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Electron-Optical Shadow Method of Magnetic-Field 
Mappingl 

1. Marton, J. Arol Simpson, and S. H. Lachenbruch 

The esse ntia l features of the electron-optical shadow method for the quantitative 
mapping of magnetic fields are presented in unified form . The processes of obtaining and 
analyzing the shadowgrams are given in some detail. Iterative procedures of analysis , 
which have proved successful in practice, are illustrated by the mapping of an otherwise 
inaccessible ferromagnetic domain fi eld. Sections 5 and 6 give an analytical method, involving 
inversion of integral operators. The method, although it has not yet been applied to the 
analysis of shadowgrams, is given because of its generality and applicability to the equi"alent 
problem of interpretation of fluid dynamic interferograms. 

1. Introduction 

A technique was introduced about 3 years ago 2, 3 

for quantitative mapping by means of an electron
optical system, of electric- and magnetic-field 
distributions, which , because of their small dimen
sions extending to below 1 micron or because they 
would appreciably be affected by the presence of a 
probe, are not capable of satisfactory measurement 
by conventional probe methods. Since that time, 
both experimental and theoretical studies of this 
"shadow method" have been madc. The purpose 
of this paper is to summarize briefly in unified form 
the essential features of the method, as modified and 
broadened through subsequent published and un
published studies and experiments. 

The shadow method may be considered as con
sisting of the following three main basic s teps: [to be 
discussed separately] : 

Step 1 (Experimental). The field to be s tudied is 
placed in the path of an electron beam in the obj ect 
space of an electron-optical lens system whose 

1 'I'hls papel' is a summary of 3 years work in the Electron Physics Scetion of 
the National Bureau of Standards. M any members, past and presen t, bave 
contribu ted to the work described. T he bulk of the mathematical development, 
part of wbich appears as sections 5 and 6, is due to S. H. L achenbrueh . In the 
expertm en tal part, much is due to the work of A. Van Bronkhorst, G. For:!, 
J . Suddeth, and '1'. McCraw. 

, L . Marton and S. H . L achcnbruch, J. Research N BS 43 409 (1949) RP2033. 
3 L. Marton and S. H . Laehenbru eh. J . Appl. Phys. 20, 1171 (1949.) 
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image space contains an opaque object, such as 
a wire grid, and the distortion of the shadow of this 
objec t due to the presence of the unknown field is 
measured as a funct ion of position. When the field 
does not have axial symmetry, add itional experi
mental data of value may b e obtained by repeating 
the experiment wi th different orientations of the 
field and/or varying beam energies. Figure 1 shows 
the arrangement of one such nO"lsymmetrical sample 
and a representative shadow graph. 

Step 2 (Geometrical). From this shadow dis tortion, 
and Jrom known geometrical parameters of the 
electron-op tical sys tem, the angular deflections of 
d ifferent rays by the given field are calculated. 

Step 3 (Analytical). The field distribution is 
calculated from this deflection fUllction and from 
any known or assumed qualitative properties of the 
unknown field . 

2. Step 1 (Experimental) 

Figure 2 is a schematic diagram of the electron
optical arrangement used . The main components 
of the sys tem are: 

(a) an objective-lens system, characterized by the 
principal planes, P , P', and the focal length, j; 

(b) the unknown field , placed in object space with 
its center a t a distance s' , from the first principal 

F I GUR E 1. 

(a) Typical arrangement for obtaining the shadowgraphs of a nonsymm ctrlcal object. (b) T y pical distorted m esh shadows. 
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FIG URE 2. Schematic draun:ngs of the optics of the shadow method. 

plane (this determines the conjugate distance s); 
(c) a point source, E', of electrons, at an "object 

distance" e', (usually e' = CX) ), which determines a 
crossover point, E, at a distance e (usually e j) in 
the absence of the unknown field; 

(d) a wire mesh or other shadow-casting obstruc
tion, placed in image space at a distance c, thereby 
determining the conjugate distance c'; 

(e) an optional projector lens, 1.\11, for magnifying 
the shadow image, characterized by the lens separa
tion, s+ l, and the focal length, jl; 

(f) a fluorescent screen or photographic plate in 
the final image plane (8 or 8 1) conjugate to the plane 
containing the center of the field . 

Most of the work at the Bureau has been done with 
a modified 4 electron microscope, which provides the 
above components in a convenient form. 

As the following conditions are to be assumed in 
the calculations, it is necessary that they be satisfied 
experimentally: 

Assumption 1. The trajectories within the field 
lie entirely in one plane (the plane of fig. 2). 

Assumption 2 . All lateral distances and angles, 
measured from the optical axis, are sufficiently small 
to make geometrical aberrations negligible, so the 
Gaussian dioptrics is applicable. 

Assumption 3. The distance between deflecting 
field and lens field is sufficiently great so that the 
interaction between the two fields may be neglected. 

Assumption 4. The electron energy, F, is in the 
nonrelativistic range. 

The assumptions place limitations on the form, 
position, orientation, and order of magnitude of the 
electromagnetic field. Thus, assumption 1 requires 
that planes exist in which the field produces only 
plane deflections, and assumption 2 requires that 
these deflections be small. No restriction is placed 

, J . A. Si mpson and A. Van Bronkhurst, Rev. Sci . IllstJ". 21, 669 (1950). 
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on the time variation of the field which may be 
static or varying.s 

The solid ray in figure 2 represents a typical 
electron trajectory, deflected by an angle cf> by the 
unknown field before entering the lens system, and 
casting, on the final screen 8 1, a shadow A l of the 
point G of the opaque obstruction. The broken 
ray represents the trajectory, which, in the absence 
of the deflecting fi eld, would pass through this same 
point G, the corresponding shadow being at Aol . 
The distance between these two points, which 
represents the displacement of the shadow of G due to 
the presence of the field , may be measured for each 
point G, whose shadow can be identified and then be 
plotted as a function of the distance a(81A 1), which 
is approximately proportional to the coordinate 
a' (8' A') in the deflecting field . 

Practically, the distances 6.a can be measured 
(1) directly on a plate on which two exposures with 
and withou t deflecting fi eld are superimposed; 
(2) if only one exposure with deflecting field is taken 
and there exists an undistorted region of the shadow 
pattern. the straight line corresponding to this part 
of the plot (a-ao) versus a can be extrapolated, and 
the distances between the actually observed portions 
of the shadow and their extrapolated line can be 
measured; (3) if no undistorted part of the shadow 
pattern exists, a second mesh can be introduced 
between the electron gun (or condensor lens) and 
the deflecting field providing a reference mesh-wire 
system.6 

Tests with the known field in the equatorial plane 
of a Helmholtz coil as deflec ting object have shown 
that the errors introduced in this (a-ao) versus a 
plot by the aberration of the lens and the experi
mental uncertainties arc smaller than 2 percent. 

, L. Marton and D . L. ReYeJ'din, J . App!. Phl's. 6, 617 (1950). 
' D. L . Reverdin, J . A p p!. PI1YS. 22, 257 (1951). 



3 . Step 2 (Geometrical) 

AssLlmption 2 above implies the existence of a 
linear relation between flal , a measurement in the 
final image plane, and th e angle ¢ , through which the 
unknown field deAects the ray that passes through 
th e typical point A' of the field. This relation may 
be expressed as 

(1 ) 

where Ii. is a known function of the magnifications 
and other fixed geometrical parameters of the system . 
From th e geometry of figure 2, i t is easy to show 
tha t Ii. may b e expressed as 

Ii. 
1 

(2) 

where 

~ I = ldl = flad fla = magniflcation of proj ec tor sys tem ; 

~= s/s' = fla / fla ' = magnification of magnetic 0 bj ec t 
on screen S; 

v= (s-e)/(c-e)=magnification of opaque object C 
as determined bv its shadow on 
screen S in absence of defl ec ting 
field ; 

~ = e/e' which vanishes when inciden t 
beam is parallel. 

Whereas in s tep 1 the deflecting effec t of the field 
was magnified , by means of a lens s~Tstem and 
shadow-casting obj ec t , in ord er to facilitate the 
measurement of that effec t, in step 2 this magnified 
effect, represen ted by the measuremen t flal, is con
ver ted back to angular defl ec tion in object space. 

The problem of experimen tally determining Ii. by 
measuring the quantities on the right-hand side of 
eq (2) is somewhat complica ted by the distortion 
in troduced by th e proj ector lens. This distortion 
makes the precise determination of the magnifica
tions difficult. A series of tests 7 on the known field 
of a small Helmholtz coil shows that with care the 
errors in troduced in the determination of Ii. can be 
less than 5 perc011t. 

4 . Step 3 (Analytical) 

The discussion of this step will be limited, for 
simplicity , to magnetic fi elds, which have been 
studied in consid erable detail. 

We note first that assumption 1 above confines the 
analysis of magnetic fi elds to planes (such as the 
equatorial plan e) tha t intersect all magnetic lines of 
force orthogonally. All electrons initially moving in 
such a plane will remain therein because their deflec
t ion by tbe fi eld is everywhere normal to both the 
path and the lines of force. The plane of figure 2 
must therefore have this proper ty. 

i J . A. Sim pson, Proceedi ngs of t he N BS Semicentenn ia l Sy mposium on 
Electron PhySics, N BS Circular 527 (1954). 
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Figure 3, which lies in one such plane, sllmmarizes 
the theoretical problem of step 3. The polar cOOl'di
nate system (1', IJ ) is attached to the ma~ne tic fi eld 
H (r , IJ ), which is directed normal t.o the plane of the 
figure. The relative ori entation of fi eld and op tical 
system may be varied experimentally. The curve L 
represents a typical electron trajectory thTough the 
fi eld in this plane. It may be considered as approxi
mately straight because assumption 2 implies tha t 
the deflec tion angle ¢ is necessarily small- otherwise 
the method, which involved geomet.rical optics, would 
not have been applicable. IV[oreover , this assump
tion eliminates the variation of beam energy as an 
added parameter for investigat ion of nonsymmetrical 
fields. 

In steps 1 and 2 a lens sys tem has served the pur
pose of measuring, by magnify ing its effect, the 
deflec tion angle, ¢ , corresponding to each of a cer tain 
se t of direc ted lines, L , in the plane of figure 3. 
Now, each such line is identified uniquely by a pair 
of coordinates (p ,{3) as shown, where the angle {3 
may be varied e~q) erimen taUy by arbitrary plane 
ro tations of the field relative to th e lens sys tem, and 
p is th e classical impact parameter , and in th c case 
of parallel illumination is equal to ao /~ . H aving 
served its purposes, therefore, the lens system may 
now be disregarded, and tb e problem l"emaining 
may be stated as follows: For each of a certain set of 
directed lines L = L (p ,(3 ) in the plane of figure 2, each 
identified by coordina tes (p ,{3 ), we have an experi
men tally determined deflection angle ¢ = ¢ (p,{3 ), and 
hence, by the well-known rela tion (giving the 
deflec tion of a charged particle in mo tion through 
a magnetic field ), th e value of 

i ~2m v 
I (p,{3) = H (r ,IJ)ds = - ¢(p ,{3), 

• L ( p ,{3) e 
(3) 

tbe in tegral of II along tha t line. (H ere e, m , and 
11 are the charge, mass, and potcntial of the elec
t rons.) 'IiV' e wish to derive from this the magnitude 

FIGU RE 3. Coordinates 1lsed in the 
analysi s of shadowgraph s. 



and sign of the unknown H at an arbitrary point Q 
with polar coordinates (r,e). It is in this step
that of obtaining the unknown function H (r,O) 
from its integral I(p,{j)- that a number of procedures 
have been proposed, and several tried. These 
methods are summarized below. 

It is worth noLing that the problem is essentially 
the same one that arises in the interpretation of 
interferograms taken of ail' flow, and any of the 
methods used in that field apply. Recently, it has 
been shown that the problem may be programmed 
for a large-scale computer.8 If such a computer is 
available, this represents the ideal method of 
analysis of shadowgrams. 

For the case where the field is known to have 
axial symmetry about some axis normal to the 
plane of figure 3, we can choose the origin as the 
intersection of the axis with the plane. Then 
H = H(r) is independent of e, and also I = I(p) is inde
pendent of (j, so the problem is greatly simplified. 
Some of the methods about to be described are 
limited to this case, which, due to the difficulties of 
the more general case, is the only one that has been 
investigated in detail up until this time. 

4.1. Method (a) . Fitting of parameters 

In the method first used, the unknown field 
H~r,e) is assumed to have a specific analytical form, 
usually selected from known or predicted physical 
properties of the field and field-producing object, 
and involving one 01' more unknown parameters 
~al,a2 , ... ) to be determined 

(4) 

where F is a preassigned function of rand e, periodic 
in e. 

Integrating the specified function F in advance 
gives a predicted analytical form for I , as a known 
function G of (n + 2) quantities 

I (p,{j) r F(r ,e,al,a2 ... an)cls = G(p,{j,al . .. an) 
JL \ P' ~) 

(5) 

We wish to solve for the n quantities ai by matching 
this G-function against the values of the I-function 
obtained experimentally for different values of p 
and {j. 

One way to do this is statistical- by applying least 
squares to the experimental results, starting with an 
equation of the form 

m 

L;[Ik- G(Pk, {jk, at· .. a n)]2= minimum, (6) 
k=l 

m being the number of electron paths for which 

8 F , D . Bennett et aL Interferometric analysis of airnow a bollL projectiles in 
free flight, Ballis tic Research Laboratories, Aberdeen Proving Ground , Report 
No. 797 (March ]952). 

experimental data have been obtained. Here the 
closeness of fit can usually be used as a partial check 
on the validity of the functional form F chosen. But 
how good a check is not lmown until we consider the 
question of uniqueness, mentioned at the conclusion 
of section 6. 

An example of the method of fitting of parameters 
is described in detail in an earlier paper (see foot
note 3). The field of a magnetized wire, in its 
equatorial plane, was evaluated on the hypothesis 
that its form approximated that of the field between 
two equal and opposite point poles of unknown 
magnetic moment, ai, separated by an unknown 
distance, 2a2. For this case, the function F of eq 
(4) is 

H(r)= F(T,al,a2)= al(T2+ a~) -3/2. (8) 

The corresponding function G is found from eq (5) 
to be 

(9) 

The moment al and pole separation, 2a2, and hence 
the field H(r) , were obtained by a least-squares 
method of fitting the function G to an experimental 
scatter diagram derived from deflection measure
ments. 

4.2. Method (b). Evaluation by step-function 
approximation 

In a second method, the field is assumed to exist 
only in a finite portion of the plane of figure 3, and 
this portion subdivided into n regions R k of chosen 
shape and size, and the field calculated as if it were a 
step-function constant within each such region 

(10) 

where (r,e)~Rk, k= 1,2 ... n. By integration we 
obtain 

(11 ) 

where " k(P,{j ) is defined to be the length of the 
segment of intersection of the line L (p,{j) and the 
region Rk • 

If, then, I (p,{j) is known experimentally for n 
different electron paths L (p ,(3), there result n 
simultancous lineal' equations in the n constant 
values ak of H. These equations may, in general, b e 
solved for the ak, although the labor may be great in 
many cases. Moreover, it is not possible generally 
to choose a grid and a set of rays that insure that the 
set of equations is linearly independent. This 
proves to be a very serious difficulty. 

The technique to be clescribed avoids both diffi
culties. Figure 4 shows the grid used to study the 
field about a corner of the cobal t crystal of figure 1. 
This is merely an illustration, and a number of other 
grids have been developed for specific problems, 
but all use the same technique. The rays are so 
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F IG UR E 4. A nalysis of magnetic Jringe field oj a cobalt crystal. 

(a) Orid used in evaluation of fields a !)ou t the corner of the sam ple by means of t he step-fllnction approximalion. (b) Resul ts of t his method on the fringe field 
of a single cobalt crysta l. 

chosen that each ray passes through only one square 
for which ak has not previously been determined. 
The firs t three such rays are shown in figure 4. With 
such a system, the determinant is triangular and can 
be solved within a reasonable time. Unfortunately , 
with a given number of values of the angular param
eter , only a limited number of grids may be used 
before i t is impossible to draw a line tha t does no t 
pass through two or more unknown grids. In the 
grid illustra ted , this takes place after 47 square 
have been evaluated, when there are shadowgraphs 
available for each 15° of revolu tion. Figure 4, b , 
shows the results of this method applied to the field 
of the cobal t crys tal 

The errors inheren t in this procedure are compli
cated and large. In addition to any experimental 
eITors involved , one has the error caused by replacing 
th e integral with the ra th er crude sum. This error 
can b e estimated by changing the number of the 
meshes up to the maximum possible and observing 
the ch ange in values. A value for this error seems, 
in practice, to be as large as several hundred percent. 
The exact value depend s on the magni tude of the 
gradien t and also on the sensitivity of the original 
shadowgraph. (The fi eld is considered to fall to zero 
outside the grid , which , in practice, is extended to 
the limi t of th e region in which there is a measurable 
deflection .) 

Known proper t ies of the field sometimes suggest a 
special choice of subdivision. For exampl e, if the 
field is known to have ro tational symmetry about 
some known point in the plane of figure 3, the mos t 
appropriate mode of subdivision would be into rings 
bounded by concentric circles about that point, 
inasmu ch as the field is cons tant along any one of 
th ese circles. 

The field surrounding a magnetized wire has been 
computed by this method and showed good agree
men t with the result ob ta ined by me thod (a) , in 
which the field was assumed to be that of a pair of 
point poles (see eq 8 and 9) . 

4.3. Method (c) . Series expansion 

A field that is known to have axial symmetr.'7 
about a point at which i t may reasonabl)- be assumed 
to become infinite can, in general , be assumed ex
pansible as a series in inverse powers of the distance 
T from tha t point, such a series being convergen t for 
sufficiently large T 

(12) 

Physically, this expansion correspond s to assuming 
that the field is that of a n n-poJc , and hence no terms 
below that corresponding to a single pole (az ) appears. 

By integration of (12) along the horizontal line 
L (p, 7r-j2) whose equation is T sin f) = p, we ob tain 

I (p)= J H (T) ds= J H (r)d (,,11'2_ p2) 
L (p ,w/~ L . 

_ 7ra2+ 2a3+ - p])2 . .. (13) 

On matching this series expression for J (p) against 
the function obtained experimentally, one is able to 
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evaluate numerically the coefficients az, a3, ... , and 
hence deduce the series representation (12) for H. 

Even when the condition of axial symmetry is not 
satisfied , it may sometimes be possible to find types 
of series appropriate for expansion of given field 
distributions. The numerical evaluation of the co
efficients would then be obtained , as above, by 
matching the termwise integral of the series with the 
experimentally derived function J (p ,{3 ). The restri c
t ions, techniques, etc. , would of course vary from 
case to case; thus, for example, if a Fourier series, or 
other series in orthogonal functions , is used, the 
unknown coefficients will generally be obtainable 
from an explicit formula involving definite integrals. 

The series expansion method, al though it has a 
certain amount of general ity, must be used with 
some cau tion. On account of questions of con
vergence, for example, a series of form (12) could 
never be used in the neighborhood of the poin t 
1'= 0 . 

5. Direct Method of Inversion of Integral 
Operators 

It is to be noted that in all three methods described 
above, the approach consists in assuming a priori 
some specific analy tical form for H , involving one 
or more unknown parameters, which are then eval
uated from experimental results. In this sense, they 
may aJl, in fact, be regarded as special cases of 
method (a). If, for example, the function F of (4 ) 
is taken to be the step function of (10), the result 
is essen tially method (b); a,nd if F is a series such 
as (12), one obtains method (c). Still other methods 
may be derived by choosing F as a function of still 
different form. Thus a generalization of method (b ) 
is obtained by choosing F to be a linear or second
degree function , rather than a constant , in each 
region Rk • 

An entirely different approach consists in inter
preting (3) as an integral equation, and observing 
tha t it can, in general , be uniquely solved for the 
unknown function H (r,O) in terms of the function 
J (p ,{3 ) which may be obtained experimentally. 

T o date, no use has been made of the method in 
experimental work. However , because of its gen
erality, preciseness, and application to the analysis 
of in tel'ferograms in fluid dynamics, it is given in 
detail. 

5.l Analytical solution for case of axial symmetry 

For th e following considerations, the integral 
equation (3) may be expressed in a more specific 
form by using the equation of L (p,I) (see fig. 3). 

P = r cos (0- (3 ). (14) 

By solving (14) for 0, we see that, on the line L (p,{3) 

0= { {3 +cos- 1 plr 

(3-cos- 1 plr 

on the one half-line 

on the other half line 

(15) 

Substitu ting (15) into (3) , and expressmg ds as a 
function of 1', we obtain 

We take firs t the important special case where 
the field is known to have axial symmetry about 
some axis normal to the plane P . , Ve can choose 
as origin of coordinates the intersection of this axis 
with P. Then H = H (r) is independent of 0, and 
also J = J (p) is independent of (3 . H ence, (1 6) sim
plifies to the form 

J (p) = 2 Iv'" H (r)rdrj.Jrz- p z. (1 7) 

Now Abel's integral equation, 

(18) 

is known to have the unique continuous solution 

sin}...7r d IY g(y)= -- -d j (z)dz l(y - Z)I - X, 
7r 'Y a 

(19) 

providedj(z) satisfies certain very general continui ty 
conditions and j (a )= O. If in (18) one replaces z 
by (- p2), f (z) by J (p ), a by - 00, }... by! by 2, Y by 
(- 1'2), and g(y) by H(r ), i t is seen to reduce exactly 
to (17). By (19), therefore, the unique solution of 
integral eq (17 ) is 

which may be reduced to any of the follo wing 
equ ivalen t" forms " 

- 1 dJ '" / ~ l-I(r) = - -l J (p)pdp _h 2 _r2 
7rr G r r 

= - - J' (p)d p/.Jp2_ r Z. IJ '" 7r r 
(20) 

W e have thus an explicit expression for the fi eld 
H (r) in terms of the empirically known function J (p). 
If J(p ) is known at a suffiCient number of experi
mental points so that a curve may be plotted, the 
value of H (r) corresponding to each value of l' may 
be calculated directly from (20 ) by some numerical 
integration procedure. 

102 



The integral eq (1 7) and j ts solution (20) may be 
abbreviated as 

I (p) = l' {H(r) }; H(T) = T -l { I (p) }. (2 1) 

This form suggests a somewhat different way of 
viewing the problem : viz, as the problem of inverting 
a linear integral operator T in function-space. 

It can also b e considered as a problem in integral 
transforms. vVhen miscellaneous elementary func
tions are SUbstituted for H (T), and the corresponding 
fUllctions J (p) are calculated from (17) and simpli
fied, and then verified by substitution into (20), a 
table of transforms may be constructed, similar in 
form to a table of Fourier or Laplace transforms, 
and the linearity property may be used to derive the 
transforms of more complicated functions, including 
the field-distribution functions most frequently 
encountered. 

The one-to -one correspondence implied by (21), 
or by (17) and (20) , provides a conclusive a nswer , 
for the axially symmetri c case, to the question of 
uniqueness of the ]'esult- a question not rigorously 
investigated previously. We can now state that if 
t he shadow m ethod IS apphed to a magnetic field 
known to have axial symmetry, a.1CI if a sufficient 
number of experimental measurements are made so 
that the empirical function I (p ) m ay be considered 
as a known co ntinuous function of the continuous 
variable p, th en there exists one and only one 
(continuous) function H (T) satisfying (17) , and it is 
given in terms cf t he known I (p) by (20). 

5 .2 . Analytical solution for fields of genera l form 

Finally, we turn to the general case, removing the 
condition of axial symmetry. The general problem 
is that of solving (16) for the function H(T,e) of two 
variables, when sufficien t experimental data are 
available so that I (p, (3) may be treated as an experi
mentally known function of both variables. 

We note first that for any fixed value of r, th e 
field H must be a periodic function of e, with period 
27r, and so it must have a unique Fourier series 
expansion with functLOns of T as coefficients 

+'" 
H (T, e)= ~ H n(T) exp (ine). (22) 

n = - co 

Similarly, I has a uniqu e Fourier expansion , with 
fun ctions of p as coeffi cients 

+ '" 
I (p,{3) = ~ I lI (p) exp (in{3). (23) 

On subst itut ing (22) and (23) into (16), and equat
ing coeffi cients of like powers of exp (i{3) on the two 
sides of the resulting equation, one obtains 

f '" Tdr 
I n(p)= 2 H ,,(r)cos(ncos - 1p/T) / .' 

P "\ T2_ p -

(n =-= O,±1, ± 2, .. . ). (24) 

For each value of n, (24) .is an in teg ral equat ion for 
H n(T) in terms of I n(P). 

A calculation carried ou t in the appendix sholl's 
tha t these integral equations have uniqu e solutions 
for the H-coefficients in terms of the co rresponding 
I -coeffi cients. If, then, one has sufficient experi 
mental data to define the continuous function l (p,{3 ), 
the coeffi cients in its Fourier expansion (23) a rc 
uniquely determined from the formu la 

1 ( 2'-
I ,,(P)= 27rJ o I (p ,{3 ) exp (-in{3)d{3, (25) 

the coefficients H n (1') are then determined in tum as 
solutions of the integral eq (24), and so the desired 
function H (T, e) will be obtained expli citly in t he 
form of a Fourier series (22). 

The fact that a Fourier series representation was 
used here as a tool to solve the g'eneral problem , and 
to investigate existence and uniqueness questions, 
may tend to obscme the basic nature of the result . 
By analogy with (2 1), we may abbreviate the integral 
eq (16) and its solution as 

I (P,{3) = T (l-l(T,e) ), and H (r ,O) = T - l (l(P ,{3)). (26) 

This form again suggests that the problem may be 
viewed as that of inverting a linear integral operator 
T, this time in a space of function s of two variables. 
It is possible that more compact expressions and 
proofs might be possible when the problem is attacked 
from such a point of view. 

The question of uniqu eness is again seen to be 
conclusively answered as a by-product of t his anal
ysis- this time for the general (nonsymmotl'ic) case. 
We can state that if, in apply ing the shadow method 
to a magnetic field that is not Imown to have axial 
symmetry, sufficient experimental data are obtained 
so that the function I (p,{3) may be considered as 
a known continuous function of the two continuous 
variables p and {3, periodic in {3 (with period 27r), 
then there exists one and only one (continuous) 
function H (1', e), periodic in e (with period 27r), and 
satisfying (3) . It is obvious t hat in order to satisfy 
the requirement of sufficient data in this general 
case, it will be necessary to det ermine the dependence 
of Ion (3 by repeating the experimental measmement 
for different relative orientations of field and optical 
aXIS. 

6 . Appendix. Outline of a Procedure for 
the successive solution of the integral 
equations (24) 

(a ) When n = O, (24) becomes 

l o(p) = 2 r '" Ho ( r)dr/.,jrL p~ ., 
J1' 

( 27) 

wh ich has exactly t he same form as (17), and, thcreforc, by 
(20), has the unique con ti nuous solution 

Ho(r)=-~f, '" I~(p) /";pLr2. 
". r 

( 28 ) 
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(b) When n = ± I, (2,1) takes the form 

or ( 29) 

1 ( ) / - 2l a> H ± l (r) rdr ±l P P- ------, 
p r ";r2- p2 

which is of t he same form as (27) except that the functioll s 
Io (p) and Ho(r) are replaced, respectively, by l ±:(p) /p and 
H ±l(r) /r. The unique solution , obtained from (20), is 
therefore 

(c) The higher-ord er coefficients (for I n l ~2) are more diffi
cult to evaluate. The followin g method of obtaining the 
coefficien ts for n = ± 2 and n = ± 3 appears capable of extension 
to coefficients of higher order. 

Since 

cos [ ± 2 cos- 1 k) 

=2(k' - 1)+ 1; cos [ ± 3cos- 1 k) = 4k(k2 - 1 )+ k (31) 

(24) becomes, for n = ± 2 or ± 3, 

I n( P ) =21,a> H .(1·) (7 t l-2{A{ (7)L 1] + 1}..;~(~· p2' (:32) 

where 
A 2= A - 2= 2, A 3= A - 3= 4 

But (32) may be \Hitten as 

(3 3) 

I n(P)= 2 r a> H n(r )rdr 2A f oo !{n (~ /rL 2dr ( 34) 
p lnl-2 ) 1' rlnl - 2..jr2_ p' n)p r 1nl-1"'1 p , 

which becomes, Oil applying integration by parts to the last 
integral, 

(35) 

where 

1 (r)= H n(1·) - 11 f a> H n(jJ-) dp. . (36) 
n r lnl-2 nJr j.L lnl-l 

Equation (35) is again of the general form (17) \yith certain 

o 
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replace men s , and hence, by (20) 

. 1 fa> d [ I n( P )] dp 
1n( r) =-;)r dp p l n l-2 ";p' - r2' l37 ) 

Substituting (36) into (37) and differen t iat ing with respect 
to r, 

.!!.- [ H n(r) ] + A n [ H n(r) ] ==)!£ f ro !£. [1 n( P ) ] ~. 
dr r 1nl - 2 r r 1n l- 2 7r dr dp p 1nl- 2 ";p2 _r2 

( 38 ) 

But (38) is a linear first-order diffe rential equation in t h e 
unknown function H n(r) / 1"lnl-2 , which can be solved explicitly 
for H n(r) by the usual formula , and the arbitrary constant 
evaluated from the condition t hat it vanishes at r= co • 

This determines the functions H 2, H_" H3, H- 3 uniquely, a s 
was to be proved . 

7. Summary 

The electron-optical shadow method of field 
mapping has been used at the Bureau for 3 years to 
study such diverse and otherwise inaccessible fields 
as the fringe fields of ferromagnetic domains of single 
crystals and collodial partides, space-charge fields 
in magnetrons, and the external fields of magnetic 
recording wire. The over-all accuracy of the method 
depends upon the analysis of the experimental data, 
and, in favorable cases, has been as good as 5 percent 
although 10 or 100 times greater error may result in 
the more unfavorable cases. But in any case, the 
method opens a new magnitude of fi elds to study 
and measure. 

In addition to those mentioned in the text and 
notes, the following nembers, past and present, in the 
Electron Physics Section, National Bureau of 
Standards, have by their efforts advanced the work 
reported: H. M endlowitz, H . Ernst, J. Stewart, A. A. 
N argizian, D . Schubert, P . Weinzierl, L. Greene, A 
Dauses, and L . Mann. 'Ve express our appreciation 
for their help. 

WASHINGTON, March 17 , 1953. 
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