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On Nearly Triangular Matrices'
A. M. Ostrowski *

A discussion is presented of the change in the inverse of a triangular matrix if on one

side the zeros are replaced by sufficiently small numbers and on the other side the non-
vanishing elements are varied by sufficiently small amounts.

1. Introduction

Consider a system of linear equations

| n

| Zl Uy Ty = Yu k=1 ...,n), (1)
| 2 e
| with the matrix A, in which all diagonal elements @, (u=1, . . ., n) are not equal to 0 and

the elements off the diagonal satisfy for two positive numbers m, M the inequalities
U Sy 0 e T T T s e o ) }
auh=Mla s (@>rin=1, <. 5 n—L).

If m is very small, the system does not essentially differ from the corresponding ““triangular”
system in which all a,, with »<u are replaced by zeros and the matrix of which will be denoted
by A®. It then appears plausible that the solution of this triangular system does not differ
very much from that of the system (1).

However, the value of the determinant of the order n

1 —M 0 0 0
0 1 —M 0
=1—mM",
0 1 —M
—n 0 0 1

shows that if M is, for instance, greater than or equal to 10, the determinant of our system
will not be necessarily different from zero unless m<10-®". A detailed study of the problems
connected with the matrices characterized by (2) appears, therefore, to be of importance and
interest.

As the first problem in this connection, we give a necessary and sufficient condition that any
matrix A satisfying conditions (2) be nonsingular. If m< M, this condition is given by

m M
(1+m>"<(1+M>n’

3)

1 This paper was prepared under a National Bureau of Standards contract with American University.
2 American University and University of Basle, Switzerland.
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and, if m=M, by 3
m<—— \ (39

In order to obtain a precise measure of the influence of the change from A4 to A®, we have to
discuss the estimates (for convenient norms) of the norm of the matrix A~1—A®-1,

We consider, in particular, two such norms defined in section 5 and denoted by
[A7'—A©=1  (p=1, =), which are particularly suitable for the problems of numerical analysis.
Assuming, without loss of generality, that e,,=1 (u=1, . . ., n), we show that for given
values of m, M such that M=1.5/n, n=4, we have

’A—I_A(O)—-]Iﬂé (1+Z‘4)n—1 1i5

’ 5
(MgL"), nz4>, @)
n
where 1—46 is the smallest modulus of the determinant attainable for the matrices 4 and 1is
connected with m by the relation
M,m

e ) 0<0<1, (5)

el

with
J[n:<1+M)3;[_nM_1. ©)

If M<1.5/n, the formula (4) need not be valid any longer, but we can prove in this case
the relation

A== A0, = I (<1 .5/n) @)
is valid as long as m remains less than 1/2n.

The estimate (7) is not a “best”” estimate for all values of M <1.5/n, but still it is not far
from the best, since for m=M=<1/(n—1) we have

L) ®)
which cannot be improved for any value of m<1/(n—1).

The condition (3) is derived in section 4, theorem B. However, we derive it as a special
case of a more general theorem, where in the inequalities (2) the expressions m, M depend on u,
that is to say, change from one row to another. The necessary and sufficient condition for all
matrices A to be regular (theorem A, section 4) is in this case rather unwieldy, but still may be
very useful in some cases because it contains 2n—2 instead of two essential parameters. The
direct derivation of theorem B is, of course, much simpler, since, as the reader will immediately
see, the computations of the determinant 2, in section 2 can be considerably shortened in this
case. The connection between the formal algebra of sections 2 and 3 and theorems A and B
is provided by a result concerning the so-called H-determinants and M-determinants published
16 years ago [1]. The results about the norms |[A='—A®~!|, are obtained by using the
explicit representation of the inverse matrix of a certain matrix A,, which provides a majorant
for all matrices A=!. The formulas giving A; ! are derived in the second part of section 3, and
in section 6 the norms [A;'—AQ ~!|, are derived and discussed. The corresponding inequalities

for |A~'— A©-1, are then obtained in section 8, by using a new theorem (lemma III) concern-
ing the connection between the H-determinants and the M-determinants.

= 0)—1 (n—1)m
A A lpém

(m:M<

? This condition (3¢) is already contained in some results in a paper [2]4, and also can be deduced from a well-known theorem of the theory of
determinants discussed in [4].
4 Figures in brackets indicate the literature references at the end of this paper.
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In this section is given another application of this theorem in estimating the variation in
the inverse matrix of a triangular matrix satisfying the conditions (2) with m=0. We obtain

an unexpectedly simple and elegant formula (120).

In section 8, the results are applied explicitly to the problems concerning the linear system
(1). It may be finally remarked that these results, with obvious changes, remain valid if in
the matrix of (1) the rows and the columns are interchanged, although no mention is made of

1t explicitly at every step.’

2. Value of the Determinant 9,

Let K, be defined by

Kn 0p 0 0 (B) 2t
Kp—1 Kp—1 6n—1 0 Eg gy O O
Kn—-2 Kp—2 Ky_2 6n~2 i) 0
Kn:
K2 Ko Ko Ka o Ko 52
K1 Ky Ky Ky SN K1 Ky
:’ K2 52
K1:K1, K2: :Kl(Kz—az),
K1 K

=23

(9)

where in the p-th row all elements to the left of the main diagonal and on this diagonal are

equal to x,_,.1, the next element to the right is 4, ,.;, and all other elements are 0.

Kuy Op

are here independent variables. 1In subtracting the second column from the first, we obtain
K,= (k,—6,)K,_1, and therefore the following formula, valid also for n=1, 2:

K,=x 11 (x,—6,).
y=2

Consider now for n = 3 the determinant

RS ey SRl el e

Yn-1 Bn_, 0 0 sgliaeenn() ﬁn-l

Vet Vi Onagi O nr (e g
e

§ e R e T e

1 1 Ii S e ] ()

5 Some of the results contained in the sections 2 to 5 have been published without proof in [3].
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| We have in particular

i 03 0 Bs ‘
| Ti=| 72 & B |=—(B+B8:(0—2)). (12)
1 il

Developing 7', in the elements of the first line and using the value (10) of K, we obtain
forn=4

n—1
Tn:5nTn-1—Bn II (57_'71');
p=2

Tn L Tn—l 1______>
el - e s e 2

and therefore generally for n=4

e G i

Since by (12)

T __Bs (1 _2)_Bz
5253 53 52 52

52. i: u,,2(1_~—>

where II is identically 1, and therefore finally

v=2

we obtain

_'—ZZB# 1 5 H(5 —7). (14)
v=p+
If we now put
0y 0 0 o o0 B
Y2 62 0 . . . 0 62
T =| . : : S . (n=3), (15)
Yrn-1 Yn-1 Yn-1 . . . Yn-1 6n-1
1 1 1 AT R | 0
61 0 Bx 1 |
T§: Y2 02 B2 j
el i()g s

this becomes T, if the indices of B,, v;, 6, are replaced by their complements with respect to
n-+1. We obtain then from (14)

n n p—1
T:f:—- E Bn-l-l—ll 1I 5n+1_y II (5n+1—v"“')’n+l—v y
n=2 y=p+1 =2
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or in replacing the summation index u by n-++1—«

n—1 n n—k
=g e 1l Gniisyille (0 i Sy i1 y)
k=1 v=n+2—« y=2

and finally, if in both products » is replaced by n+1—NX\,

n—1 k—1 n—1
T:‘:—Z B,‘ 11 5)\ 11 (5)‘—"7)\).
x=1 A=1 A=k+1

Consider now for n=3 the determinant

a —M, —M,
—Ms (47} —Aiz
—mgy —mg o3
o
=M TS =1

—M,
—M,
—M,

oy

(16)

(17)

If we subtract here the last column from each of the preceding ones, we obtain

J/Il+al O 0
M2—77’l~2 11[2—{“ (673 0
| M3_7n3 A{;,v_”lg ¢7L{3+£¥3
|
:
|
My y—muq. My i—Myy My —my
_(an+mn) _(O‘n—}‘mn} —(an—I'mn)

v=1

| 4M|—}—a1 0 0
]‘Jz—mg ]L[2+a2 0
M;—my M;—m;,
55 (an+mn)
My 1 —muy My 1—myy
1 1 1

v=1
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M3—|—a3

J{n-l — My

n=1 n—1
I (M,+a,), so that Q, is the sum of @, T (M,+«,), and

0
0
0

Mn—l—7nn—l
(% (an+mn)

0 —M,

0 —M,

0 _1‘13
Mo+ ans —]un—-l

1 0

—M,
—M,
— M,

_‘Mn—l

Qp

Here the subdeterminant corresponding to the last element of the last row is obviously




This last determinant becomes 7', * if we put
6=M,+a, ~v,=M,—m, B=—NM, (=1,... n—1),

and has therefore by (16) the value
n=1 k=1 n—1
—2(—M) H(My+a) I (mrta).
k=1 A=1 A=x+1
We obtain therefore for 2, the expression
n—1 n—1 x—1 n
Q,=oa, II (Mv+au)—2Mx II (Mri—m) 11 (m)\+ a)\).
v=1 k=1 A=1 A=x+1

The determinant Q, can be also written in the form

ap —m, —m, 90 o == =,
—M, Oy = My (B My e T
_Z\/In—Z —"‘A[n—Z Op_2 s o —My_2 — My
Q,=
‘—‘Mg '—Z‘Ig —]‘[2 5 g o Qg =11
i M 1 S A[ 1 == 17"[1 5055 - ]\{1 (03] 5

and we obtain therefore from (18)

n n n k—1
Qu=oy 1 (mv+ ‘XV)_me II (mn+ Ol,,) 1I (M#+ au)-
v=2 k=2 n=«k+1 u=1

3. The Matrix A, and Its Inverse

We consider now the matrix
f

1 —M —M ... —M)
=i} 1 -M ... —M

A—
\—m —m —m ... i

Its determinant is obtained from ©, in putting in (20)

ai=das—_. . . a,,=1; Mme=mz= ... =M,=M, M1=Z\12: SobA :Az‘[n_lzz‘l.

We obtain
[A,,[:(m+1)"“—mi_2(m—f—1)”"‘(Zl1+1)“1,
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(19)

(20)
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and this becomes, if M #m,

RO VG Vi

[Aal=(m+ 1)~ —m(M +1 o

=g (n 1) M — (M4 D) —m (M1,

Bl =g MO+ 1 —m@M 1] (m =),

while for m =M we obtain from (22) in letting M—m:
|An=[1—(—1)m](1+m)""* (m=M).
In particular, if 0<<m< M, a necessary and sufficient condition for |A,| >0 is

m M
CESONGy ST

We assume now in particular
0<m<M.
If we introduce the abbreviations

My —nM=1. - (4mP—am—1

M- M A m

we can write (22) in the form

(M—m)|A,|=MA+nm-+mm,) —m(+nM~+MM,)=M—m—mMM,—m,),

and therefore, if we put
o=1—|4,|,

b} M, — M,

mM~ M—m
It follows from (25) for n_>2

M- l—m”1 o it m(l—{—]VI)"—l—nM M,
ot S e e

so that from (28) we have

M, F)
1_—ﬁ = o >M,.
M

It follows in particular that if (24) holds, then 6 >0, 0<|A,|<1
In solving (29) with respect to m and é, we obtain

: S ML - M= - 5 0<6<1,
M,m<s< M’g 5 M’:‘n 0<6,<1
1——M 1 01‘—4

8 This formula can be also obtained from the formulas given in the proof of theorem III in [3a, p. 113].
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In order to discuss the meaning of the condition (24), consider the curve

i (31)
we have
1—(n—1)x e m—1x—2

AdsEnrnd e e

For >0 the curve (31) has one maximum at x=1/(n—1) and an inflection point at x=2/(n—1).

In figure 1 the curve (31) is drawn (computed for n=5). The portion of this curve from
the point 0 to the highest point 7" will be denoted as the ascending branch and the portion
between 7" and z= « as the descending branch.

f(x)

ol

T
| |
| |

| | |

il M
n—

=
it

1
X X
it S (+x)°

Figure 1.
If we assume that in (24) m is less than M, we see that either-

1
n—1

0<<m<

1l
or
1 0
m M= S (329
In order to find for a given M >1/(n—1) the range of values of m satisfying (24) we find
on the curve the second point P, with the same ordinate as the point 2=27; then if the abcissa
m (M) corresponds to Py, we have 0<m<m(M).
Finally we prove from (24) and m< M that it always follows that

mM»1<1. (BB))

Indeed, in proving (33) we can obviously assume that M is greater than 1 and therefore
on the descending branch in the diagram. But then we have

1 st M

T T+ T+ M
N

and therefore in raising it to the nth power

e ‘
oyt

We see that 1/M* ! must lie, in figure 1, between M and m(M), and it follows that 1/M"~'>m,
that is (33).
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We are now going to determine the inverse matrix

An_lz(a#v) (“:”:ly oot

of A,, if its determinant (22) resp. (23) is not equal to 0.
the corresponding linear system

i)

(34)

It is sufficient for this purpose to solve

xﬂ_mz z,—M 2 Ty=2y (n=1,
v=1 v=u+1
for indeterminate z,. Put
| m— M
| Tif ~+zn—~w M+1:U’
| M 1+m
‘ 775 ek e ey Vil
2y

1+

Then the system (35) is equivalent with

=0 oy EAS=1,

A+M)z,=m—M)(x,+ . . . +xuey)+Ms+2,

A U S R o D T

or in putting

) (35)

(36)

B

(=1, . . .,m),

(n=T1% S =n)

S o o i o e ()1 e ey (B =102
SF_SM—IZUSM—1+yF! Su:(l+0')Su—l+?/u:q8u—l+ym
Sigar=S gkl gk s (== e im))
Sug™' =22 1447,
Sﬂzgi‘l Yu@" ™’ (“:1;' . -’n)y (37)
p=1
xﬂzé ¥ (g—1) "7+, (== s i) (38)
From (37) for u=n we have by (36)
Snzszglyyqn—y:)‘s ;l qn—v_*_gl ayqn—v,
PRE P s S R ) 39)
q—]- y=1
where for m=M, g=1 the coefficient of \s is to be replaced by n. Since for m =M
s ¢"—1 m—Mq¢* Mq"—m
Gt =0 M1
we have from (39) and (22)
s=Q2wg"”  (m=M), (40)
. M-—m (MDD
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while for m=M we obtain again (40) in defining ¢ by

m+1  (m41D" . .
e —Tme h tm = M), (41°)

If we now replace in (38) v, by As+a, and use for s the expression from (40),

u=1 il
=(q—1) 2 erg" " ot hs [<q—1) > q“-”-1+1:|'
v=1 =1

But here the expression within the brackets is ¢*~!, and we obtain therefore

u—1

n
=2 auq“"'l(q—l)+au+7\Qq“‘121 &g ™" (w=1,...,n)

y=

and finally in introducing a, from (36)

=5 st AEh S W MED S e =1, (42)
G B M1 M+1 +1 R
Introduce the two following triangular matrices:
(05 00 s S T EON
1 0
q 1 0
gigh E
Un(g)= (uw)= (43)
R gf g1 07,
¢t (u>v)
Uy = (44)
0 (#éy)i
GO ot iqeiitigas e Rt
0 0 q—l q—z ze oy q—n+2
V@)= (ow) = (45)
L0 0080 e = 0. e
0 (n=v)
e (46)
g% L)
We see then that in (42) the matrix corresponding to the first right-hand sum is
g ek
M+1 U’”“(M+1)2 Ui
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whereas to the second right-hand sum in (42) corresponds the matrix

A 3
M1 ¢ (qUn+ B+ V5,

where £, is the unit matrix. We obtain

a_(m—M , MQq MQq¢ "Ny  MQq" ™!
s =gt M+1)2)U +<M+1 (M+1>2) e U

The coefficient of U, is here equal to (m@)/(M+1)% both in the case (41) and (41°), and we

have finally
i Q ]‘[-Qqn—l MQqg
A =ar+i U +(M+1 (M+1)2>E"+(M+1)z w

(47)

We now denote by s, the sum of the elements in the uth row of the matrix (47) and by {,
the corresponding sum in the uth column. Tf we first assume m =M, for the matrices U,
and V7, the uth row sums are, respectively, equal to

'1—1; 1—g*
=l g1

and the »th column sums are

We obtain now from (47) by (36)

1

(M+1)?s,=mQ q M1+ MQe 1+MQ£’—§L"_

:Q [mg**—m~+ Mg — Mg *+Mq*—Mg¢* |+ M+1

= ML Q Mg —mt-(m— M)+ M+1,

and this is by (41) equal to (M-+1)Qq¢*~*. We have finally
Q u—l_(z!l_+1)"—l

ST R 8
and this remains true also for m=2»M, as is immediately seen.
Similarly, we have
v =1_"n—7
(M +1)%t,=mQ q———+M+1+MQq ML e
=g [mqn—v_m+qu_qu —1+A1qn—l_ﬂlqn—P]+M+1
M 1
M QIMg*—met (m—M)g* =1+ M+ 1=(M+1)Qq"~,
and we have
gl s GEED (49)

LY R

relation which is also immediately verified for the case m=»M.
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4. Bounds for the Determinants, depending on 2. and 4,

A determinant

a —My . .. —Mi
— Moy (67 5o — Mgz,
M— (50)
— My —Mp2 . . . Ay

will be called an M-determinant if all diagonal elements «, are positive, all elements off the
main diagonal —m,, (u7%v) are not positive and the determinant M, as well as all principal
(coaxial) minors of M of all degrees, are positive.

In what follows we will have to use a theorem given by the author in 1937 [1], and which
will be formulated as the following:

Lemma 1. If we have for the M-determinant (50) and a determinant H=|h,,| (v,p=1, ..., n)
of order m, the inequalities

oz, | =m  (w#vipp=1, .. ., n), (51)

then H##0, and we have .
|H|= M. (52)

If (H), (M), respectively, denote the matrices of the determinants H and M, the inverse matrix
of (H) is majorized by the inverse matriz of (M)

(H)~'< (M), (52°)

Suppose now that in the determinant Q, given by (17) all a, are positive and m,, M, non-
negative. Then it follows from (18) that Q, is a monotonically decreasing function of all m,
and from (20) that M is also monotonically decreasing in all M,. Suppose now that for a
certain set of values of «,, m,, M, the determinant 2,70. Then replace the m, and
M, corresponding to certain rows (v;, . . .,»») by zeros; the determinant Q, cannot decrease
and remains therefore positive; but then 2, becomes equal to the product of «, a, . . . a,
with the principal minor complementary to the set of indices »;, . . .,».. Therefore, all principal
minors of @, are positive. We see that Q, vs an M-determinant, if the conditions

a, >0, m,=20, M,=0 =l o o o ) (53)

are satisfied and 2,7%0. But now we can easily deduce the following theorem.
A. Consider the set of all determinants A= |a,,| satisfying the conditions

Ia#’lému (r<w), IauvléMu (v>u), Ia/ﬂnlgan (ur=1, . .. ;n): (54)

where a, are n given positive constants and m,, M, are 2n—2 given nonnegative constants. Then
in order that no determinant A of this set vanishes, it is necessary and sufficient that Q,>0. If
this condition s satisfied, we have

=0 (55)

Proor: Since in the case 2, >0, 2, is an M-determinant, the sufficiency of our condition
follows immediately from the inequality (52) mentioned above.

If ©,=0, we can take obviously a,,=«, and a,=—m, or a,=—DNM, according as
v< p or v >u and obtain a vanishing determinant A satisfying the condition (54).
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Suppose now ©,<0, then it follows from the form (17) of @, that 2, becomes positive if
all m, are replaced by zeros. There exists, therefore, such a positive t< 1 that @, vanishes if
all m, in (17) are replaced by tm,, but then we obtain a vanishing determinant A of our set
in taking @,,=a, and a,,=—tm, or a,,=—DM,, according as v<u or v>u. The theorem A
is proved.

In specializing the matrix of @, to A, and in assuming that in particular 0<"m<M, we
obtain immediately from (22) and the theorem A:

B. Consider for two positive constants m, M, m <M, the set of all determinants A=|a,,| of the
nth order for which

low| 21 (=1, . .. ), lowl=m (<u), lan|=M >, (56)

then, in order that no determinant A of this set vanish, it is necessary and sufficient that for
m<M the inequality

m M

holds, and if this inequality is satisfied, we have for each determinant A of the set

_(1+m)”(1+M)"[ QLo :
lzlal="3 A+ M) (T Fm) o
If m=M, the condition becomes
m<n—]_-— (M=m) (57°)
and we have, iof (57°) is satisfied,
4|2 A =[1—(e—D)m] (1+m)™  (m=M). (58°)
From theorem B we can deduce the following theorem.
C. Let A=(a,,) (up=1, . . . n) be a matriz satisfying the conditions
law|=m  (v<p), law| =M (v>u), (59)
where m, M are two constants with 0<m<M. Put
/ 1 ko o 1/n
S Mm mM (60)

MUn_—piin %

Then all fundamental roots of the matriz A are contained in the set of the n closed circles described
around the elements a,, with the radius 6(m,M). The value (60) of 6(m,M) cannot be improved
U A=A

Proor: Let N\ be a fundamental root of A so that the matrix NEE— A is singular. Put
min|A—a,,|=«; we then have to prove that «<é(m,M). If «a=0, there is nothing to prove.

N
Suppose a_>0, and consider the matrix

AE—A
=2 (b

For this matrix we have

M
bulzl, BolsT G<w), [Bul=T >0,

T For M=m, 6(m,M) becomes (n—1)m, but in this case our result is contained in Gerschgorin’s theorem, ef. [4].
From the theorem C the result given by Stein and Rosenberg in [3a] as theorem III follows immediately.
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Therefore, we have by theorem B
m M

(1:% g(l -|-a%4—

M
1+-’Z— 14—

mir = Ml/rf’

and therefore,

1 m
N\ mim— M”" Ml/n il

1_1_

M~
a< = M 1/n~5(m M).

5. Bounds of the Matrix A;!

For an n dimensional vector &#=(z;, . . . ,x,) the Hélder norm corresponding to the
exponent p=1 is given by

[to="mlP+ . ..+l  zD). (61)

We will only use the three cases corresponding to p=1, 2, «:
|Ep=1z:[4 . . . +|tal, |Elo=max 5], [Ee=v]a[+ ... +]alt (62)

We have among these three norms the following inequalities:
€l <& =nlé]o, (63,2)
€l =vnlgl =vAlgl, (63,¢)

which are immediately verified. The left-hand inequality (63, ¢) implies the well-known
inequality between the arithmetical mean and the arithmetical mean of the squares. If
A= (a,,) is an nXn matrix, we define its norm corresponding to. the exponent p (1<p < «) by

R :
N S (64)

and denote it by |A[,. We will use here too only the cases p=1, 2, ».
In applying to the definition (64) the formulas (63, b), and (63, ¢) we obtain immediately

Fl4lsiaLs alal, (65,2)
14l 5| Al vE|4].. (65,b)

For p=1, = the expressions of |A|;, |A], are easy to write down; we have, as is well known and
very easy to prove,
|A|;=max 3 |a,.| (66, 2)
v [

|4],=max 3] |a,|. (66,b)
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As to |Als, its expression is irrational; [Al, is the square root of the maximum fundamental
root of the symmetric and nonnegative matrix 4AA4* Since the direct computation of |Al; is
difficult in most cases, we prove the following estimate for |A|:

Lemma I1.  We have for any matriz A

1
;i max (IAII)IAI 1A12< /IAI |Aioo7 (67)
The first part of (67) follows from (65,a) and (65,b). To prove the second part, we introduce
the notations
S,‘=Z[a“,[, tv:E|aw1 (M,VZI,. 0 .,’IL).
v “

The sum of the moduli of all elements in the uth row of AA4* can be estimated as follows
]Z (O <Z Zlawami—ZIGuKIh: sul A1 = 4]o| Al

Equation (67) follows now from the theorem of Frobenius that the modulus of each funda-
mental root of a square matrix does not exceed the greatest sum of the moduli of the elements
of this matrix in different rows.

If we now apply these results to the matrix A" discussed in the section 3, we obtain from
(48), (49), (66,a) and (66,b)

T Q (M+1)
and from (67) and (65,a)
AEWR » S -1 Q (A DT
N0 ES VRN v A A4 69}

In combining these inequalities with the results given in section 4, we obtain the following
theorem.

D. Let A==(a,,) be a square matriz of order n satisfying conditions (56), and let (57) be
satisfied. Then we have

n—=1
IA_llp—(thlyi (17:1;2,"0):
A
and therefore for any vector &
|| £
[AE{P“(M+1)n 1!$]IJ (p-],,?,oo), (70)
Proor: It follows from (52°) of lemma I at once in virtue of (66,a) and (66,b) that
A, sl =g (=1,0)

further, the matrix A~'(A~Y)* is majorized by A;7'(A;7)*. By a well-known theorem of
Probenius, therefore, the maximum modulus of a fundamental root of A7'(A~*)* is majorized
by that of A7*(A;")*, and so we also have

¢
A S 1A b S 50

By definition (64), therefore, in putting Af=x. we Lave

= iy l’?‘p—]\[(gl_l 7l|21a

and this is equivalent to (70).
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6. Bounds of the Matrix A;'—A" "

We denote by A® the matrix obtained from (21) in replacing m by zero:

(1 —M —M ... —M)
0 1 -M ... —M

el e i
R R o

We will prove the following theorem:
E. If 0<m<M and (57) s satisfied, then the matriz A7'—AQ " is a nonnegative matrix
and we have

A7 —A@-Y,=max (1+M)! A+m)r™— A,

1=sv=n lAnI

(p=1,). (72)

Proor: Since A® satisfies the inequalities (51), it follows from (52°) that A;'—A® ! ig
nonnegative. Denote by si” and #” the sums of the elements in the uth row and in the »th
column of A®-* and by 5, and ¢, the corresponding expressions for the matrix A;*—A® 1,
We have

Si=8—s2, t,=t,—1® (myv=1, . ..,n). (73)
It follows then from the formulas (48) and (49) that s, runs for u=n, n—1, . . ., 1 through the

same set of values as f, for v=1, . . ., n.
Formula (49) can be written in the form

_gn M) (A 4m) (4 M) |
S Y S )

Since A, becomes 1 for m=0, we have (72) and E is proved.
Discussion of [A7*—A®~1Y,. We prove first that t,—¢,® increases with » as long as the
condition

is satisfied. Indeed, put

=If,+1—t,$[£1__ (1+m)n_v_l_lAn|
e el e e 15
In solving the three inequalities
>

k"Z 1 @7

with respect to |A,|, we obtain correspondingly

_<_ = _ﬁ_ n—y—1

]An!;a,_(l M) (L myr—r-1, (18)
The inequalities k,=1 (v=1, . . ., n) are obviously satisfied in virtue of (75) as long as
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»=n—1. We have, therefore, in this case, in using (72)

I"IAnl

)
Suts n-—1_
lAn| —(1+M) = J

)

Max (t,—t) =1+ M)*!

-1__A@=-1] — n—11_IAn|_ n—1 0 S s ____"l)
|An An |,,—(1+M) |Anl '_(1-*—]‘4) TeE8s p—l) b |An}§1 M

Condition (75) can be written by using the notation (27), as 6 =m/M, and in virtue of (29) this is
certainly satisfied if we have MM,>1, -

(M+1)"—nM—220. (80)
Condition (80) becomes for n=3: M=0.5321. Forn=4, (80) is in any case satisfied, if we have

Mgl—f m=4). (81)
Indeed, if the relation (80) is satisfied for a positive M, it is satisfied for any greater value
because the coefficients of all positive powers of M in the left-hand expression are greater than
or equal to 0. To prove the sufficiency of (81), it is sufficient to prove that (1+1.5/n)"=3.5
(n=4). But here the left-hand exvression is monotonically increasing with 7, and this
inequality follows, therefore, from (5.5/4)*=3.75 . . . >3.5.
Suppose now that we have

m m
I— SlANfST, b s (82)
Then we have, since 0<m<1/(n—1),
<1 +i4)" <)
(1+m)*—r—1 n—1 o ( i 0 el A i
e 1+n_1) 1)< (e—Dn—1),
n—1
(14m)r—=141.720nm, 0<0<1
A +m)r——|A,|=1.720nm+1—|A,]|,
and therefore by (82) (1-+m)?>—|A,|=1.720nm-+m/M.
For n=4 we have in the case (82), since the inequality (81) is not satisfied,
Il n
M=15
and, therefore, finally
14m)r—|A,| £2.39nm =l ) (83)

On the other hand, since M<1.5/n, (14+M)"'=<(1+1.5/n)"<e'*=4.481689, and, therefore,
from (72) and (73)

m .
t; ——t(o <10.72n — iAn‘ <V= S e IA,,!;I'—'M‘; 7L>3)!

AT —AQ Y, <10.720 = <p=1,oo; |A,,!;1—%3 n>3)- (84)

lA I
To obtain a lower bound, we take in (74) »=1. We obtain, since for >3, 0<[A,| =1,

(L+m)*'— (A, (n—1)m _ m
!A x = IA l _0.75n lAnl’
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and, therefore,
A7 —A® -], 20.750 |—Am_[ (p=1.=;n24). (85)

To obtain the exact value of [A;7'—AY 7|, if (75) is not satisfied, we return to the inequali-
ties (78) which are equivalent to (77).
Denote by 7, the smallest integer between 1 and n, such that we have

Ong—1 = fAnI>'fn0 (1 =ng én) (86)

The parts of this inequality implying g, or ¢, must be disregarded, that is to say, this inequality
reduces to |A,| >, for my=1 and to o,.,=[A,| for ny=n. Then we see at once that
max (t,—ty)=t, —ty’, and therefore

(14+M)"~! (1+m)"~"o—|A,|

lA;l—Af)—l|p:t”0—t§9): {Anl (p=1, »). (87)
For m=M we have n,=1, and therefore by (23)
_ » (n—1)m < 1
1I_A@-1| it i =0
[An An |p 1_(n_1)m m M<n_1) (8( )

7. Bounds of A'—A©"!

In order to obtain the theorem corresponding to E for a determinant A satisfying condi-
tions (56), (57) of theorem B, we prove first the following important lemma, which generalizes
considerably the relation (52°) of lemma I.

Lemma II1.  Consider n positive numbers oy, . . ., a, and 2n*—2n nonnegative numbers
My, € (W=v; pr=1, . . ., n), such that the matrices
@ o —Mig—€&2 . .. —Miz—e€p)
— My — € Qay e e T M€y
M= (88)
My —€n —My2— €2 R ay 7
r [a5] — M2 SRy —ml,ﬁ
— My 62} 2 —May,
A= (89)
M M2 . - )

are M-matrices.
Consider n constants A, (u=1, . . ., n), such that

V. S s e ) (90)
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and 2n*—2n constants @, b, (u#v; wpp=1, . . ., n) such that
|Gus| ST, |by—Owl S (#v; wp=1, .. ., n), (91)

and form the two matrices

&8 TRt v
bgl A2 Sy g br_-,,
e : ; P o
\bnl b"2 v oS AnJ7
f[ll 2 a,
ay A, Ay
e : ; A .
\a nl a’n2 A 44 nde
Then we have
A" —AO M1 — MO, (94)

Proor: We write M=P—T1T, MO=P—T9 where the matrices 7, T have zeros
in the main diagonal and off the main diagonal, respectively, the nonnegative elements m,, e,
m,, and where P is the diagonal matrix

=~
fal

a O

L apJ-.

We can develop the inverse of P—T=P(lX{—P~'T) (£ is the unit matrix) in the following way:
(P— T)-l:z"_"0 (P-'T)" P, (96)

The convergence of this development and the validity of (96) follow easily from the fact
that the determinant of the matrix P—¢7 does not vanish for [¢| <1, which follows immediately
from lemma I. The corresponding development holds also for (P—7®)~! and we obtain
therefore

M-1— MO-1—= S [(P-1T)*— (P-1T®)"| P, (97)
k=1
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The elements of P~'T are here (m,,+€u,)/a, or zeros, and those of P~'7° are m,,/a, or zeros;
therefore all elements of the matrices

PN (g8 PO (=il o o) (98)

are polynomials in m,,/a, and e,/e, with nonnegative coefficients. Denote by ¢ the diagonal
matrix

rAl N

A, 0O

. AnJ s

nd write A=0—S, A©=Q—89 where the elements of S are b,, or zeros, and those of
SO a, or zeros. Since, therefore, we have

Q- 1S«P'T, O SO Es o
we have

A—IZ'ZZO(Q_IS)"Q_I, A(0>—1:§<Q—1S(O>)x0—1’

©

A= 4O =S (QS) — (S V)10, (9)
k=0
But now the elements of (¢~1S)*—(¢'S®)* are obtained from those of (98) in substituting
there a,,/A, instead of m,/a, and (b,,—a,,)/A, instead of €./, Further, we have by (90)
and (91)
T

|4,

My

b/.w_a/pv
Sy e
= o

(M
==

Ay

n

and therefore, since the coefficients in (98) are as already mentioned not negative,

(Q—-IS)K_ (Q—IS(O))K<<(P—1 T)K_ (P—l T(O))x
and

@)~ @SV L(P Ty~ (P TO). (100)

But from (100) by virtue of (90) it follows that the development (99) is majorized by (97)
and our lemma is proved.

Under the conditions of theorem B in section 4, if the inequalities (56) and (57) are satisfied,
we can apply lemma I1I in replacing the matrix M by A,, M© by A®. We obtain

F. Under the conditions of theorem B, if the inequalities (56) and (57) are satisfied, we have

| A7 — A9, 5 A7 —AP |, = max (14 M)
1=v=n [An[

(p=1,x), (101
where the values and the estimates for the right-hand expression in (101) are obtained from the
Sformulas (79) to (87°).

Lemma III can be applied to many problems similar to that solved by theorem F. For
instance, in the theory of the solutions of linear equations, the following problem has to be
dealt with, although its complete discussion is usually avoided:
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Consider a “triangular” system of linear equations
- n
Za#’m”:yﬂ (#:]; AR e )“); (102)

v=p

where the coefficients a,, are only approximate values to the “true’” values b,,. Suppose that

we have generally
|blﬂ‘_a';w]§€ (Vgl-’«); (103)

how far is the solution of the system

n
DDt (104)
v=p

influenced if the b,, are replaced by a@,,?
If we denote the matrix of (102) by .A® and that of (104) by A4, the question can be
answered by giving estimates of [A™'— A9, (p=1,=). Suppose that we have generally

e b (R S (v p—=l s —) (105)

and consider the matrix

i e SRR 7
0 l Aok le —*“’[2

e P T o A KU e AR s e (106)
b Tl TR

where all elements to the left of the main diagonal are zeros, and all elements to the right of
the main diagonal in the uth row are equal to —M,.
We obtain from lemma IIT at once the majorization

A7'— A9 '<AM +¢, . . ., My e 1—AM,, .. ., M)

To obtain the inverse of the matrix A(M,, . . ., M, ), consider the system of linear equations
2— M, (Bt . . . Fx)=1u, o115 S (107)

To solve it explicitly, we put
8,.:i:r,,‘ == et ) (108)

=n
1+M,=N,, N SINE R e NG TR (=1 —i) Ne—=1" JE ==l (109)
Then (107) becomes

L,=M,8,11}+u, (=P )y (110)
=N Su11+u, =T ) (111)

where s,,;=0. Dividing (111) by P,, we obtain

Su __Sut1 Wy

Pn—Pu+1 PM
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and therefore

noay
s,—= B> =5 ®
M u?é% Iﬂ’
introducing this in (110) we have
2=t MPus 3 7 W=1,...,0; Pryi=0). (112)
k=p+1 K
We obtain therefore for the inverse of our A(M,, . . ., M,_,), if EZ denotes the unit matrix,
A(M,, ... M, ) '=E+DT, (113)
where D is the diagonal matrix
(M,P, 4
M,P,
0
o _ (114)
0
Z\[n—ll)n
. 0J7
and 7" the triangular matrix
s L I
P2 P3 1)71
1 1
0 P,
1
a 0% b 8 A (115)
0
. 0r
The expressions
AMy+e, .. ., M, 1+e =AM, . . ., M, )" (116)

obtained from (113), (114), (115) are rather unwieldy; however, we shall obtain for its norm
corresponding to p=1 (cf. 66,a) a very simple and elegant expression.

Indeed, if we take the sum of the elements in the »th column of A(M;, . . ., M,_,)~"' and
denote it by ¢,, we have

t—1-|—P ZMP,,+1_1+Z)M T (1+M,.

v p=1 u=1 k=p+1

If we now write out ¢,,,, we obtain

v—1 v—1
42 i 1+[2l M, T (140 | 30+ M;
n= x=p
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and in comparing this with the expression for f, we see that we have f,,,=(1-+M,)t, and
therefore

v—1
t,= II (1+M,). (L)
k=1
We obtain now for the sum of the elements in the vth column of (116)

A
Peme Tt v Uit T B
k=1 k=1

In multiplying this by 14 M,4-¢, we obtain

ig-

LM g ﬁl(l FM)—e T (14+DM),
K= k=1

K
and comparing this with ¢,,,,

by =(1+ M, + 9+ T(A+M)). (118)

Therefore, ¢, is monotonically increasing with », and we see that the norm of (116) cor-
responding to p=1 has the value

n—1 n—1
I (+M,+e— 11 (1+4+M,) (119)
v=1 v=1
and obtain therefore
n—1 n—1
AT AT S U1+ M, +¢)— TT{1+M,) (120)
v=1 v=1

as the solution of our problem. In applications it may be betterto use the recurrence formula
(118). 1If all M, have the same value M, the expression (113) coincides with that obtained in
section 5 for A;* for m=0. But in this case we see from (48) and (49) that the row sums run
through the same values as the sums in the columns. We obtain, therefore, in this case the
expression

(MA4+-14+e '—(M+1)"'=n—1)e(M+1+0¢), 0<60<1,
as the norm of (116), both for p=1 and p= ».

8. Linear Systems With a Nearly Triangular Matrix

The results of the preceding sections give the means to discuss the following problem
concerning the system (1) in the introduction under the conditions (2) and the “triangular”
system

n
Z(I“y%,:y# (:U':ly' 0 ‘771/)) (121)

v=p
with the matrix A®. In discussing this problem we can obviously assume that
=1 (u=1, . . . m). Then the difference between the solution of (1) and that of (121) is
given by the vector (A-'— A9 Yy, n=(y;, . . . ,¥.), and the norm of this vector corresponding

to one of the indices p=1, = does not exceed |[A'—A© [n|, (p=1,«), and can indeed for
suitable choice of the vector n attain thislimit. Therefore, the norms [A~'—A©~!|, measure

the error committed in replacing the system (1) by (121).
For an e >0,M >0 being given, how small must m >0 be taken in order that we have
|A'— A®-1|, <e (p=1,)? (122)
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If we introduce the quantities |A,| and & corresponding by (22), (23), and (27) to m and
M, we obtain from (79) and (94) the condition

(1+M)""%§e

0

IA

arme (wsi-3) e

as long as the condition (75) is satisfied and therefore certainly as long as M=1.5/n (n=4).
On the other hand, we have by (30)

mz_é_s, (124)
M,+6 "
and from (123) and (124)

We see that it will be sufficient to take

lIA

o MOEM,,(IJrM)"“e-F(Mn-*-Z\Ll)E e ) 0

to solve our problem, for instance, if we have M=1.5/n (n=4) or M =0.5321 (n=3). For
small values of ¢ obviously, only the first term in the denominator is essential, and we have

mo~K(n,M)e, K(nM)= (127)

il
M,1+M)>"

Tables 1 and 2 give the values of K(n,M) for a set of integer M from 1 to 10 and some values
of M >1.5/n. We have obviously

1
K(n,ﬂl)<W2- (128)
TasLe 1. K(n,M)
M =6 n=4 =i n—6 == n=8§ n=9 n=10
' | 3 \
1 . 0625 L0114 (2)240 (3)548 . (3)130 . (4)316 .(5)778 | .(5)193
2 L0111 . (2)103 . (3)106 | . (4)115 . (5)126 . (6)140 SOy . (8)172
3 .(2)347 | .(3)193 | . (4)116 | . (6)719 | .(7)448 | .(8)280 |.(9)175 | .(10)109
4 . (2)143 .(4)526 | . (5)206 (7)821 . (8)328 =(9)13 SEEH2T oAl
{5 . (3)694 (4)182 | (6)498 (7)138 . (9)383 . (10)10€ | . (12)295 . (14)821
6 . (3)378 (5)736 (6)149 | . (8)204 | . (10)619 | . (11)126 | . (13)258 (15)526
7 .(3)223 | .(5)336 | . (7)522 | .(9)815 |.(10)127 | .(12)199 | . (14)211 (16)486
X . (3)140 . (5)168 (2070 €9)255 . (11)315 | . (13)389 | . (15)480 (17)592
9 . (4)926 (6)903 . (8)900 | . (10)900 | . (12)900 (14)900 | . (16)900 (18)900
10 . (4)636 (6)515 . (8)424 | . (10)351 | . (12)290 (14)239 | . (16)198 (18)164
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M n=9 n=4 n—0 n==6 =i == n=9 n=10
1 S e e e e s SR s
92 ChEE S i e T e Tl e e T e 0325 0f9%% I~ ola1
ALy SRV Tor o SRR el 5 . 0866 . 0399 . 0196 . 0101 . (2)533 . (2)289
o = S b . 0438 . 0180 .(2)788 | . (2)359 | . (2)169 . (3)809
5 . 254 . 0718 . 0241 . (2)891 . (2)349 20142 (5 H 9D . (3)252

%6 IR . 0464 .0141 . (2)470 L (2)165: 1 54 (3)602 . (3)224 . (4)848

e . 134 . 0313 . 00864 . (2)260 +(3)825 . (3)270 . (4)902 . (4)305

o] =102 . 0218 . 00548 . (2)150 . (3)431 Z(3)I27 =382 . (4)116

=Y . 0789 . 0156 . 00359 . (3)894 SBNZ2ID . (4)623 . (4)169 . (5)462

) . 0625 . 0114 .00240 | . (3)548 | . (3)120 | . (4)316 | . (5)778 | .(5)193

n=15 n=20 Nn—205 n=30 n=—35 n=40 n=4>5 n=>50

Sl . 0157 (2)439 | .(2)138 | . (3)469 |.(3)166 | . (4)604 (4)224 | . (5)841

) S (2)137- 15 (3988 = - (4) 28] . (5)439 . (6)697 (6)112 (7)180 . (8)290

e sl 8 ) RO (AL T2 N (B)/798: . (7)570 . (8)413 . (9)299 (10)217 S GLEL)57

.4 . (4)242 | . (6)809 s CORTT 1 5(9)957 . (10)331 (11)114 (13)395 . (14)137

) . (5)399: | . (7)681 .(8)118 | . (10)204 | . (12)354 | . (14)613 (15)106 . (17)184

.6 . (6)729 | . (8)658 (10)597 | . (12)543 | . (14)494 | . (16)449 | . (18)409 . (20)372

AT . (6)146 (9)721 . (11)357 | . (13)177 | . (16)879 (18)436 | . (20)216 . (22)107

.8 .(7)317 | . (10)886 | . (12)248 | . (15695 | . (17)195 | . (20)545 | . (22)153 | . (25)428

9 . (8)743 | . (10)121 | . (13)197 | . (16)322 | . (19)525 | . (22)856 | . (24)140 | . (27)228

1.0 . (8)186 (11)182 (14)178 | . (17)173 | . (20)169 (23)165 |.. (26)162 . (29)158

The bound in (126) is obviously the “best” under the condition (75), save that the factor
1/M of € in the denominator could be replaced by an (unknown) fraction of it.

If M<1.5/n, the use of the general formula (87) is very cumbersome. We can, however,
obtain a good working limit for m in the following way. If the inequalities (2) are valid for
an M<1.5/n=M™, then they are also satisfied if M is replaced by M™, but then the limit
for m obtained for M™ is also sufficient for our M. We obtain therefore in this case the
sufficient condition for (122) in the form

m<mi= 2 e (129)
A{;n) (1 +M(n))n—l+(M'(Ln)+F> €
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Table 3 gives the values of K(n,M™) for n=1,2, . . ., 50.

TaABLE 3. M=M™=1.5/n

n A+Mr—mM—1 K(n,M) n Q+M)r—nM—1 K(n,M)
3 . 871 . 255 27 1. 805 . 00755
4 1. 074 . 134 28 1. 811 . 00723
5 1. 213 . 0866 29 1. 817 . 00694
6 1. 315 . 0623 30 1. 822 . 00667
it 1. 393 . 0480 31 1. 827 . 00642
8 1. 454 . 0387 32 1. 831 . 00619
9 1. 504 . 0323 33 1. 836 . 00597
10 1. 546 . 0276 34 1. 840 . 00577
11 1. 580 . 0240 35 1. 844 . 00558
12 1. 610 . 0213 36 1. 848 . 00540
13 1. 635 . 0190 37 1. 851 . 00524
14 1. 658 . 0172 38 1. 854 . 00508
15 1. 677 . 0157 39 1. 857 . 00493
16 1. 695 . 0144 40 1. 860 . 00480
17 1. 710 . 0133 41 1. 863 . 00466
18 1. 724 . 0124 42 1. 866 . 00454
19 1. 736 . 0116 43 1. 869 . 00442

20 1. 748 . 0109 44 1. 871 . 00431

21 1. 758 . 0102 45 1. 873 . 00420

22 1. 768 . 00965 46 1. 876 . 00410

23 776 . 00914 47 1. 878 . 00401

24 1. 784 . 00869 48 1. 880 . 00391

25 1. 792 . 00827 49 1. 882 . 00383

26 1. 799 . 00789 50 1. 884 . 00374

The expression for m, can be written in introducing the value of M as

3 €
2n LR LB LY )
<1—|— = ) <(1 —I——n—> —2.5)—{—((1-}-7) ——1.5' €
We observe now that for any positive a and positive z the expression (14z/n)" * mono-
tonically increases and tends to e” if the positive n increases monotonically to «. Indeed, if

we put u=1/n, take the logarithm of this expression, differentiate it with respect to u, and
multiply by u?, we obtain

z (u— au?)

e —log (1-+ux)

but this éxpression vanishes for =0 and decreases for positive u, since its derivative is

— U

(14+uzx)?
We see, therefore, that

(58 e, (Ao

and our bound for m can therefore be replaced by

a+z+ axu).

1.5
n

_3_. € : = € :
20 e —2.5)+(e!*—1.5)e” (5.93-F1.99¢)n’

we can replace therefore the condition m <mg by the simpler condition

(130)



On the other hand, we obtain at once the solution of our problem in the case m=M<1/(n—1)
from (87°).

Vil € " 1

This is a “best” condition, whereas the condition (130) can still be improved. We see
however, in comparing (130) with (131), that the bound in (130) cannot be improved by a
factor greater than 6.

From the condition (130) we can finally derive the inequality (7) of the introduction.
Indeed, if positive my<1/2n is given, we can solve (130) with respect to e,

6nm,

T1—2am,

and obtain therefore, in applying (130) for m=m,, the inequality

- bnm,

—Iep s AO) e
Liar I”=1—2nm0’

which holds for all positive my<1/2n and gives the inequality (7) if we replace here m, by m.
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