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Turbulent Flow in Shock Tubes of Varying 
Cross Section * 

Robert F. Dressler 

The unsteady escape flo w of a co mpressible gas is investigated subj ect to t he infiuences 
of varying duct cross section and mechanical retardation due to t urbulence and fri ct ional 
dissipation . This study is applicab,e to shock t ubes, intermitten t wind tunnels, and general 
pneumatic-control systems, such as airbrakes. ' Vave-front velocit ies and t raj ectories a re 
obtained by direct in tegrat ion a long t he bounding Mach lines. In t he general case, calcu
lat ion of first-order approximations is reduced to a set of independent ordinary different ia l 
equat ions for easy stepwise integrat ion . For t he special cases of constant resistance or 
exponen t.ially converging-di verging du cts, first-order solutions a re obtained analytically . 
An error est imate is der ivcd. Local Mach number variat ions are presented throughout t he 
flow. 

1. Introduction 

One type of wind tunnel in present use employs tbe princip le of intermittenL discharge of 
atmospheric air in to a vacuum chamber , 0 ]' in termittent high-pres ure disch arge into an 
atmospheric ch amber . In th e latter case, a rapidly advancing shock discontinuity will also 
be generated in the forward wave. The fa.milial' Riemann shock tube fUl'llishes such an 
rxamplc; for this type of duet Riemann (1] 1 studied the basic theory of one-dimensional unsteady 
gas flows. In the present pa.per the emphasis will be upon the flow immediatel.\T after the 
diaphragm is broken , not upon the flow developing after a sufficiently long time when an almost 
steady-state regime is approached. The intermittent-vacuum-type system gives a more con
stant stagn ation temperature and requires less power than the in termittent-pressure type, but 
gives lowcl' densitics in the test section . In the first tages of operation, th ese flows in shock 
tubes 0]' vacuum- type wind tunnels can be approximately described by th e known centered 
simple-wave solution (2, ch . III], defining a subsonic-supersonic pattern about the diaphragm 
position. It is the purpose of this paper to investigate quantitatively the possible improvem en t 
in density, velocity, or YIach number that migh t be created if such an unsteady flow is made 
to pass through a test section of varying cross section ; at the same time the retarding effee t 
du e to wall resistance and ensuing turbulence will also be considered . 

Any forward shock discon tinuity that would be created in an actual flow if it propagates 
in to a region containing some gas will be ignored in the present treatmen t. Even if a r elatively 
strong shock cxists, the resul ts to be derived here will still be approximately applicable to the 
backward moving rarefaction wave r egion . This will fUl'llish quantitative information, fol' 
example, concerning fri ctional effects in the rarefaction waves propagating through pneumatic
control circui ts, such as airbrake lines . 

The case of steady flows in variable ducts has recently been studied by Meyer (3], empha
sizing the propagation of advancing and receding wave fronts due to a finite disturbance super
imposed upon a basic steady flow, with consideration given to the varying cross-section effec t, 
but not the resistance effect. 

Uimen ional quantities (bancd) will firsL be in troduced to define the dimensionless ones 
(unbal'red ), which will then be used throughou t this paper. In the stand ard notation as g iven 
in (2], x is taken in the direction of flow ; time is denoted by t, wi th the valve or diaphragm 
at x=O opened at [ = 0. Let p denote pressure, p the mass density, and u the velocity com
ponen t in the down tream direction . ,Vc consider the nonlinear flow of a polytropic gas having 
the equation of state 

'Tbe preparation of this paper was sponsored by the Office of Naval Research, USN. 
1 Figures in brackets ind icate the literature references at the end of this paper. 
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FIG URE 1. 

with known constant .it and adiabatic exponent 'Y. We introduce in the usual manner the local 
sound speed c into the differentiated equation of state, 

(2) 

For t<O, the gas is at rest to the left of the valve, x<O, and has properties Po, Co, and uo=O. 
For KO, there is no gas in x>O (see fig. 1). We assume the flow to occur in a duct with cross 
section varying gradually enough to keep the flow essentially one-dimensional with uniform 
velocity over any cross section, and subject to the retarding force from the wall friction 
and turbulence, depending empirically upon the square of the velocity and the roughness 
coefficient for the wall surface. The dynamic equation is then 

OU+_ ou+ 2 - 0(;+ R (- )- 2-0 -= U ~- --1 c ~- ~ x U - , at u x 'Y- u X 
(3) 

where ~ is a small dimensionless expansion parameter, and the given function R (x) > 0 varies if 
the roughness of the wall surface changes from region to region, or if the cross section varies, 
thus varying the hydraulic radius 2 of the duct in a known manner. Letting w(x) denote the 

area of the cros section of the duct, the modified equation of continuity will be 

2 oc+ - ac+( . )- au+C ) - (- ) -- ° ---= 2u ~_ 'Y - 1 c ~_ 'Y - 1 ~a x uC = , at u x u X 
(4) 

in which a (x) = [d'W/dxl /w, with ~a = 0 corresponding to a uniform duct. 
In eq (1), (3), and (4) we have tacitly assumed constant entropy for the flow. This is a 

simplification tantamount to neglecting the heat change (and hence its extra resulting effects 
upon the mechanics of the gas flow) which will always be produced by the operation of the 
resistance term in conver ting kinetic energy into thermal energy. The present discu sion will 
consider the mechanics ofl the flow including only lthe retarding force, no t the full thermo
dynamical aspects of the problem. To do so would require also the inclusion of the energy 
equation, creating a system of three equations in the tru'ee unknowns: particle velocity, sound 
velocity, and specific entropy. Such a system has an associated set of six characteristic equa
tions; these have been used by Hall [4] and others for purposes of quite arduous numerical 
integrations performed over characteristic meshes in the (x,t) plane. The simplified model 
used in our presen t paper can be described also in the following manner. We consider a one
dimensional flow through a tube with the mass traveling lin thin slice perpendicular to the 
walls. Each slice is subjected to a retarding shear force distributed over its peripheral area. 
This force F (p,u) = - ApU2 varies with the changing density and velocity of the moving slice. 
R esults ob tained for this model will thus extract the purely mechanical effect of the fric tion 
from the full nonisentropic thermodynamical effects. 

, If k(x) measures the roughuess of the wall material, then R= k(,X)[f(x) , where tho hydraulic radius i' is defined as ",IF'. P is the perimeter of 
the cross section having area • 
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I ow introduce the unbarred dimensionless quantities defined by X= (g/c~) x, t = (g/cofi , 
u =(l /co)1i, c= (l/co)c,p= (l /po)p, R = (CUg)R , a= (CUg)a , and abbreviate 2/('Y- l )=l, the un
modified escape speed. Equations (3) and (4) then become 

OU OU OC 2_ 
"()t+U OX +lc OX +ER(x)u - 0 (5) 

(6) 

The escape flow solution for E= O (uniform duct and resistance neglected) is 

(7) 

( ) 

where m = x/t. Thi is super onic in the forward region O<x:=; lt ; subsonic in the backwave 
- t:=;x< O; and uO= co= 2/('Y+ l ) at the fixed sonic point x= O. 

The equation for the Mach line of the system (5), (6) are 

dx 
1+:dt = u-c 

II+: d(u - lc) = - E(Ru- ac)udt 

1L:d(u+ lc) = - E(Ru+ ac)udt, 

(9) 

where the 1+ and 11+ relation hold along the b+ family of r eceding Mach lines in th e (x,t) 
plane, and the other pair along the L advancing lines. The Mach line OB and OF in figure 
2 define the moving limit of the flow zone. As the quantitie R (x) and a(x) do not appear in 
the fil'st equation of (9), it follow that the curve OB mu t remain a straight line with direction 
m= - l in all case. 
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2. Locus of the Wavefront 

It is seen at once from the last two equations in (9) that, within th e accLlracy of the bas ic 
relations (5) and (6) , th e duct shape has no effect upon th e wavefront trajectory where c= O 
because th e terms containing a (x) will vanish along this wave fron t. Its locus is a function of 
fR, however, and will remain a double Mach line as the plus and minus relations coincide for 
c= O in (9). The I and II pair of equations can then be integrated explicitly to obtain the 
exact wavefront locus, which is 

(10} 

in which f is included in th e no tation fR = 'iR. The velocity of th e wavefront is given by 

( )_ 2 -foJ: mWd~ 
upx ---e . 

')' - 1 
(11 ) 

In particular, if 'iR = constan t, e. g. , in a duct having homogeneo Lls wall surface and uniform 
cross section, the position and velocity will be 

xF=-- ln -- t+ 1 1 ( 2'iR ) 
'iR ')' - 1 

(12) 

( ')'- 1)-1 
up= 'iRt +- 2- . 

These exact results will be used later to furnish an error estimate for th e approximations to 
be derived for the interior wave zon e. The forward wave velocity will not approach asymp
totically flny nonzero value, but will continually slow down, approaching, but never attaining, a 
sta te of rest. This is true more generally for any variabl e R (x) with a (x) arbitrary, as can be 
seen from (11), because R (x) is always nonnegative. 

The },I ach lines inside the flow will he locally distorted by the influence of R and a from 
their positions for th e basic solu tion (7) and (8), which are 

(13) 

3-> 

L: (!.)=_2 (.£)_ ')'+ 1 (.£)1 +>, 
\.:p ')'- 1 P ')'- 1 \:p O<a< ro , 

(14) 

wh ere each b_ curve eman ates from th e point ( - p,p) on OB. 

3. Comparison with Hydrodynamic Problem 

If f = O in (3) and (4), the equations become identical for /, = 2 with the approximate 
Sain t-Venant equations for two-dimensional water flow with a free surface, where c2 is the 
water h eight, and u is the horizontal velocity of a cross section . If this analogy extended 
also to the equations when the resistance term is included, then the present aerodynamic 
problem would b e analogous to the hydraulic "dam-break" problem previously considered by 
the author in [5]. The hydraulic-resistance function , however, is more complicated in an 
essential way, taking the form - Bu2/C2 rather than - Ru2. The hydraulic dam-break wavefront 
contains a second-order pole singularity, and its locus is th ereby not a ch aracteristic curve 
itself , but only an envelope of such curves. Explicit integration for its trajectory is apparently 
not possible in that case. The simpler nature of th e present problem permi ts carrying th e 
different mathematical results somewhat farther and with less approximation involved for the 
basic model used. 
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4 . Functions for First-Order Effects 

Using (7) and (8), we substitute 

u (x ,t ,e) = UO(x ,t) + U(x,t)e + O(E2) 

C(X,t ,E) = CO(x,t ) + C(x,t) e+ O(e2) 

into (5) and (6). The terms in E define the system 

(15) 

This system fO!" U and C has th e same known Mach lines in the (x, t) plane a.s defin ed tn 

(13) and (14) , along which th e following Riemann r elations will hold: 

b+: d(U- lC)=[('Y~l)t (C- U) - (RuO- acO)uo] dt 

b_: d(U+ lC)=-(Ruo+ acO)uO dt . 
(17) 

This second eq uation is independent of U and C on th e right sid e; therefore, it is poss ible 
for given R (x) and a(x) to integrate the line integral explicitly along each known L curve, 
using (14). Th e r e ult will be a known expression of form 

U + lC= 'P (t,p). 

This will then permit a very easy separate s tep-wise numerical integration along each b+ 
curve to solve for U and C. Thus the problem is reduced to a se t of indeplmdenL "one-climen
sional" numerical calcula tions for a single ordinary differential equation along each b+ curve. 
This is a calculation of much greater simplicity than the two-dimensional numerical procedure 
that would be n ecessary for the full probl em in (5), (6), and (9). 

5. Integration in Special Cases 

Instead of using the numerical approach for arbitrary R and a, we return t o solve th e basic 
eq (16) expli citly for the special case when R and a are both constants. In par t icul ar , a= O, 
R = constant > O will describe the r esistive effects on the flow in a du ct with any fixed eros 
section and homogeneous wall roughness. The combination a = constantr£O, R = O will describe 
the effect of a converging or diverging duct, neglecting resistance effects. For example, a> O 
can describ e a duct with circular cross section, exponentially diverging, or with rectangular 
cross section, constant width, also exponent ially diverging; a< O corresponds to exponentialiy 
converging ducts of either type . The combination R and a, both nonzero constants, is les~ 

m eaningful physically, because in such a varying duct the wall roughness would have to b e 
varied in conformity w ith the changing hydrauli c radius in order to maintain R constant . 
Thereforc , the contributions of R and a will be considered sepa.ratcly, although th e solu t ion 
will b e made for both simul taneously . 

First, we put 'Y = J.4 for air to sh.orten the expressions ; th e escape velocity is th en [= /) . 
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' ystem (16) has for its general solution 

U(x, t)=-*KG)- ~~[ 84- 36( 5- I )+5(5- D]Rt- ;8[2 ( 5- I ) - ( 5- I )]at+ F(a), 

0(x,t)=iKG)-1~4[ 60- 36( 5- D+7 (5 - I ) ]Rt- :8[10( 5- I ) - 3( 5-I)]at+~+ (18) 

where a= (5- X/t)tIl3 , K and F are arbitrary functions, and 0 is an arbitrary constant. The 
form of this solution indicates that U and 0 must be either infinite or zero at t= O; hence we 
must choose K = o and 0= 0 to keep the functions zero . The boundary conditions U= O= O 
along line OB then determine the function F=(1/1296) (50R- 15a) (5- X/t) 3t. With x/t= m, the 
main results reduce to 

25 5 
U=-1,296 (2m3+ 15m2+ 24m+ l1)Rt+ 432 (m3- 6m2+ 3m + l0)at, 

(19) 
5 1 

0 =-1,296 (4m3+3m2-6m - 5)Rt+ 432 (2m3- 3m2- 30m- 25)at. 

Denoting eRt= (j and eat = r, the flow velocity and local sound speed correct to first order can 
be written from (19), using (7) and (8) , in the form 

u= uo+hl (m)(j+ h2(m)r 
(20) 

Once u and c have been calculated by (19) and (20), the pressure and density are immediately 
known through relations (1) and (2) . 

5.1. Effects on Velocity and Density 

To provide immediate perception of the various effects, the h, k polynomials are graphed in 
figure 3, in which hi is plotted to a separate vertical scale given on the right. We note that an 

.5 
h, 
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exponential duct causes an antisymmetrical effect on the velocity about the moving midpoint 
of the flow zone (m=2), whereas the effect on sound speed and density is almo t symmetrical 
about m=2.S. On the othel: hand, in a uniform duct, the resistance effect is a monotonic 
decrease in the velocity as it approaches the wavefront; it creates a very slight increase in sound 
speed at t he rear of the flo\v, then a larger decrease in the forward region. 

As a numerical example to illustrate the various separate effects, u, c, and the local Mach 
number M = u/c are evaluated in figure 4, A, for 0" = 1/10; and for 7=+ 1 in 4, B , and 7= - 1 
in 4, C. The dotted lines represent the quantities uO, co, and M O when 0" = 7= 0. 

5 .2 . An Error Estimate 

As shown by the c curve in figure 4, A, the abscissa of the point where the solid curve inter
sects the m axis defines the position of the wavefront to the first order approximation. Like
wise the corresponding value of u on the curve directly below furnishes an approximation for 
the velocity of the wavefront. We have, however, already obtained the exact expressions 
for the position and velocity of the wavefront in (12). The approximations and the full solu
tion agree exactly along line OB; the resistive effect is a cumulative one with increasing velocity 
in the forward part of the wave; hence it is to be e)..llected that the maximum of the approxima
tion. error will occur at the wavefront. Thus the error bound obtainable in this way should 
also be valid for all portions of the wave. Such a calculation for the position of the wavefront 
indicates that the approximate result will be about 10 percent too large when 0" grows as large 
as 0.2. The other case of variable cross section does not permit this simple method for an 
error estimate. 

5.3. The Sonic Path 

If X=S(t,f) is the path along which u=c, with S= 0+ Sf+ 0(f2), the resulting double series 
cxpanSlOll correct to first order gives the relation S(t)=[O(O,t) - U(O,t) ]t. For the case R = 
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constant, a= O, this defines the sonic path correct to first order to be the downstream parabola 

For the other case a = constant, R = O, we get the parabola 

.1 == - 0.18Eaf, 

going upstream or downstream as the duct is diverging or converging, respectively. 

5.4. Flow Past a Fixed Point 

The Mach number distribution across the entire flow at a fixed time has been presented in 
figure 4. Of more .practical interest, however, from the standpoint of applications in shock 
tubes or wind tunnels is the time variation of local Mach number at a fixed point downstream 
in the duct, at a point where a fixed model might be placed. This can be derived in an obvious 
manner from the expressions already presented. As an illustrative example, the Mach number 
is shown in figure 5 at the fixed point x= lOO for ER = 0.005 , 7= 0 in 5, A; for EG =+O.Ol , 0' = 0 
in 5, B; and for Ea = - 0.01 ,0' = 0 in 5, C. The dotted curve in each figure again represents the 
MO corresponding to the undisturbed solut.ion. 
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