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Nonnegative Trigonometric Polynomials and 
Certain Rational Characteristic Functions 

Eugene Lukacs 1 and Otto Szcisz 2 

Let O< b,<b2< . .. < bn be n integers and O< d, < d2< ... < dm be m (m;;'n) real 
numbers (llot necessarily in tege rs). Denote by g(O) the Vandermonde determinant formed 

m 
from the b"f, bt ... , b; with t he first row replaced by 1- Aj cos bio, where Aj= IT (1- bUd~) 

k=l 
for j = 1,2, ... , n. The question whether g(O) is nonnegative for all values of 0 is close ly 
connected with the problem whet her certain rational func tions a re characteristic function s. 
Four configurations of the b" . . . , b", and d" .. . , dm are studied, which lead to non
negative trigonometri c po ly nomials. 

1. Introduction 

In this paper we study several nonnegative trigonometric polynomials that are connected 
with the question whether certain rational functions are Fourier transforms of distribution 
functions (characteri tic fun ctions). 

We consider in the following a rational function <t> (t) whose poles and zeros have the same 
imaginary part a and assume further that all poles and all zeros have the order one. Let 
-ia, i'/)" -iv j(j= 1,2, .. . ,71) be the poles and -iWk' - iwk(lc= I ,2, ... ,m), m~n, be the 
zeros of <t>(t) , where vj= a+ ib" wk= a+idk , and a> O, O< b1< b2< ... < bll , O< d1< d2< ... < dm . 

Such a function ¢ (t) fulfills the necessary conditions that a rational function must satisfy in 
order to be the Fourier transform of a distribution function . These conditions were given 
in two earlier papers [1, 2].3 

In the following we denote by 

b~, 

(1) 

the generalized Vandermonde determinant formed from the numbers bi, . .. , b! with the 
exponents k, 1,2, ... ,(n- l ). We write furth er D. j for the minor of the element in the first 

n 
row and jth column of this determinant, so that V k = ~ (- I )J-IWD. j • 

j=1 

In order to decide whether the function <t>(t) is a characteristic function, we decompose it 
into partial fractions and apply the Fourier inversion formula. W e see then after some com-

putation that <t> (t) is the Fourier transform of a certain function f (x), i. e., ¢ (t) = f -"'", ett"j(x)dx, 

wherej(x) is given by 

{
a, 

j(x)= Ce-ax{Vo-#t(_l)HD. jAjCosbjx }, if x> O (2) 

if x<O 

J National Bureau of Standard s. 
2 University of Cincinnati. Deceased September 19, 1952. 
3 Figures in brackets indicate t he literature references at the end cf this paper. 
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with 

(2a) 

(j = 1,2, ... n). 

If we introduce the polynomial 

H( z) = co(z- dD ( z -· d~) (3) 

where 

(3a) 

we can write 
Aj= H(b7), j = I,2, . . . , n. (4) 

The function f (x) as determined by (2) is real, after some computation it is seen that 

l "' j(x)dx = l. Ifj(x) is nonnegative, it is the frequency function of an absolutely continuous 

probability distribution. We obtain therefore the following condition: 
CONDI'fION 1. The rational junction tf>(t) i s a characterish'c junction if, and only if, 

b~, b~, 

g(e) = 

b2 (n - 1 ) 
1 , 

b2 (n - 1) 
2 , 

jor all e. 

, (1 - An cos bnO) 

b~ 

2:0 (5) 

If we consider a rational function without zeros, that is, if we assume that <Po(t) is the 
reciprocal of a polynomial whose roots are - ia, -iviJ - iv j (j = 1,2, . . . , n), then we 
derive by a similar reasoning the following statement: 

CONDI'l' ION II. The junction tf>o(t) is a characteristic function if, and only if, 

b~, b~ , 

2: 0 (6) 

b2(n - 1 ) 
1 , 

b2 (n- l ) 
2 , 

b!(n -1 ) 

jor all e. 
This condition is analogous to (5) , in fact, (6) may be obtained from (5) by putting Aj= 1 

for j = I , 2, ... , n. Vole agree, therefore, to put Aj= 1 whenever m = O. 
In this paper we consider the determinant (5) only for integer values of the b i and show 

that it represents for certain configurations of the b j and dk a nonnegative trigonometric poly
nomial. In this manner we can construct certain rational characteristic functions. 
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2 . Some Lemmas 

F or thc discussion of the nonnegativity of gee) we need the following lemmas: 
L EMMA 1. Ij bl , bz, .. . , bn are integers, the determinant (5) can be jactored so that 

g(O)=(l -cos e)n-mA (cos e), 

where A(x) is a polynomial in x oj degree bn-n+m. 
L E MMA 2. Ij bl , b2, ••• , bn are odd integers, and if n > m, we have 

g' (0) = sin e(l -cosZ e) n-m-IB ( cos 0), 

where B(x) is a polynomial oj degree bn - 2n+ 2m + l. 
L E MMA 3. L et 

for s= O, 1, 

and 

The polynomial Q(x,\") is nonnegative in the interval - 1 ::;x::; 1 ij, and only if, 

\" ::; Zn · 

H ere z" is the root oj the equation 

which j alls into the interval (0,1). 

M oreover, let wn=~n+~ Zn. 

Then lim wn= p exists and is the root of the equ ation 
n~oo 

which is located in the interval (0, v'!). 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

The proofs of the lemmas 1 and 2 are completely analogous to the proofs given for the 
corresponding lemmas in an earlier paper [3], in which nonnegative trigonometric polynomials 
of the form (6) were s tudied . Lemma 3 is iden tical with lemma 3 of [3]; we omit th erefore 
the proofs of the three lemmas and refer instead to [3]. 

The function g(O) as defined by (5) and (2a) depends on the parameters 
bl , ••• , bn , dl , . •• , dm- It is sometimes convenient to indicate this faet by wri ting 
g(O) = g(e lbl , •.• , bn;d l , •• . , dm) . Similarly, weshallwrite occasionallyVo = Vo(bl , ... , bn) 
for the Vandermond e determinant formed from the numbers b~, . . . , b ~. 

It is possible to obtain some of the results of our previolls paper as particular cases of 
results obtained in the presen t paper. For this purpose we n eed the following lemma. 

L EMMA 4. L et g(e lbl , • •. , bn;d l , ., dm) be the junction defined by (5) and (2a). Ij 
I we put d.= bp , we obtain 

~ g(O lbl , • •• , bn ; d l , ••• , d.- I, bp , d.+I, ... , d m) 

Vo ( b I , . . . , b II) 

., bp_ l , bp+l , .. . , bn; d l , • • . , d._I, d.+ 1 , 

V O( bl , •.• , bp _ l , bp+l , • • . , bn) 
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that is, the substitution dv= bp transforms the function 

g(e l bl , ••• , bn ; d l , ••• , dm) 

VO(b l , ••• , bn ) 

into a similar function that does not contain any more the parameters dv and bp • 

It is possible to give an elementary proof of (14) by a straightforward computation. 
The validity of (14) becomes apparent, however, if we remember that the rational function l/>(t) 
is the Fourier transform of Ce- axg(x lb1, ••• , bn ; d1, ••• , dm). 

3. Nonnegative Trigonometric Polynomials 

In the following we assume that the bl , bz, ... , bn are positive integers, while the 
dl , •• • , dm may be any positive real numbers. The function gee), defined by (5) is then 
a trigonometric polynomial. According to condition (I) the function l/>(t) is a characteristic 
function if, and only if, gee) is nonnegative. The purpose of this paper is to consider con
figurations that lead to nonnegative trigonometric polynomials. For this discussion it i 
convenient to introduce occasionally a new variable: 

x=cos e, (15) 

and to use the notation 

P (x) = g(arc cos x). (16) 

Since we assume from now on that the b/s are integers, the substitution (15) transforms 
cos bje into T b/x), where T b/x) is the bjth Tchebycheff polynomial of the first kind. There
fore , we see from (5) that under the conditions of lemma 1, 

(17) 

In a similar manner, ... ve have under the conditions of lemma 2, 

(18) 

When we make this substitution we shall use the fact that the trigonometric polynomial gee) 
is nonnegative for aIle if, and only if, the polynomial P (x) ~O for Ixl ~1. From (17) we obtain 
immediately 

CONDITION (III) . The trigonometric polynomial gee) is nonnegative if, and only if, the 
polynomial A(x), introduced by lemma 1, is nonnegative jor I x l ~1. 

We use condition (III) and the lemmas obtained in section 2 to derive conditions for certain 
trigonometric polynomials. The results are contained in the subsequent statements. 

STATEMENT 1. Ij the b, are the first n consecutive integers, i. e., b,=j jor j = l, 2, ... , n~ 
and if m = 1, the trigonometric polynomial g(lJ) is nonnegative if, and only if, 2d~ ~ n . 

In this case we have 'A ,= l -l/d~, j = l, 2, . .. , n and obtain from (17) 

From this equation it is possible to determine the coefficients a and b. After some elementary 
computations we obtain 

P (x)= 2 n - 1f1 n [n(n-d~)+ d~l (l -x)n - l {1+ n(nn~-;-)d~di x}. 
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Clearly, P (x) '2. 0 for I x l ~1 if, and only if, I n2- di l ~n(n-l)+di. This inequality can be 
written as -n2+n-di~n2-di ~n2-n+ di. Since n is a positive integer , this condition reduces 

to 2di'2.n. 
COROLLAR¥ 'TO S'l'A'l'EMEN'l' 1. If the bJ are the first n consecutive even integers, i. C., if 

b j= 2j for j = 1,2, ... , n, and if m= 1, then the trigonometric polynomials g(f)) is nonnegative 
if, and only if, di'2.2n. The corollary follows almost immediately from statement 1. 

STA'l'EMEN'l' 2. If the bj are the first n consecutive integers, i . e., ij bj=j for j = l, 2, . .. , n, 
and if m = 2, the trigonometric polynomial g(f)) is nonnegative, ij, and only 1(, a certain poLynomial 
Q(x) is nonnegative jor Ix l ~ 1. H ere 

(19) 
where 

L (n,dt,d2) =n4-n2(di+ d~) + did~, ( 

M (n,dl ,d2) = 2n4 - 6n3+ 4n2- n + n(di+ dD - 2did~ , ( 

N(n,dl ,d2) = n4 - 6n3+ 7n2- 2n+ (n2- n) (di + dD +did~ . ) 

(20) 

PROOF. From (2a) we see that 

forj = 1,2, . .. n, and obtain from (17) 

From this equation it is possible to determine the coeffi cients a, b, and c. After some elem en
tary computation, one obtains 

A particular case can be discussed easily. If dl = (n+ 1) and d2= (n+ 2), we obtain from (20) 
L = 4(n+ l )(2n+ l ), M =-4(2n+ l )(2n2+n+2), N = 4n4+ 4n3 + 19n2+ 5n + 4. It is th en casy 
to show that Q(x) is positive in - 1 ~x ~ + 1 so that P(x) is nonnegative for the 
values k j=j(j= l , 2, ... ,n) and m = 2, dl = (n + 1), d2=(n+ 2). This m eans in probabilistic 
language thattherationalfunction with2n + l poles -i(a±ij)(j= l , ... , n) and -ia and the 
four zeros - i(a±idl ), - i(a±id2) is a characteristic function. 

STATEMENT 3. I} the bj are the first n consecutive odd integers, i. e., ij bj= 2j - l 
jor j = l, 2, ... ,n, and ~f m = l while n> l \ then the trigonometric polynomial g(f) is non
negative if either one o} the jollowing two conditions is satisfied 

(i) d '2..J2n - l , 

(ii) d< .J2n-l, 

but 

• The case n~m~l is cO"cree! by statement J, and can therefore bc excluded here. 
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wh ere 2.- 1 is the root oj the equation 

which Jalls into the interval (0, 1). 

IJ neither (i) nor (ii) is satisfied, then the Junction gee) assumes also negative values. 
COROLLAR Y '1'0 S'l'A '1'EMEN'r 3. IJ Jor large n and d< 2n- 1 

/(n + ! ) [(2n - 1)-d2
] < = 05939157 -V (2n- 1)2-d2 -p . . .. , 

then gee) is nonnegative. 

In formulating this statement, we wrote for d1 simply d. From (2a) we see that 

(2 '- 1)2 
) for)' = l 2 d2 , , . ,n. 

According to lemma 2, as expressed by (18), we have 

where B (x) is a polynomial of the second degree. From this equation it is possible to determine 
B (x), we obtain 

(21) 

where 

From (21) we see tha t 

B ( - l )= B (l) = 2(2n- ~~ (n - 1) I' > 0 

B (O)=[ 1- 2nd~ 1 J I'> O (22) 

B' (X) = - 21' [ 1_(2ncf l) ] x; B"(x)=- 21' [1 (2ncf 1)] 

We first assume d ? 2n- l , then B' (X) S; O for o S;xS; 1. Since B (I» O, we have B (x) > 0 in the 
interval (0,1), from B ( -x) = B (x) it is seen tha t B (x) > 0 for Ix IS; 1. N ext we suppose 
(2n- l) > d ? ·,,!2n- 1, then B (x) has a minimum at the point x= O, so that B (x) ? B (O) > 0. 
Summarizing, we see that B (x)? 0 for Ixl S; 1, provided d ?..J2n 1. But this means that 
pI (x) S; 0 in Ixl S; 1. From (17) it is seen that P (l ) = 0 if n > m , so that P (x) > 0 in Ix IS; 1, and 
therefore gee) ? 0 for all e, so that condition (i) is proved. 

We next consider the case d< ..j2n - 1. We write 
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If we denote by 

and by 

then we have 

Therefore, 

'Y, = [2niz 1)2 - 1 ] 'Y > 0 

(2n - l )- d2 

(2n _ 1)2_ d2> 0 , 

Condition (ii) and the corollary to statement 3 follow then immediately from lemma 3; a brief 
table of the Zn is contained [3]. 

W' e proceed to discuss a more complicated case by assuming that the rational function 
¢> (t) has two zeros (i. e., m = 2) and that it has the first n consecutive odd integers as poles, so 
that bj = 2j- 1 for j = 1,2, . .. ,no 

We obtain then from (18) 

where 

C = 4[ (2n - 9)An- (2n - 1) f.. n_l] 

A = (2 n2 - 13n+ 22) f.. n - (2n- 1) (2n - 7) f.. n_l + (n- l ) (2n - 1) f.. n _2 

We write 5 

so that 

For n > m = 2 we have P (1)= O, and therefore 6 

A b= - - , 
4f.. n 

P (x) = 4/'An 11 (l _ t2)n-3(4t4 + at2- b)dt for n ~3 . 

(23) 

(23a) 

(24) 

(25) 

(26) 

The nonnegativity of the polynomial P (x) depends on the natme of the roots of the polynomial 
B (x) = 4x4+ ax2- b. This introduces the need to distinguish a number of cases, for this purpose 
we write h(7) = 472+ a-r - b= 4 (7- 71) ( 7 - 7 2), where 

In the following we denote by 

7 ) = (- a- -va2+ 16b) /8} 
7 2= (- a+ -va2+ 16b) /8 . 

B(x) = h(x2) 

R j (z) = J~ (1_ t2),,-3t2(i- 1) (t2- z2) dt for i = 1,2. 

We are now in a position to formulate statement 4. 

, We aSSllme here An,",O. We need not consider the case A.~ O, sin ce this reduces by lemma 4 to the case covered by statcmen t 3. 
, If n ~ m, lemma 2 is not valid, and moreover, P (l » O. 'r ile case n=m= 2 would therefore requh'c a separate discussion. 
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S'l'ATEMENT 4. Ij the bj are the first n consecutive odd integers, that is, 'if bj = 2j - 1 for 
j = l , 2, ... ,n, and 'if n > m = 2, then the trigonometric polynomial g(O) is nonnegative 'if, and 
only ij, one oj the jollowing nine, mutually exclusive, conditions is satisfied 

(i) An>O, a;:::O , and b ~O 

(ii) An> O, a< O, and a2+ 1Gb ~O 

(iii) An>O, a ;::: O, O< b< a+ 4, and R 2 (.yT2)-TjR j(-./T2);::: a 

(iv) An> a, a> a>-4, 4 + a> b>-a2/16, and R 2(.yT2)- TIRl(,IT2);::: a ; ij b< a, we have the 
additional condition R 2(-.yTl) - T2R j(-.yTl);::: a 

(v) An> a ;::: a+ 8> a+ 4;:::b>-a2/16 

(vi) An>a, - 4 ;:::a>-8, a ;::: a+ 4;:::b> - a2/16, and also R 2 (.yT2)- T1R 1(.yTz);::: a; ij b~a , 
we have the additional condition R 2( - .yTl) - T2Rj ( -.yTl) ;::: a 

(vii) An<a, a ;::: a, and b ;:::a+4 

(viii) An<a, a< a, and b ;::: max [a , a + 4] 

The proof of this statement is rather tedious. It is, however, similar to the proof of state
m ent 3 of the present paper and of statement (F ) of [3] and is therefore omitted. 

We conclude this section by using lemma 4 to show that the earlier results may be obtained 
as particular cases of the statements of the present paper. We consider as an example 
statement 1 and write n = s+ l and put d 1= k , where k is an integer . From lemma 4 we see 
that g(Oll , ... ,s+ l;k) and go(Oll , ... ,k- l, k+ l , ... ,s+1) are simultaneously non
negative so that statement 1 reduces to statement C of [3]. 
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