the measurements in question, the value of the mutual inductance
should be as great as of the order 10 millihenrys. These conditions demand a value of the
product N, N, of primary and secondary turns of the order of 100,000.

The dimensions of a single-layer coil, wound in a screw thread on a suitable cylindrical
form, may be measured with great precision. With such a large requisite value of N,N,,
however, it is impracticable that both the primary and secondary should be single-layer coils.
Of necessity, one winding should be of the form of a multilayer coil, wound in a channel of
square or rectangular cross section.

In a form of mutual-inductance standard designed by Albert Campbell in 1907 [1]* and
used in absolute measurements at the National Physical Laboratory |2], the primary winding
consists of two equal single-layer coils of radius @, wound on the same cylindrical form so that
each coil has an axial length of /2, with a gap between the adjacent coil ends of length @ (see
fig. 1, A). The two coils are joined in series, magnetically aiding. The secondary is a circular
coil of square cross section, coaxial with the two parts of the primary winding and located in
the median plane between their ends. In this place, the radial components of the magnetic
field intensity, produced by the two primary windings separately, cancel for all values of radial
distance. On the contrary, their axial components, which are equal, add, giving a resultant
axial magnetic field intensity. With increasing radius this diminishes, becomes zero at a
critical radius, which is about 1.46 a, and for still larger values of the radius, is in the opposite
direction. The magnetic field intensity is, however, very small for moderate departures of
radius from its eritical value and for moderate displacements from the median plane. If,
therefore, the central filament of the secondary coil has a radius equal to the critical value, all
the secondary turns lie in regions of small magnetic field intensity, so that the mutual inductance
of the primary and a secondary turn is nearly the same for all the secondary turns. The
resultant mutual inductance is closely N,M,, where M, is the mutual inductance of the primary
and the central filament, and the small error may be accurately determined.

In the Wenner method for the absolute measurement of resistance [3] a modified form of the
Campbell type of standard was employed. In this method the secondary is periodically short-
circuited, making it desirable for this winding to have a minimum of inductance and resistance.
A coil arrangement was designed in which the number of secondary turns was only one-half the
number on the primary. This allowed the use of wire of relatively large cross section in the

I Present address, 1036 University Place, Schenectady 8, N. Y.
2 Figures in brackets indicate the literature references at the end of this paper.
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Fraure 1. Mutual inductance standards.

A, Campbell type; B, National Bureau of Standards three-section type.

secondary. The necessary increase in the number of primary turns was obtained by the use of
primary windings of greater axial length. As may be seen from figure 1, B, the primary
winding consists of two end sections of equal length, and partly filling the space between them
is a short middle section. The three sections of the primary are joined in series, aiding mag-
netically. The positions of zero magnetic field intensity were located experimentally by passing
60-cycle current through the primary winding and using a short, suspended, magnetic needle,
whose period of torsional vibration was adjusted to the period of the current, to explore the
field around the primary. With a chosen length of 5 ¢cm for the middle section and gap lengths
of 5.6 cm each, the field was explored for different lengths of the end sections. With relatively
short end sections two zero points were found with equal radii and located at equal distances on
both sides of the median plane. With longer end sections these two points of zero field were
replaced by two zeros in the median plane, locating two circular filaments of differing radii along
whose circumferences the magnetic field intensity is zero. The standard as used for the
measurements had the following approximate dimensions:

Pitch of primary winding =~~~ 0.2 cm. Mean radius of primary_ 20.364 cm.
Length of middle section___________ 5.0 em. Mean radius of secondary __~  26.348 cm.
ILgaeiln @ e s 5.6 cm. Number of primary turns 343

Length of end sections . ____ 31.8 em. Number of secondary turns__ 218
Approximate mutual inductance__ .~ 10.897 mh.

The radii of the circles of zero field intensity in the median plane were about 24.95 and 26.70 cm.
The secondary turns were wound in a channel of rectangular cross section having dimensions of
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2.542 em radial, 0.82 ¢cm axial. This arrangement of the standard will be designated as case A

in what follows.
For comparison, the dimensions of the Campbell type of standard, used by the National

Physical Laboratory, follow:

Pitch of primary winding_ - _______ (% 1=emmn: Radius of secondary___________ 21.9 cm.
Length of primary coils____________ 7.5 cm. Number of primary turns______ 150
Length of gap between coils_ -~ 5= em: Number of secondary turns_ ___ 488
Radius of primary______ e S Ll Loy,

Approximate mutual inductance____ 10 mh.

The secondary turns are wound in a channel of square cross section 1 ¢cm on a side. It will be
noted that the goal of a secondary of fewer turns, wound with larger wire, was reached in the
NBS form.

In NBS Research Paper RP2029, page 296, the statement is made that consideration of the
number and positions of possible points of zero field intensity is reserved for further study. As
a result of correspondence with two of the authors of the paper on the absolute measurement of
resistance by the Wenner method (James L. Thomas and Chester Peterson) the writer was
encouraged by them to undertake a quantitative study of the NBS type of mutual-inductance
standard, and they communicated curves of mutual inductance variations with secondary
radius for two other arrangements with different lengths of end sections. These will be denoted
as cases B'and C. In comparison with case A, case B has two turns removed from the outer
ends of each of the end sections, and case C has yet another turn removed from each of the outer
ends of the end sections.

The manner in which the mutual inductance of a secondary turn in the median plane varies
with the secondary radius is shown in figure 2. (These curves are based on data supplied by the
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Ficure 2. Relation between mutual inductance and the radius
of a single secondary turn for three arrangements of the
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authors of RP2029 and are reproduced with their permission.) For case A the mutual induc-
tance is a minimum for radius 24.95 em and a maximum for radius 26.70 cm. For case B the
minimum is at 25.32 em and the maximum at 26.30 em. The curve for case C shows neither
maximum or minimum in the median plane.

2. Method of Locating Points of Zero Field
2.1. Zeros in the Median Plane

For routine calculations of magnetic field intensity of solenoids, formulas previously published
by the author [4] may be used; for definitive calculations the exact expressions in elliptic
integrals must be used (see appendix for I1,). These formulas give the axial component of field
H,, produced by a current of 1 abampere flowing in a solenoid of radius @, winding density n
turns per centimeter, and axial length 2 at a point at radius v in the end plane. Throughout
this paper the symbol for current, I, will be omitted in all formulas for field strength, it being
understood that all values of H are per unit of current. Thus, for a point at radius ¥ in the
median plane, the axial field due to one of the end sections is obtained by making two calcula-
tions by the basic formula, one for length z; and the other for length z, (see fig. 1, B) and sub-
tracting the second from the first. The axial field intensity is the same for both end sections,
and the values add in the resultant. The contribution due to the middle section is twice that
obtained by making a calculation with the distance z; (fig. 1, B). Adding the resultants for the
end sections and the middle section gives the resultant field, since, from symmetry, the radial
components of the end sections cancel, and the radial component due to the middle section is
Zero.

The calculated values of H,/2n for the cases A, B, and C for points of different radii in the
median plane are plotted in figure 3. Remembering the relation (dM/dy),, =2y (H,),-,,,
it is seen that curve A checks the mutual-inductance curve figure 2, since the zero values of
H, occur at y=24.95 and y=26.70, the turning points of the mutual-inductance curve.
The maximum value of I, is found at y=25.75, which is the point where the mutual-
inductance curve has its maximum positive slope. The curve B for case B (end sections
shorter by two turns) is similar to that for case A; the zeros of I, at y=25.37 and y=26.25
agree in position with the minimum and maximum points of the mutual-inductance curve in
figure 2, and the much smaller value of the maximum of 77, is in line with the reduced slope and
range of the mutual-inductance curve.

For case C, where three turns have been removed from each end section, the magnetic field
intensity nowhere becomes zero in the median plane, although it is very small at y=25.75.
This corresponds to the position of the minimum slope of the mutual-inductance curve in
figure 2. There is no point of zero magnetic field intensity in the median plane for case C. It
is, however, evident that, with a small fraction of a turn added to the end sections of case C,
the curve of 2, would become tangent to the zero axis at about y=25.75, in which case there
would be a single point of zero field intensity in the median plane at that radius.
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Frcure 3. Variation of the magnetic field intensity in the
median plane for three arrangements of three-section standard.
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2.2. Zeros Not in the Median Plane

The study of the magnetic field intensity at points not in the median plane is complicated by
the necessity of calculating the radial component, /7, as well as the axial. Furthermore, the
contribution of the end sections are not equal, and two distances z have to be considered for
the middle section. Thus, for calculating /7, and I, at a single point, the basic formulas have
to be calculated for six values of #, both for H, and H,. For routine calculations, published
formulas and tables may be used, but for final accurate values the elliptic integral formula for
H, given in the appendix has to be used. Then the radial component /7, may be made to depend
on the formula for the calculation of the mutual inductance m, of two coaxial circular filaments,
one having the radius @ of the primary and the other that of the circle through the point P in
question. Two calculations have to be made for the two axial distances between P and the
ends of the solenoid. If these distances are z, and 3, with 2, the smaller, then

n
}Ir:‘g‘m) [mfz‘_‘mfs].

For calculating m, the Maxwell elliptic integral formula, or any suitable series expansion of
this, may be used, or alternatively, the tables [7] published by the author may be employed.

The required zeros of magnetic field intensity are evidently the intersections of the loci of
H,=0 and H,=0. The determination of the loci is made by calculating the field component
for chosen points, for example, for a given value of the displacement ¢ from the median plane,
and for a least three values of 7. Thence the value of % for which the field component is zero
is interpolated. From several interpolated points, so found, the curve of the locus may be
drawn. When the approximate loci are not known beforehand, the exploration necessary can
be quite time consuming. For greater accuracy in the location of a zero point, further calcula-
tions with the elliptic integral formulas may be made for the region of the graphically deter-
mined intersection of the loci. On account of the symmetry of the loci about the median plane,
calculations have to be made for one half plane only.

In figure 4 are shown the loci and the zero points for cases A and C and for an arrangement D
where the end sections are still shorter. The ratio of the length of an end section in comparison
to the length of the middle section is 6.36 for case A; 6.28 for case C; and 5.00 for case D.

The curves shown make clear the changes brought about by changing the length of the end
sections with respect to the length of the middle section. In case D, the zeros are at radius
24.7 and are displaced at equal distarces §€=2.7 em on either side of the median plane. In
case C, the two zeros are at radius about 25.75, but are located only about 0.2 cm either side
of the median plane. In case A, the zeros are in the median plane with radii differing about
1.75 cm.

In all these cases the locus H,=0 is seen to have two branches, one in the median plane,
and the other, whose trace is practically the same curve in all these cases, intersects the former
at about the same radius of 25.7 em. It is, therefore, easy to visualize the changes in the
position of the locus /7,=0 as the end sections are progressively lengthened in relation to the
length of the middle section. With increase in this ratio, the intersections of the loci slide
along the horizontal branch of the H,=0 locus until they merge in a single point at about
y=25.75 in the median plane, and, for still greater values of the ratio, two intersections again
appear, now in the median plane, and these progressively separate, unsymmetrically with
respect to y=25.75, as the ratio is still further increased. The spacings are, for example,
—0.38 and +0.50 for case B; —0.8 and +0.95 for case A. The proportioning of the lengths
of the sections is quite critical in its effect. The striking difference between case B and C is
brought about by the subtraction of a single turn from the outer ends of the end sections,
with the gap lengths of 5.6 cm, the length of middle section 5 ¢m, and the radius of primary
20.364 cm.

It 1s easy to show that decreasing the gap lengths, all else being unchanged, would shift
the intersection of the two branches of the //,=0 locus nearer the surface of the primary, and
thus with it, all the zeros to smaller radii.
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Yicure 4. Loci of zeros of the axial and radial field com-
ponents.

The negative slope of the mutual-inductance curves for the smaller values of the radius y
in figure 2 raises the question whether there are still other zeros of field intensity, for the mutual
inductance of a filament of radius y=0 is manifestly zero. The mutual inductance of a filament
reaches in fact an absolute maximum for a radius equal to about the radius of the primary
winding. In the median plane the component I, reverses sharply in passing through the
winding, so there is here a zero of I7,; but where no secondary can be usefully located.

3. Evaluation of the Correction for Secondary Distribution

Even with the secondary coil placed with its central filament coinciding with the circle of
zero magnetic field intensity, the mutual inductance will vary from turn to turn. For very
precise measurements, it is necessary to take these variations into account.

If m, is the mutual inductance of the primary on the central turn of the secondary, and N;
is the number of turns on the secondary, the problem is to find the small correction factor 6
in the equation

M= Nymqo(1+5). (1)
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The general formulas developed for 6 below yield a correction factor that takes into account,
not only the distribution of the winding over the cross section, but also the effect of any residual
value of the magnetic field intensity at the center of the winding.

3.1. General Correction Formulas

An obvious method of solution is to express the mutual inductance of the primary on any
secondary turn by means of a Taylor’s series development about the value for the central
filament.

If mq is the mutual inductance of the central filament, the mutual inductance m of any
other filament, whose coordinates, referred to the center point of the cross section are (z,7),
is given by

e mﬁ—w( >+ <(]m> +2'|: ((12m>+ %%‘) e d2m>]

o[ () et () + e (5 ™), ]+ )

the coefficients of the differential coefficients being those of the binomial theorem. The sub-
seript zero indicates that the differential coefficients are to be evaluated at the central point.

If the axial and radial dimensions of the rectangular cross section are, respectively, b and ¢,
the total mutual inductance of the secondary is found by integrating (2) over the cross section,

that is,
b c
N1 (?
M= P f_é f_? mddn.
2 2

As the differential coefficients in (2) relate to the central point, they are constants, and the
integrations are readily performed, and if it be noted that differentiation with respect to 7 is
the same as differentiation with respect to y, the value of 6, carried to include fourth-order
differential coefficients, 1s evident by comparing the following equation with (1).

1 d*m d*m bt /d*m d*m
M=Namo |:1+m { <(la" > +24<(1y >0+@() (%‘f 576 (de(h > +1920( > s }]
3)

Formulas for calculating the values of the differential coefficients by two separate methods
are given in the appendix. It should be noted, however, that certain fundamental relations
exist between these coefficients.

If H, and H, denote, respectively, the radial and axial components of the magnetic field
intensity, per unit current in the primary coils, then dm/de=—2ryH,, and dm/dy=2myH,,
and in addition, the condition that curl /=0 leads to the relation

dH, _dH,
de  dy 9
From these are readily found the general relations :
dm_1dm_dm ]
Ay dy  da?
Fm_1 Em_dm_y d'n
Ayt F da? dat Aty
- @)

d'm_d'm 2 @_*_i d*m 3 dm

dat dyt oy dy Ty dyt P dy

d'm _2dm_2 dm 1dm_d'm

de’dy* v dy v dy’ y dy®  dyt ]
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Use of the first of eq (4) enables the second order terms 8, of the correction 6 to be very

simply expressed as
s W s d,?_n < )
Tmel 24 \ d7 24y0

1 [b*—e /d®m 2
==t [¢
Tmol 24 dx-> +2” 24 ’)°] S

The last term in (5) is the correction, usually relatively very small, for the residual vaue of
the field H, at the center of the cross section, due to imperfect centering. (Only when the
mutual inductance of the central filament is a maximum or minimum will the value of be zero.)

Use of equations one and two of (4) enables eq (3) to be expressed in terms of variable z alone,
except for the terms in dm/dy and d*m/da*dy?. There is found, however, no great simplification.

In a paper on the calculation of a Campbell form of standard at the National Physical
Laboratory, Dye [5] has made use of a formula for the evaluation of the correction for the
distribution of the winding, due to G. F. C. Searle. No statement as to the manner of deriva-
tion is given, and as printed it is not free from mlsprlnts It may be shown to be equivalent
to eq (3) as follows.

Substituting the first, third and fourth equations of (4) in (3) leads to the equation

{ . ((1m>< b%c? >+ d"'m)( 2 iy bc? >+
=malze Udy J\2aT 288y0 64092 25 TG40 2882

() Grssson ! () oo s roa0) +--
575y, 960y 1920 576 1920

and noting that, in Dye’s nomenclature, yy=4,, 6=2C, and ¢=2B, and if we include the factor
N, in each term, writing M in place of m to indicate this fact, we obtain Dye’s expression free
of misprints.
. 1 02 20B°C =90 (&M T B* 0" '9.0*=20 BIC*
M=Mo+7; < > [ 36042 ] -+ ), [ T 36041 ]+
d3M> 10 B20*—6 O
dA3?), 360 A,

(6)

To compute- this correction, Dye calculated dAM/dA for the whole secondary for a number of
values of A, using the Campbell formula [1], which involves an elliptic integral of the third kind.
These values of dM/dA, plotted against A, gave a nearly straight line with, of course, the value
of zero at the ordinate when the magnetic field intensity is zero.

Writing an equation for these calculated points in the form dM/dA=—51.6e-+9.0€%, in which
e represents the difference between any radius A and that for which dM/dA is zero, the other
differential coefficients may readily be expressed, namely, @*M/dA’=—51.6418.0¢, and
*M|dA>*=18.0

For the center point, ¢=—0.0210, so that (dM/dA),=1.13 wh/cm. Other data were,
4=15.008, A,=21.90, 28=0.96, 20'=1.00, and the calculated values of the terms in (6) are
0.002094-0.168944-0.00046 =0.1715 ph, or, 17.2 ppm of the total mutual inductance of 10 mh.

The value of the correction for this standard may be checked by formula (5), for which the
data become, a=15.008, y=21.90, ¢=0.96, b=1.00, N,=485, and the winding density of the
primary is n=10 turns per centimeter

From these there results (d’m/dz*);=106.81 and (H,),=0.00204, and by formula (5)
the correction is §,=16.92240.024=16.946 ppm. The value of (H,), here found is less than
the value 0.0169 derived from the value of dM/dA quoted by Dye. This is explained by the
fact that the radius of the secondary used was 21.8815 c¢cm, whereas the Dye curve showed that
the radius for zero field should be slightly greater than 21.90, which was the value for which the
calculations here are made.
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The fourth-order differential coefficients were calculated by both methods A and B, (appendix)
which checked each other closely. 'The values found are (d*m/dx')y=—5.381, (d*m/dz’dy*),=
+4.094, and (d*m/dy*)y=—2.584. Using these values in formula (3), the fourth-order correc-
tions terms are, in order, —0.136-+0.318—0.055=-+10.127 ppm, and adding these to the main
terms, the correction becomes 16.946-+0.127=17.07 ppm, which checks Dye’s value closely.
In Dye’s formula, the first term; in formula (5), the last term, take into account the effect of
the residual magnetic field at the center of the cross section. It may be noted that, in each
calculation, this amounts to only 12 parts in a thousand of the total correction for the cross
section. The use of formula (3) with the equations in the appendix for calculating the
differential coefficients, involves materially less work than the Dye procedure.

The adequacy of the general formula (3) may be tested by calculating the correction for dis-
tribution of the turns of the NBS mutual inductance standard, case A. For this we have
available the very accurately determined value, used in the experiments for the measurement
of the ohm, NBS Research Paper 2029. This value was obtained from thirteen values of m,
calculated by the absolute elliptic integral formula for equally spaced turns in the median
plane. The effect of the smaller (axial) dimension of the cross section was evaluated experi-
mentally by directly measuring the difference of mutual inductance of two equal, flat coils,
one placed in the median plane and the other at different axial displacements. The results of
these tests, taken with the calculated values in the median plane led to an estimation of the
correction for distribution of turns as —75.8 ppm, which may be considered as very accurate.

The data for the calculation by formula (3) are ¢=20.364, 1,=26.348, n=>5, ¢=2.546,
b=0.82, 1,=2.500, 2,=8.100, and x3=39.90. From the formulas in the appendix, we find
(H)o=0.046, (d*m/dx®),=17.02, (d'm/dy*)e=16.08, (d'm/dx*dy?)=—16.91, and m;=49,991
abhenrys. Whence

22m’
=—82.4,
m(,< 24 ><«l: (, agets

L[~ ¢ ) ] el =—80.8 )

me| 24 5o |

lrlz(,l:l()‘)() (f;:n n:l:_lh()'()”' i f:—Tli...“%(, ppm,
m, ~).4(; ([ifﬁ/)]‘ D5t AR08

b ol e

which agrees well with the assumed value, and indicates that terms of order higher than the
fourth are negligible.

3.2. Other Methods for Calculating the Correction

It i1s evident that the process of computation is very time consuming when fourth-order
differential coefficients have to be taken into account, because calculations of each differential
coefficient, involving separate calculations for each of the three distances z have to be made.
It is, however, relatively simple to evaluate the second order terms in formula (5). The fourth
order terms are, evidently, less important, the smaller the cross-sectional area. This suggests
assuming the cross section to be divided into two or more equal subsections and applying cor-
rection formula (5) to each. Thus the distribution correction can be found for each subsection,
referred to the mutual inductance of its central filament. The average of the corrected values
for the subsections, referred to the value of the mutual inductance of the central filament of
the whole eross section, will give the desired correction.
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The details of this process may be illustrated for two subsections. For these we write

4\7 1 2

M= (mo+dy), Me=

(]2),

and, therefore,

JJZNZI:molOmOQ a’l—l—dz] N2m0[1+A+£+A2]

where m, represents the mutual inductance of the central filament of whole section; m, and
My, the values for the central filaments of the subsections, and the total correction is

S8 ity A=l Moo, Ty ana S 2 L ()
2 % mo 9

s=A+

If the subsectional area is sufficiently small, only the second order terms formula (5) need be
calculated, but the three mutual inductances mg;, mg, and m, will have to be calculated by the
precision elliptic integral formula.

As an example, assume the NBS secondary, case A, to be divided into two subsections,
centered in the median plane. For each subsection ¢=1.273 and 6=0.82. Taking the radii

of the centers of subsections as y,, and ¥,, and m,=49991, as before, the details of the calcu-
lation are as follows:

p= 25.711 p=26.985 WE—LIQQSS 05
2 9
g m> — 1976 3 m) — 28988 Mo=—49991.32
dz? —
(H)y= 0.0794 (H)o=—0.03608  Difference= —3.27
di=  0.0849 dy—=— 1.1376 A= —65.5 ppm
d”;d2=—0.5263 M= 49984.20 é‘J;ﬂ: —10.5
#=—10.5 ppm Mey— 49991.91 5— —76.0 ppm

Evidently, in case only the corrected mutual inductance is required, it is only necessary to
calculate M, and M, and to take their sum. This suggests still another procedure, using the
sectioning prineiple.

The secondary may be replaced by two equivalent filaments, according to the method of
Lyle [6], and the required mutual inductance, corrected for the distribution of the winding, is
approximately the average of the precise values of the mutual inductances calculated for
these equivalent filaments.

The radii of the equivalent filaments are given by (r—D) and (r+ D), where

cZ__b?

(== yo‘|‘ (b/yo) and D= 12

For case A, r=26.34906 and D=0.695804, so that the radii of the equivalent filaments and the
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mutual inductances, corresponding are

yh=r—D=25.65326 m;=49983.36
Yo=r-+D=27.04487 my=49991.42
Average—=49987.39
my=49991.32
Difference= —3.93 abhenrys.
— — R o

Lyle’s formulas neglect differential coefficients higher than the second, so as would be ex-
pected, this result for the undivided secondary reflects the neglect of fourth-order terms. How-
ever, the secondary may now be assumed divided into two subsections as in the previous
example and the two Lyle filaments for each of the subsections considered.

This treatment yields the following results, the values Am, referred to m,, being given instead
of actual values ot m:

1=25.43151 Am;=—10.5387
Y2=25.99368 Am,= —3.5815
1Y3=26.70446 Amz= —+1.5051
Ys=27.26663 Amy=— —2.5946

Average= —3.8024 abhenrys.

The distribution correction resulting —76.06 ppm.

Evidently, by continued subdivision, with separate treatment of each subsection and com-
bination of results, any desired accuracy may be attained. The labor, however, increases
rapidly with the number of sections. The check furnished by the known value of the correc-
tion for the NBS coil, case A, indicates that the calculation using the second-order terms,
using two subsections, or the calculation of the average of the mutual inductances of the four
corresponding Lyle filaments is sufficient for practical purposes, even in the most precise
work.

3.3. Examples of Special Cases

From formula (5) it is evident that for a square cross section the first term is zero, and if the
central filament is accurately placed at the position of zero magnetic field intensity, the rela-
tively small second term of (5) is zero also. That is, the distribution correction in such a
case depends entirely on fourth- and higher-order terms.

In the case of the standard calculated by Dye, the correction depended largely upon the
factor (B*—(C?), which had a small value due to a small departure of the cross section from
being a square. However, assuming an accurately square cross section, accurately centered
on the radius of zero magnetic field intensity, the correction for the Campbell type of standard
should be very small. Also, that arrangement of the three-section standard, denoted by the
name, case C, may with proper design be made to depend upon the theory for a square cross
section

For a more detailed study two cases were selected: (a) a Campbell standard with square cross
section secondary; and (b), the arrangement in figure 4, case C. In order to obtain comparable
results, cross sections of nearly equal areas were assumed in each case. Case A, already studied,
has a cross-sectional area of 2.09 cm?.  For case C, a section with an axial dimension of 2 cm
and a radial dimension of 1 em, area 2 cm?, was assumed, and for the Campbell type a section 1.5
cm square, giving an area of 2.25 em? was assumed.

A detailed study of the Campbell case is covered at length in section 4. The correction for
cross section is found to be about 0.70 ppm. A separate calculation by the general formula (3)
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gave correction for:

Residual field =5 sunnm e +0.013
Fourth-order terms_________ +0.232
A o e e +0.245 ppm

For case C, using ¢=1, =2, ¥=25.75, (H,)o=—0.00304, and (d*m/dx?),=—0.7153 there is
found:

Second-order terms_ ________ —1.81
Fourth-order terms_________ +1.15
Total _________________ —0.66 ppm.

On account of the symmetry of this case with respect to the median plane, a more accurate
method of treatment is to consider either square half of the cross section. For these the residual
field intensity at the center is (H,),=0.0234, so that we have by (5) the correction +0.123. The
fourth-order terms amount to —0.323, so that, referred to the center of the square, the correc-
tion 1s —0.20 ppm. But it is found that the mutual inductance of the filament at the center of a
square is —0.42 ppm referred to the center of the whole section. Therefore, referred to this
latter point, the correction is —0.20 plus —0.42, giving the result —0.62, which agrees well with
the previous determination.

4. Detailed Study of Variations of Mutual Inductance From Turn to Turn
Over the Secondary Cross Section

The variations in mutual inductance from turn to turn of the secondary coil can be obtained
by direct calculation of the mutual inductance for filaments with regularly spaced values of the
radius y and the displacement ¢ from the median plane. As the value at each point is the
resultant of calculations with six different values of z in the fundamental elliptic integral formula
(for the NBS type) this is very time consuming, and on account of the near cancellation of
terms, the resultant is appreciably affected by small errors in the individual terms.

It is more logical to make calculations of the sought-for changes AM directly, than to obtain
these by subtraction of calculated values of M, and greater accuracy in the result is attainable.
For this purpose, two series expressions for A/ are available, one suitable for larger values of z,
due to Rosa [8], the other, suitable for smaller values of z, given by Dwight [9]. Noticing that
for a point P having a displacement from the median plane, referred to a point having the same
value of 7, but situated in the median plane, a calculation of twice the value, using the longer
distance z;, has to be made for the latter, whereas, for the point P, the contribution of the left-
end section is made with the distance (z;-+£), and for the right-hand end section with the distance
(z,—¢&). Combining these, a difference formula may be derived for the change A’M| due to
displacement, as far as distance », is concerned. Similarly, the application of a difference
formula for distances x; and x3, enables A’”’M and A’’’ M to be found. The desired total change
is given by AM=A"M—A"M-+A"""M. This change AM gives the difference in mutual induct-
ance of point P from that at the point in the median plane having the same radius.

Likewise, these two basic series formulas may be appliea to find the difference in mutual
inductance between a chosen point in the median plane, having a radius ¥, and the reference
central filament of radius 7. These latter calculations enable us to refer the calculated AM for
all points to the reference value of mutual inductance of the central filament.

Details of these difference formulas are given in the appendix. Even using the difference
equations, the results have still to be found by combining terms that partly cancel, and careful
checking is necessary to detect errors. The work is necessarily arduous.
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5. Distribution of Flux Over the Cross Section

5.1. Campbell Type

For purposes of comparison, a primary having the same winding density and about the
same radius as the National Bureau of Standards type is assumed, the details of its design being

Radius of primary=ae¢=20 cm.

Winding density, n=>5 turns per centimeter.

Axial length of each primary section=10 cm.

Mean radius of the secondary=1.4582 a=29.164 cm.

With this secondary radius, the secondary turn at the center of the cross section lies very closely
in the circle of magnetic field intensity zero.

There are 100 primary turns and 594 secondary turns; the mutual inductance would be about
the same as that of the National Bureau of Standards mutual-inductance standard.

Assuming for the secondary coil a square cross section, 1.5 em on a side, 49 values of mutual-
inductance values, referred to the value at the center of the cross section, were calculated,
using the difference formulas of the appendix. The grid of these values, which are spaced
at intervals of 0.25 em of Ay and 0.25 cm of distance & from the median plane are shown in

figure 5. The maximum deviation from the value at the center is about 850 ppm.  The values
MEDIAN
PLANE
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Ficure 5.

Calculated values of variations of mutual inductance

from turn over the cross section—Campbell type.

of AM are symmetrically arranged with respect to the median plane and are mostly plus;
those in the median plane are nearly symmetrical about the mean radius fand ‘are negative.
(It was noted, during the calculations that, for a given radius, AM is very closely proportional
to £&. This is true also for the other cases investigated.)

Wilmotte [10] has derived expressions for the change 63/ in mutual inductance for points
of the cross section of the Campbell type of standard, referred to the value at the central
point of the section. His eq (4) expresses this as a function of the coordinates x and y, referred
to the center point as origin, and differential coefficients of the radial component of the mag-
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netic field. This expression, which has recently been brought to the attention of the author,
in form seems to be similar to the formula (5) of this paper.

Wilmotte’s eq (5) expresses 6M in polar coordinates (6r,6), referred to the center of the cross
section as origin. The principal term of this shows that M/ is proportional to o7 cos 26. An
inspection of figure 5 shows that this law is here approximately obeyed. The slight lack of
symmetry about the mean radius in figure 5 is in line with the second term of Wilmotte’s
formula (5), which is proportional to sin®d, and involves higher-order differential coefficients
of the radial field component. This term would add to the principal term amounts of opposite
sign for points of greater radii than the radius of the center point than it would for points of
smaller radius than this value. It may therefore be concluded that formally, at least, the
results of this investigation confirm Wilmotte’s equation.

To obtain the average deviation of the mutual inductance of a secondary turn from that
of the central turn, the deviations have to be integrated over the cross section and the result
divided by the area of the cross section. This integration may be accomplished by means
of a suitable mechanical integration formula, such as Simpson’s rule. Using this with
the values of AM of figure 5, there is found a correction for cross section of -+0.71 ppm.

A check on this value is provided by the well-known quadrature formula derived from
the Taylor’s series formula (4). This gives the average mutual inductance of an array of
filaments distributed over a rectangular section 2Ay by 2¢ in the form

N,
6

M==2(M+My+M;+M,+2M,), g

in which

M,=the mutual inductance of the central filament,
M,=the mutual inductance of the filament at (Ay,0),
M,=the mutual inductance of the filament at (—Ay,0),
M;=the mutual inductance of the filament at (0,£),
s—the mutual inductance of the filament at (0,—¢).

Replacing these by My=u-+46, M,=p+4d,, etc., in which u is the mutual inductance of the
reference filament, which can be outside the area considered, we have the formula

M=Np[14-§ (A M+ 2, M+ A M+ AM+28M)], (8)

which expresses the average mutual inductance for any subdivision of the secondary cross
section 1n terms of the mutual inductance p of the central filament of the secondary and the
deviations AM of the grid of values. Applying this quadrature formula to the nine component
square sections of which the secondary may be considered to consist, and remembering that
each section consists of only one-ninth of the total secondary turns N,, we have to average
the following nine values:

—925, 18 —355.18, —25.18,

+365.08, —0.13, +365.08,

+28.04, —374.38, +28.04,

which yields the total correction for cross section of +0.69 ppm, which checks the other inte-
gration method. The correction was calculated also from the Taylor’s series formula, with the
result:

Correction for residual magnetic field at the center____ +0.013
Fourth-order terms______________________________________ +0. 232
] TOTOIIM e s e e e e e e +0.25

The reason for this surprisingly small correction may be made clearer in what follows.
In the median plane the mutual inductance is a maximum for the central filament. For
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a given radius, the mutual inductance is a minimum in the median plane. Thus, the point
of zero magnetic field intensity is located in the center of a saddle-like region of flux distribution.
This is made clear by figure 6, which is a plot of the loci of points having the same values of
AM. These curves are obtained from graphical interpolation from the grid of calculated
values of AM in figure 5. In figure 6 each curve is labelled with the corresponding value
of AM in ppm. Each curve is the locus of filaments linked with the same flux. That is, each

0.7
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0.4 -
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0.2 -
0.1

Ay
o
|

(07 £y
0.2
0.3 A
0.4 1
0.5 1
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T T T S § T T T 1 1 1 1 1 I #,
0.7 06 0.5 04 0.3 0.2 0. O O.I 0.2 0.3 0.4 0.5 0.6 0.7
§
Fraure 6. Loci of turns of equal AM over the cross seclion
of the Campbell type.

locus traces a line of magnetic flux, and the figure gives a picture of the flux distribution over
the cross section of the secondary. Assuming the positive direction of a flux line along the
axis of the primary as from left to right, the direction of the lines in the lower quarter of figure 6
is from left to right, and of those in the upper quarter from right to left. Those in the right-
hand quarter are directed inward toward the axis, and those in the left-hand quarter outward
from the axis.

Figure 6 makes clear that the very small total resulting correction for cross section is the
result, not of small deviations of mutual inductance of the filaments, but from the very close
balance of positive and negative deviations.

5.2. National Bureau of Standards Type, Case C

The treatment of this case follows the same lines as for the Campbell type. A grid of 45
calculated values of AM spaced at 0.25-cm intervals of Ay and & over the cross section, 2 e¢m
by 1 ¢m in dimensions, is shown in figure 7. These values of AM are distributed symmetrically
about the median plane, as would be expected, but about the radius of the center of the cross-
section (25.75 em) positive values on one side are nearly offset by negative values on the other.
Furthermore, excepting for the corner points, the actual magnitudes of the AM are less than
100 ppm, compared with values 5 or 6 times as great in the Campbell type.

For a given radius, AM, is closely proportional to £, a fact that does not appear in the
figure, where all values are referred to the value for the point at the center of the cross section.

In figure 7 are sketched in the loci H,=0 and IH,=0. Along the former dM/dt=0
and along the latter dM/dy=0. These facts are checked in a general way in the figure.
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Fraure 7. Calculated values of mutual-inductance variations
over the cross section—three-section type, case C.
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Ficure 8. Curves of equal AM over the cross section for case C.

Averaging the values of figure 7 over the cross section by Simpson’s rule, the correction
found is —0.44 ppm, and by applying the quadrature formula to the four square sections
into which either half of the total cross section may be divided, the result is —0.38 ppm.
Either half of the cross section may be replaced by the Lyle filament to which the square
section is equivalent. This has a radius of 25.75[14(1/24)(1/25.75)*], and the coordinate
£=0.5. It is therefore, closely coincident with the filament, (25.75, 0.5) in figure 7, for which
AM=—0.42. Thus this value may be taken as the value of the correction given by the Liyle
method. Thus, the conclusion is amply checked that, for case C, the correction for cross
section is not far from —0.4 ppm.

Figure 8, which is derived from the values of figure 7, gives a picture of the distribution of
AM over the cross section and the shape of the flux lines over the whole region. This figure
demonstrates in a striking way the smallness of the deviations in mutual inductance of the
filaments of the secondary. The directions along the flux lines are indicated by arrows on
the loci of equal values of AM, and also there are indicated the loci of H,=0 and H,=0. At
their intersections with the curves for H,=0, the AM should have a radial direction, and this
is substantiated by the curves as well as can be expected. ) and C, are the points of zero
magnetic field intensity.

It may be noted that, in passing in a circuit around the center of the cross section, there
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are six regions of the field in which AM is alternately plus and minus, whereas for the Campbell
type_there are four. This suggests that with a primary of n sections there would be 2n such
regions.

5.3. National Bureau of Standards Type, Case A

For comparison with case C, figure 9 has been plotted for case A. The data for this was
obtained for the median plane from the curve of mutual inductance for points in the median
plane, figure 2, curve A. Values of the difference in mutual inductance at the boundaries
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Ficure 9. Curves of equal AM over the cross section of three-
section standard, case A, two zero points in the median
plane.
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£=+0.41 and for the median plane, at the same radius, were found for three values of the
radius, namely, in the center and at the extreme corners. These values are relatively small,
ranging from +59 ppm for the larger radius, 429 for the mean radius, and —47 for the smallest
radius. From these, other values on the boundary were derived by graphical interpolation.
For interior points, the values were obtained from the law of proportionality to &, which
applies in all these cases (see fig. 19, RP2029). The grid so obtained checked the axial cor-
rection of +7.2 ppm given on p. 316, RP2029, to one-tenth part in a million.

In figure 9 are sketched also the loci /,=0 and 7/,=0. The points of zero field intensity
are indicated by €y and ;. The directions of the flux at different parts of the field are indicated
by arrows on the lines of flux mapped by the loci of equal values of AM, and also in the margin
of the figure are indicated the directions of the axial and radial components of the field in
different regions. The corresponding diagram to the left of the cross section are not indicated,
but they are at once evident if it is remembered that the radial component reverses in passing
the median plane, and the axial component is continuous.

The range of variation of mutual inductance over the cross section in only about 200 ppm
on either side of the average, which is nearly as good as for case C, and 4 or 5 times better than
the Campbell type, but the marked lack of symmetry about the radius of the center of the
cross section O is evident. The center of gravity of the values (the point where M=—75.8
ppm) lies at about y=25.97 e¢m in the median plane, that is, about 0.35 em below the center
of the cross section.

6. Conclusions

1. The inherent balancing out of the plus and minus variations of the mutual inductance
from turn to turn over a square cross section has been noted and illustrated. This is in line
with the well-known fact that, in mutual-inductance calculations, the geometric mean distance
of a square area from an external point is very closely equal to the distance from the center
of the square to the external point.

2. In the Campbell type of standard, for this reason, the correction for cross section is
surprisingly small, even with rather large variations of the mutual inductance among the turns
over the cross section. However, in order to be assured of this satisfactory balance, uncer-
tainties in the actual placing of the turns must be minimized. The example here illustrated
assumed a cross section greater than is necessary. The NPL standard employs a square
cross section of secondary only 1 em on a side, and, for such a coil, the extreme variations
AM would be of the order of less than half those in the example above. Where the use of a
finer wire on the secondary offers no disadvantage, the Campbell type has the advantage of
simplicity.

3. For a given area of secondary cross section, the three-section standard has been proved to
have much smaller variations AM over the cross section than the Campbell type. This is true
both for case A and case C. However, case A shows a lack of symmetry of the distribution
about the central point, and the balancing of values of opposite signs is not taken advantage of.
The correction for cross section may be calculated to better than 1 part in a million, but its
actual value appears large in comparison with the other cases.

An adjustment of the shape ratios of the three-section standard so as to attain the special
case of a single circle of zero magnetic field intensity in the median plane, and the use of a second-
ary of square cross section, accurately centered in this zero region, would seem to be an optimum
arrangement, but the adjustment would be very critical. A good approximation to this is
offered by the arrangement case C. In the example of this given above, there is a secondary
that is essentially a combination of two equal square cross sections of equal mean radius, and
the symmetry about the median plane leads to a total correction for cross section which is the
same as that for either half of the cross section. Furthermore, each square component is cen-
tered in a region of nearly zero magnetic field intensity. The range of the values of AM is in
general much smaller than the extreme values of about 4150 ppm, and it is probable that the
secondary could actually be wound to have a correction for cross section not exceeding a part
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in a million. A refinement on this case would be to slichtly adjust the dimensions so that the
two zero points would be located exactly at the centers of the component squares that form the
cross section, but this would also be a critical adjustment.

4. A thorough study of the distribution of the AM over the cross section by calculating the
values for a grid of points is very time consuming. The abbreviated methods already discussed
will, in general, be used. The Taylor’s series formula should be applied to subsections of di-
mensions sufficiently small to require the calculation of second-order terms only. However,
if the field intensity /, is not zero at the center of the subsection, its value must be calculated
and correction made. For case A, two subsections are found to suffice. Since, however,
calculations of (/,), and (d°m/dz*), are necessary for each, the calculation of M directly for
equivalent Lyle filaments is to be recommended. Especially is this true, if the given cross
section may be divided into square subsections. For each of these a single Lyle filament is
required and the average of the mutual inductance calculated for each of these, averaged to
find the final corrected value of the mutual inductance. It is only necessary to be sure that
subsections are of small enough area to ensure that fourth-order differentials are negligible.

With case A it has been shown that division into two subsections, not squares, calculating
and averaging the mutual inductances of the four corresponding Liyle filaments gives a very
accurate result. It is interesting in this connection to note that the cross section in this case
may be divided quite closely into three square subsections. If this were accurately the
case, only three Liyle filaments would be necessary, and the subsections would be so small as
to make certain that fourth-order differentials would be negligible.

For case C, we have an especially favorable case with the cross-sectional dimensions chosen,
i. e.,, b=2 ¢=1, in that the Lyle filaments for the whole cross section are the same as the Lyle
filaments for the two equal square subsections. The residual field is very small over each sub-
section, and higher-order differentials are negligible. The calculation of the mutual inductance
of the single Lyle filament for a square subsection gives a very accurate determination of the
corrected mutual inductance per turn. The final value to be used for the mutual inductance
of the whole secondary is merely N, times this value.

7. Appendix
7.1. Evaluation of Differential Coefficients

Methods for calculating the differential coefficients that appear in the general Taylor’s series
formula for the evaluation of the correction for the distribution of the winding may be based
on two separate methods of approach, (a) on the formula for the radial component, per unit
current, of the magnetic field intensity of a circular filament exerted at a point P distant y,
from the axis and z from the plane of the filament, and (b) on the formula for the mutual
imductance of two coaxial circular filaments, m,, one of them of radius @ and the other 7, the
distance between their planes equal to z. Since in each case computations have to be made
for the three distances x;, z,, and x;, the basic elliptic integral formula has to be used in both
methods, no single series development being sufficiently convergent for all three values of z.

a. Method A

Placing I for the radial component of the field, due to a unit current, in a circular filament
of radius @ at a point P distance 7, from the axis and z from the plane of the filament

dr?

d*m e
( )0: —2o(2n) [Hoy— Hog+Hog). (A1)

Calculations made for the three distances, x;, 2, and x; are combined as shown; n equals the
winding density of the primary winding, and the factor 2 takes account of the symmetry
about the median plane.
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H, is calculated by the Russell elliptic integral formula [11]
H,)_—y ?91/ E—(K— E)] A2)

in which K and E are the complete elliptic integrals of the first and second kinds to modulus £.

5]

=", 21— ="2 (- ap 22, ri=(y—ay 2. (A3)

r

:Nk

The coeicient (d*m/dy?), is derived from the relation

(£2) mar(52),

in which (H,), is the residual axial component, per unit current, of the magnetic field at the
center of the cross section.

- 4ax ..c I i = i
H,=n [,l(a+l/> Kk (e H):| with ¢ 'y‘l—d) c’=1—¢"2 (A5)

In this expression, II is an elliptic integral of the third kind to modulus £ and parameter c.

Numerical values of K—1II may be computed by the methods illustrated in tables 5, 6, and 7

of reference [3], or alternatively, they may be calculated by use of the relation K—II=

le(y+a)/c’kx] ¢, where ¢ is Legendre’s elliptic function defined in eq (23) of reference [4]; values

of ¥, K, and E, may be calculated by use of tables given in the latter reference. Using eq

(A5) H, must be evaluated for the three distances z, combined as in eq (A1), and multiplied by 2.
For the fourth-order differential coefficients we have

<(§(14> =—27(2n) [yo <([2H0>:| 5
()=o) 10 )]
(f;;n> =2m(2n) <dj§0> +z/o< ’HO>:|

Each differential coefficient in (A6) has to be calculated for each of the distances z and the
results combined as in (Al). The common factor 2n takes into account the winding density
of the primary and the symmetry about the median plane.

The differential coefficients of H, were obtained by differentiation of the elliptic integral
formula (A2). This offers no especial difficulty, but the result may be transformed in a number
of ways in each case. The forms which follow are believed to have some advantages.

Y

(A6)

(1H0= 2 I: ( 2ay E] (A7)
dy oy i e
where
4 ¥ 20y —a)
M—1+rrw+ 7‘%)"3 (&8\
Yt 2yG—a) sag:
73 it
Ao Zf" 2z, [p(K 2 UE], A9)
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with

& 1/ +y ((y—a)*+24%]  20°(y+a)® 2y2(y a)*

iy Ui 73

A10)
Sy ) i/ ;(ly 4y (y+a)2 2(y+a)<3a y) 8y2(y a)a ( j
e 2+ + ri 7' 72 74
1 9 1 1rs :
and
PIEL
yddx-o“ y(y a) |:‘P(K E)— ¢E] | (A11)
in which
y=1— l y+a2) 742 (y‘l"a)z 2
T2 @—a? 1 —ap ¥
oLy tartday] 75 1 (y+a r_g (A12)
T8 w—a? H 2(@—ar

The modulus of the elliptic integrals and the equations for 72 and 72 are the same as in the

formulas (A2) and (A5) above.
b. Method B

In this method of approach, the base is the formula for m,, the mutual inductance of two
coaxial circular filaments of radii @ and y, with a distance z between their planes.

(l‘m dm dm (lm
_f) I T 3 f A :
(/.I" > |:< dzr > < dzr ) dx ) :I (a13)
which indicates that calculations have to be made for the three distances z;, z,, and z; and the
results combined as in (A13). The common factor 2n takes into account the winding density

of the primary winding and the symmetry about the median plane.
The fourth order differential coefficients are

(l‘ > [:((13m,> ((IBm,> <(/3m,>
(114 B da? da? daz® ),

<_ d'm > l: (13m,> (Pm, (Pm,)] ()
da*dy? ((/7/ “dx (1 Y dr dy*dx
and from these and the general relation
d*m 1 /d*m\ d'm d*m ¢
(?@4’)77 G20 TP (A15)

is derived the value of (d*m/dy*),.
Starting with the Maxwell elliptic integral formula for the mutual inductance of two coaxial
circular filaments in its integral form

% cos 0 df
mf—47rayﬁ P =0 cos O (A16)

the required differentiations are made under the integral sign. In the results occur integrals
of the form

; 2 Bty g
" Jo [1—F sin? ]*?
which are related by a recursion formula. We have, in fact,

2(2_k2)13— 4(2'_‘k2)I5‘_313
3k/2 5k12
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Introducing then the nomenclature
ps=pL—¢K, ps=pLi—¢lyy p=p"Li—¢I;, (A18)

in which p*=(2—£k%/k? and ¢°=2/k?; the differential coefficients may then be written in the
forms convenient for calculation

&*m __ Smayx(2n)  , ___ Smayx(2n)ps
a2 5 ;177 [p*ls—¢*K]= 7t (A19)
d'm_72mayz(2n) 5 a* ] e
drt 71 Bg P74 & =
dm __72rayzCn)[ 2 _ ( y_20y ,, @ 1 (ay 28 _5 &
dﬁizdyz—_ 7"';' Ps 3?/(2) Ps;—(q P3> i Pz 7’1 7? P +7% 4 PsQ 7’% 3 7,2 [ P3
(A21)

In all these elliptic integral equations the modulus and nomenclature is the same as above.
For each differential coefficient calculations for all three values of z have to be made and com-
bined in the standard way.

Results of calculations of numerical problems give results by the two methods, show that
methods A and B closely agree in all cases.

7.2. Difference Formulas

These give the difference in mutual inductance AM between the value for a circular filament
in the median plane and two equal solenoids of length z, and the value when the filament is
displaced a distance & toward one solenoid and the same distance away from the other.

For the longer distances, z,, Rosa’s formula [8] is made the base

M=27r*aapnz@, (a)

in which a=a/y, and p*=9?/(y*+2*). In the median plane z=u, for both sections: for a dis-
placement ¢ one becomes (z;,-+&) and the other (z;,—§&).
Adopting the nomenclature

x— ¢ &y o+ |£]
Q-+ g Q Q+q
pt7s P pt7

AM_ [ E L e[ E ool &l L ENT & &l e |E
M k;[]—{—fl:lﬁ_ﬁl: ]+ i 11‘+:P<1+‘11>]+Q 1 Tl+7’(\1 fl)],

7 143
Q=142 a294{1-—*a29252+ oD — a p 56—*—12‘8 ogpils— 256

with
04wa$10+~ . ,},
in which

g
53—1—'4%54*1—59 t P

143 715
o 2 pt— 6
&=1— + 64 P
195 11():) 4199
=1— 2 di B o 8
b=1—130+ = o' P T 9g ¥
7175 9 42) ot 78»()12 6 33915 § 52003 U
510—1 + "|‘ 128 /ol 012b

318



-+q, and Q+q, are derived from the expression for ¢ by replacing x;, by (z,-+¢) and (z,—§),

respectively, and p by (p+7,) and (p-+72).
Finally, A, M is obtained from A, M/M, using equation (a) to calculate M.
For shorter distances z; (or x3), the basic formula, adapted from Dwight [9], is

(b)

W= 2w nx\(l?j G,

B

in which
v
2—2u—tan™" =
2—2u
B

MY SR s Rl LT S P el e e
G—<)‘+4 b ')10” o R iUy LR T LI ¥

2

with
7

722(94;512 ’ B2=4ag}
)\:1+272—éiv*+2:;%76—. Sip v=%72+é274—;gé76+. i
)\]:]—gvz—l—giv“—. J4% u,:l—%gg'y?—k. g
3:1—‘272—1—. Vs V>:1—3:3‘YZ+

IR S P P
M‘l—l—zv 37 +167 Al
The distances z=ux,, =u,-+ ||, and z=ur,—|&| are substituted for = to find G, G+¢,, and G-+ g.,

and
sar_ o[+ e[ -]
DA G

from whence, using z=u, in (b) to calculate M, we find A, M.
To calculate the difference between the mutual inductance for a filament with radius 7,

situated in the median plane and the mutual inductance of the central point with radius y,,

we have for the longer distances x,
T I SR SR L ) ey
A Sk L T Rt R DR R S
in which 6°=1,—2/(*+x}) and €, is calculated from the formula for @), with z=2,, and with
y=1 in the equation for p, and (¢+¢) is the corresponding value from the formula for ¢

with z=ux, and y used in the equation for p.
For the shorter distances z, (or x;), the formula becomes

Af’\/l_é A OF e
S A B T T e e
in which e=(y—,)/y, and G, is derived from the above formula for G with z=ur; and y=1v,,

and ¢ is the increment in this when 7, is replaced with .
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