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Conrady's Chromatic Condition 1 

Donald P . Feder 

Kearly fif ty years ago Conrady published a simple and ingenious formula for deter mini ng 
t h e state of chromatic correc tion of an optical system. This method called t he " D-d achro­
matism" , depends upon th e variation of the op tical path as a fun ction of wavelength . It 
can be used to evaluate both .axlal and .la ter al color, chro matic variation of spherical aberra­
t IOn , and seco ndar y chromatIc aberrat ion . Unfort unately, this method is not as well kn own 
or as widely used a s it deserves to be. 

This paper l)roveS t he exa~t equation and discusses a n exte nsio n of it \I'hich is approxi­
mate . . A numerI cal exa mple Illu strates the accuracy obtainable wi t h the approximat ion . 
The pnnClpal applICat IOn s are presented and formulas derived givin g the relations betwee n 
the " D-d method " and co n ventional means of expressing t he chromati c aberra t ion. 

1. Introduction 

Professor Conrady is among the bes t-known 
teachers of the ar t of optical design. His book 
" Appl ied optics and optieal design" is famili ar to 
mo t designers and is a bible to some. The " D-d 
method" for calculating chromatic aberration, how­
ever , is not found in his book, and this may account 
for th e fact tha t it is not as widely known as it 
deser ves to be. Th e method was published in two 
papers in the Monthly Notices of the Royal Astro­
nomical Society nearly fifty yeat s ago. 2 It was 
sUl"'pr ising to find recen tly that many good lens 
desIgn er are unacquainted with th e method . FUl"­
thermorB, even those who use it do not often 
apply it to off-axis imagery. 
_ It will be shown in this paper, tha t after rays have 
been [raced through the sys tem to determine the 
monochromatic aberrations, the complete state of 
t.'H' chromatic correction can then be found with very 
IJ ul<.' extra work and wi thou t the necessity of trac ing 
rays at any other wavelength. In addition the D-d 
method gives the results of ray tracing a t three wave­
length s. Because this method gives answers in the 
form of optical path diJrerences, it is frequently 
ea leI' to obtam a well eorreeted system by this 
method than by eonventional methods. The use of 
the D-d met hod is recommended to des igners who 
reqUJT'e a simple and elegant way for finding the 
chromatic aberration of an optieal sys tem over the 
entire fidel. 

The proof presented by Conrady is not entirely 
satisfactory, and later proofs, al though more eumber­
some, arc less convincing. Some of them depend 
llpon very complieated geometrical figures that are 
difflcult to follow. 

The region of validity of the formula is not well 
d <.'fi ncd . A recen t paper, for example, stated that 
the chromatic variation of spherical aberration is not 
always given correctly by the formula. Conrady 
himself , appeared to think that the secondary chro~ 

1 T ills work was done as part of a research project sponsored by t he U . S. Air 
Force. 

2 A. E . Conrady. M ont hly );'otices of tbe Royal Astronomical Society. p. 182 
(Jan. 1904); p . 458 (M arch 19(4). 
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matie aberration 3 was exactly determined by th e 
D-d method . lL will be seen bcJow, however, that 
any aberration determined by th e first derivat ive 
with respect to wavclength is precisd y given by thi 
formul a . _ Therefore, any chromatic aberration , in­
cluding chromatic varifl bon of spheri cal, is accurately 
given over. a narrow wavelength region in the neigh­
borhood of the median waveleng th no malleI' what the 
monochromatic abe1'l'ations oj the system may be. For 
a somewhat wider wavelength region the method 
gives an approxima te answer , whi ch is ordinarily 
good enough to determine the secondary chromatic 
abe rrat ion of th e system . 

2. Derivation of Principal Equation 

Figure 1 shows a meridan section through a typical 
lens. The proof will be given for this case and 
immediately extended to any numb er of elements. 
A point source a t 0 is emitt ing light t ha t is refracted 
by t he lens. For a par t icular wavelength Ao, we 
consider a wave front in the image space. vVe may 
suppose that this wave front is located a considerable 
di~tance from the image of O. We take a point, P, 
lymg on the wave front , and draw the normal to the 
wave front . This normal coincides with a ray in the 
image space whose extension in the obj ec t space 
passes through O. This ray is shown as a solid line 
in figure 1. In like manner for any wavelength A, 
there exis ts a unique ray passing from 0 t o P. 
Another such ray is shown by the dotted line in 
figure 1. 

In order to find the chromatic aberration, we 
should like to know what happens to t he wave front 
when the wavelength is varied . Vol e first consider 
what happens at the point P , and then , by letting 
P move over the wave front, obtain the total effect . 
We first mark off along the ray t he distance DJ 
D2 , D 3 , D4 intercepted on the ray by the variou~ 
media. The distance D4 is the distance along the ray 
from the last surface to the point P. As the wave-

3 Because of strong objections by some people to tbe term secondary spectrum 
the expression secondary cMomatic aberration is used for tbis qua nt ity throughout 
the paper. 



FIGUR E 1. M eridian section of typical lens. 

Ligh t from a point source at 0 t raverses a typical len s producing an emergent 
wave fron t at P in light of wavelength Ao. The solid line shows such a ray with 
t he distan ces in the various media indicated by DI, D2, D 3, D .. . The dotted 
line indicates a ray going from 0 to P lor another w,,,,elength A. The wave fron t 
lor A is not shown in the figure. 

length changes, the distances DI , D2, D3, D4, change 
a nd so are to be considered functions of A. 

Let us define V(A) to be the optical-path length 
from 0 to P . Suppose, for convenience, that the 
object and image are in air; then 

V(A) = DI + N 2D2+ N3D3+ D4, 

where NI and N2 are the refractive indices of the 
corresponding media . Differentiating V with respect 
to A gives the rate of change of the optical-path 
l ength from 0 to P. One obtains 

dV = {dDl+ N dD2+ N dD3+ dD4 } 

dA dA 2 dA 3 dA dA 

+ { dN2 D +dN3 D}' 
dA 2 dA 3 

One sees that the derivative is divided naturally into 
two parts. In the first part (left-hand bracket), the 
Tefractive indices are held fixed. Ther efore, this 
part results from the variation of the path of the ray 
and is zero by Fermat's principle . 

F ermat 's principle states that the optical-path 
l ength between two fixed points possesses a stationary 
value with respect to arbitrary variations of the 
m echanical path . In this case we are considering a 
subset of all the possible variations in path from 0 
to P : namely, only such variations as are generated 
by varying A. Because of the manner in which this 
subset was chosen, it is clear that it contains, for 
light of any fixed wavelength A, the actual path 
traversed by the light. Furthermore, for light of 
this wavelength A, the actual path possesses a station­
ary value. In mathematical language, 

dDddA +N2dD2/dA+ N3dD3/dA+ dD4/dA= O. 

It follows that dV/dA = D2dN2/dA + D3dN3/dA. 
This equation can be immediately generalized to any 
number of elements giving 

dV dN 
'(li=2: dA D . (1) 

This is the principal equation, and forms the basis 
for the method. It should be noted that nothing in 

its derivation restricts its application to axial object 
points or even to meridian rays. 

2 .1. Significa nce of Principal Equation 

To understand the significance of eq (1) recall that 
for light of a fixed wavelength, t he optical-path 
length, V, from the obj ect point to any point on the 
wave front is a constant. Suppose that dV/dA has 
been calculated for all points P on the wave fron t of 
wavelength A. For a sufficiently small increment in 
wavelength, ~A, it is approximately true that 
Ll V = (dV /dA)LlA. A point pI is now d efined such tha t 
pI lies on the ray throu~h P, and such tha t the 
displacement 0f pI from P is - Ll V . It is clear that 
the optical-pa th length V' from 0 to pI for light of 
wavelength A+ ~A is equal to V. In this manner a 
set of points pI is constructed, which constitutes a 
wave front for light of wavelength A+ LlA. By the 
nature of the construction, the displacement of this 
wave front from the original ,,,ave fron t is 
- (dV/dA )LlA. This equation becomes exact only in 
the limit as ~A----70. 
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The above argument shows that if ~ Vis a constant 
over the entire wave front, then the changed wave 
front is " parallel" to the original one, and there is no 
chromatic aberration in the image of O. Stated more 
precisely, if dV IdA , evaluated at A= AO, is the sam e at 
all points on the wave fron t, there is no chromatic 
aberration in the wavelength region around x.o. On 
the other hand , the variation of dV/dX. , as P is moved 
over the wave front , is a measure of the chromatic 
aberration. A more detailed study of this point is 
given later in this paper. 

The actual calculation of dV/dA from eq (1) is a 
simple matter. After the monochromatic errors are 
determined by tracing rays at a cen tral wavelength, 
the values of the D'S are available as a byproduct. 
The quantities dN/dx. are available from the known 
properties of the glasses employed. It is a simple 
matter to form the indicated sum for several points 
on the wave front and to examine t he chromatic 
aberration in the vicinity of the central wavelength 

2 .2 . The Approximate Equation 

N ow one may ask how to determine the secondary 
chromatic aberration. For this it is necessary to 
calculate d2V /dA2. As eq (1) holds for all values of 
A, it may be differentiated , yielding 

The first term of eq (2) is easy to obtain, but the 
second term is more troublesome. Unfortunately, it 
is not zero, but computations on several widely 
different systems show that it must be considerably 
smaller than the term 'J;Dd2 N /dA2• If this term, and 
all terms of higher order in LlA, are neglected , then 
one has 

1 



or finally , 
(3) 

Equation (3) is an approximate equation, but it 
gives more information than eq (1) because it takes 
partial account of all higher derivatives of N with 
respect to A. Furthermore, it is much easier to 
apply than eq (1) because the glass catalogs list the 
indices for discrete wavelengths, and in many cases 
Ii t the values of t1N directly. On tbe other hand, 
in order to find dN IdA for use in eq (1) it is necessary 
to fit one of the various dispersion formulas to the 
glass data and to compute dNldA for the wavelength 
at which the rays were traced. Although this is a 
straightforward procedure, and has the advantage 
of being mathematically exact, the use of eq (3) not 
only entails less work but also gives an approximate 
idea of the secondary chromatic aberration. 

2.3. Modification When Final Medium Is Not Air 

In the case that the final image is not formed in 
ail", then - t1 V IN' rather than - t1 V is the correct 
expression for the displacement of the wave front. 
Here N' is the index of the final med ium. 

It must also be remembered that the sum "L,Dt1N 
should include the term D't1N' for the last medium, 
where D' is the distance along the ray from the last 
refracting surface to the focal surface. 

3. Application of Method 

Aftor rays have been traced through the system to 
determine the monochromatic errors, it is necessary 
to detennine the D's in each medium for which 
t1N-,t.O. Fortunately , in the usual lens there are 
several n,lr spaces (where t1N= O), [tnd Lhese dis­
appear from the summation in eq (3). In some 
ray-tracing schemes the values of the D's are im­
mediately available for each medium, and in 
others these quantities :),re not directly given. 
Even in the latter event, however, they can eas ily 
be computed from the ray-tracing data. A com­
mon method for meridian rays employs the angle 
of incidence, I , and the angle of inclination, U, as 
coordinates of the ray. In this case one has 

where I~ is the angle of refraction and TI the radius 
of the surface preceding the medium; 12 is the angle 
of incidence, and T2 is the radius of the surface fol­
lowing the medium, and Ul2 is the angle of inclination 
of the ray in the medium of thickness t12 . 

The values of the D's need not be obtained with 
high precision because each D is multiplied by a 
small number, which is rarely larger than 0.03. 
This is an important point from the standpoint of 
the practical comput,er. Five place accuracy in 
the D's is more than sufficient for even the most 
precise work. 

After the values of the D's have been computed by 
any suitable method, one forms for each traced 
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ray the sum "L,Dt1N=, t1 V. If one is achromatiz ing 
for the region from F to C, then N F - Nc for t1N is 
used. Then t1 V is plotted against some variable 
that is a measure of the position of the ray in the 
aperture. For meridian rays this variable may oe 
the coordinate of the ray in the entrance pupil. 
the tangent of the slope angle of the image ray, or 
any variable that locates the ray in the aperture. 
For reasons of convenience, which will appear later, 
we shall use in this paper sin U, where U is the angle 
of inclination of the image ray. 

3.1 . Interpretation 

a . Axial Object Points 

If, for the axial bundle of rays, one plots the value 
of t1 V against sin U, a curve that is symmetrical 
abo ut the line sin U= O is obtained. The displace­
ment of the curve is i111material, and it is customary 
to sllbtract from each ordinaLf' Lhe value of t1 V at 
the origin. This value is "L,dt1N, where d is the axial 
distance between surfaces . One obtains "L,(D - d)t1N, 
and this is plotted against. sin U. This is the formula 
that gives rise to Lhe popular name for the method, 
the D - d method. 

If the lens has no longitudinal chromatic aberra­
tion, the curve will be a stra ight line (see fig. 2) . 
If simple primary aberration is pre ent, the curve 
will be approximately parabolic and will be concave 
upward in the case of overcorrection and concave 
downward for undercorrection. (In establishing a 
sign convention, t1N is taken to be posi tive for all 
the med ia, and sin U is taken to be positive when 
the final ray slopes downward to the right. It 
should be noted that if t1 V is positive, the wave 
front for A+ t1A is behind the wave front for A.) A 
simple relation between the curvature of the parab­
ola and the longitudinal aberration is derived in the 
final section. 

Usually the situation is complicated by the pres­
ence of chromatic variation of spherical aberration. 
In many lenses initial undercorrection is followed 
by marginal overcorrection producing a zone. A 
case of this type is shown in figure 2. Good COlTec-

NO ABERRATION 

PURE UNDERCORRECTION 

ZONAL ABERRATION 

SIN U 

FIGURE 2. Axial fan. 

The ordinate for each curve is 1;(D-d)tJ.N. As these curves are lor axial points, 
they are necessarily symmetrical about the line sill U=O . 



PUR E LATERAL COLOR 

PURE LONGITUDINAL COLOR 

FIGU RE 3. Oblique fan. 

1."' he ordinate for each curve is 6. V . Because the displacement is of no impor­
tan ce, each curve can be zeroed about the chief ray. If the CUrv(' shows symmetry 
a bout the yalue of sin U correspondin g to the chi ef ray, then on ly pure longi­
tudinal color is present. A ti lt indicates lateral color. 

t ion h ere makes "2:, (D - d) t:,.N = O a t the m argin . 
Then wave fronts tha t are tangen t in the cen ter of 
th e aperture will cross a t th e margin. At a point 
usually near the 0.7 zone th e wave fronts will be 
parallel and the corresponding r ays coinciden t . 

b. Extra-Axial Object Points 

As men t ion ed above, for meridian rays on e plo ts 
t:,. V against s in U, where U is the slope angle of the 
final ray in the image space and t:,. V = "2:,Dt:,.N. In 
this case, the symmetry present on axis is no longer 
inherent. Figure 3 depicts some of the character­
istic types of chromatic aberra tion tha t m ay be 
presen t in oblique bundles. If the curve is a straight 
line inclined to the sin U axis, then pure la teral 
aberra tion is presen t. One may think of tbe wave 
fran ts as being inclined to one another. The lateral 
ab erration is propor t ional to th e slope of th e line, 
and its numerical value can readily be ob tained (see 
sec tion 3.3) . As before the displacement of the 
curve is immaterial, only the differences in t:,. V being 
s ignificant. If the curve is symmetrical about a line 
parallel to th e t:,. V axis through the chief ray, then 
pure longitudinal aberration is present. The longi­
tudinal aberra tion for an off-axis obj ec t poin t may be 
quite differen t from tha t present on the axis. 

In the ordinary case the curve possesses nei ther 
symmetry nor straigh tness, and the aberration is a 
m i." ture of lateral and longitudinal chromatic 
aberration. 

In the final s tages of an op t ical design, one m ay 
have curves of t:,. V against s in U for several different 
obj ec t points. It is desirable to ob tain the bes t cor­
rec tion throughout the usable field . An advantage of 
this method is that the chromatic aberration is repre-
ented in the same manner both on and off axis. 

The skew-ray aberra tion is also represented by t:,. V, 
and in some cases it may be desirable to a t least plot 

the sagi ttal rays. The author believes, however , that 
the chromatic aberrat ion of the skew rays will no t be 
troublesome if the meridian rays are properly 
correc ted . 

c. Secondary chromatic aberration 

'1.'0 obtain an estimate of the secondary chromatic 
aberration, one should recompute t:,. V by us ing a 
different se t of t:,.N . . Suppose, for example, tha t the 
central wavelength is sodium D and that rays have 
been traced in this color to determine the monochro­
matic aberrations . I t is desired to correct the lens 
in the spectral region 0 to Y The procedure migh t 
be as follows: 

1. The sum "2:, (D- d)t:,. N is mad e zero a t the margin 
using N F- N c for t:,.N and using the values of the D 's 
ob tained from ray trac ing in sodium ligh t . 

2. Check "2:, (D - d)t:,.N to make sure tha t it is sa t is­
factory over the whole aper ture. There is no poin t 
in worry ing abou t the secondary chromatic aberra­
tion if there is a large amoun t of chromatic varia tion 
of spherical aberra t ion present. 

3. After "2:, (D - d)t:,.N is sa tisfactory over the 
aper ture, i t can b e recomputed by using the value 
NF - N D for t:,.N and the sam e values for the D 's as 
before. The value of this second sum is an indica tion 
of the secondary chromatic aberra tion. There will 
be some error owing to the fac t that eq (3) involves 
an approximation, bu t this is no t serious for most 
purposes. 
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I t should be Tecognized that the important use of the 
D-d method is to calculate the higheT ordeT chrom atic 
abeTra tions. B efol·e applying this method, a com­
petent designer will already know the primary values 
of the longit udinal and lateral color and will have 
reduced these aberrations to r easonably small values. 

If the secondary chromatic aberra tion is to be cor­
rected , i t must first be approximately conccted in the 
paraxiall'egion. The simples t way to determine this 
is by tracing paraxial rays for the separate wave­
lengths. After paraxial correc tion is made, it is 
necessary to apply th e D-cl method as listed in steps 
1, 2, and 3 above t,o fJ,scertain whether good correction 
has been achieved over the entire aperture. 

3.2. Tolerances 

One can set up a tolerance for th e variation of t:,. V 
on the basis of physical optics. Suppose that the 
image in D ligh t is sharp and tha t t:,. 11 calcula ted from 
F to D does not vary more than one-fourth wave over 
the aper tm e. Then at the D fo cus the image in F 
light will be sens ibly perfect within the meaning of 
the R ayleigh limit. Similarly, if the v:1riation in 
t:,.11 calculated from D to 0 is also less than one-fourth 
wave, th en the image in 0 ligh t observed at the D 
fo cus will be shar p. Under such circumstances the 
chrom a tic aberration would be extremely well cor­
rected over the entire r egion from F to O. On the 
oth er hand, the a bove tolerance is extremely strict 
and will seldom be me t. in practice. Usuallv one 
corrects the axial bundle of rays so tha t "2:, (D --':d )t:,. N 



is zero at the edge of the aperture, and this correction 
is ordinarily quite adequate. If there is a large ZOIl('. 

because of the presence of chromatic variation of 
spherical aberration, then a basic change in the 
design is necessary to reduce this aberration. If the 
secondary chromatic aberration is to be corrected , 
provision for this correction must be made in the 
prelimina ry design. 

In lenses covering an appreciable field, the cm-ves 
for several obliquities must be simultaneously cor­
rected, and this may lead to sacrificing best axial 
correction in order to gain at the edge of the field. 
The D-d method is ideally suited to making such 
decisions because the chromatic aberration from 
axial and extra-axial object points are both repre­
sen ted by the same type of graph. 

In very many cases the tolerances are determined 
by a combination of experience and such overriding 
co n iderations as cost and complexity. 

3 .3 Relation Between Ray a nd Wave-Front 
Aberra tions 

For designers who are more fami liar with ray ­
intercept methods for expressing chroma Lie abena­
tion, it should be helpful to have a formula relating 
one to the other. Such a formula is derived below 
for meridian ravs. 

One considers a wave front in light of waveleng th 
A loeated a distance R from the focal plane (see fig . 4). 
When the wavelength is ehanged by t::,.A , the chan ged 
wave front makes an angle 0 \\-ith the original wave 
front at some arbitrary point P . It is clear tha t 
d( t::,. V) /ds= o, where s is the arc length measured 
along the wave fron t. Also s= R U because the 
,,-a ve front is nearly spherical. (H ere U is the 

i:y---...---
R 

OPTIC AX IS 

, FOCAL 
WAVE PLANE 

FRONT 

FIGURE 4. 

The fu l.1 curve shows a wave fro nt in light of wa.velen gth X located a distance 
R from the fOCllS. A ray normal to this wave front at P m akes a n angle U with 
the optic ax is. A ray in light o[ wavelength A+dA makes an angle 0 with th e 
first ray. It is ind icated by a dotted line through P crossi ng the focal plane at a 
distance dy rrom the Ht's t ray. 
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angle of inclination that the final ray makes \\-ith 
the optical axis .) Now on e has 

t::,.y - Ro _ R {d(t::,. V)} and els= Rel U. 
- cos U - cos U ------ct:S 

Then 

t::,.1 =~{~(t::,.V ) } =_l _ d(t::,.V ). 
Y cos U RelU cos U dU 

Finally, 
d(t::,.V) 

t::,.y = d(sin U)' (4) 

The existence of eq (4) is the rea on fol' plo t ling 
t::,.V against sin U rather th9n against some other 
aper ture variable, sllch as tan U. 

Equation (4) gi \Tes the displaccmen t of lhe ray 
because of a change in A. One can plot t::,.1 ~ against 
sin U for several traced rays. By measuring the 
slope of the curve at any point , one find s the dis­
placement between rays in the two wavelengths at 
that point. Using the formula , one can obtain the 
ray-intercep t curve for any other wavelength after 
the curve has been found in the centIal wavelength . 
In practice, however, it is not usually desirable to 
do this because the single curve of t::,. V against sin U 
is easier to interpret than two ray-intercept curves 
for different wavelengths. 

3.4. Numerical Example 

Figure 5,a, shows a curve obtained in an actual 
lens design . It represents the monochromatic aber-
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(0) 
RAY INTERCEPT CURVE 
FOR CENTRAL COLOR 
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- .00005 CONRADY SUM 

- .00010 
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.420 .380 .340 .300 .260 .220 
SINE OF FINAL ANGLE 

FIGURE 5. 

(a) The u pper curve shows t he meridian ray aberrat ion at 60° ob liq uity from 
the axis in D light, The ordinate J-I' is the heigh t of the rayon the focal plane, 
t he abscissa is the tangent o[ t he fjnal angle. (b) The lower cur ves show Ll. V 
[or t he same lens at t he same obliquity. 'I' he solid curve is ror t he wave length 
region Ii' to D ; t he dot ted curve [rom C to D. 

~rhese CU1'ves show the ray intercept curves a t 600 in P light (solid line) a nd 
C light (dotted lin e) predic ted by equation (4) from the curves in figm e 5. The 
crosses show the actua l results o[ ray tracing in F ligh t (solid cun'e) and the circles 
the results o[ ray traci ng in C ligh t (dotted curve). 
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FIGURE 6. Ray-intercept curve f or two colors. 
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ration fof· D light for an object point 60° from the 
optic axis. This lens was a complex syste m con­
taining aspheric surfaces and was in an early stage 
of design. Figure 5,b , shows the curve of Il V from 
F to D and the curve of Il V from C to D. Normally 
one would plot only the difference (that is , Il V from 
F to C), but in this case the ray-in tercept curves for 
all three wavelengths were desired. From the slope 
of these curves, the values of Ily have been calcula ted 
by eq (4). These differences were then added to 
the curve in figure 5,a, to obtain the curves in 
figure 6 and these curves checked by ray tracing. 
The crosses and circles show the position of the 
traced rays . The agreement is good except on the 
left end, where the aberration is large. The dis­
crepancy is due to the fact t ha t the wavelength 
in terval used is not sufficiently small . 

3.5. Paraxial Correspondence 

One might ask the question how the curve for 
J:.(D- d)IlN against aperture is related to the paraxial 
chromatic aberration. It would be possible to find 
this correspondence by an investigation of the limit­
ing behavior of J:.(D- d)IlN as the aperture is reduced 
to zero. Such an investigation, however, could only 
produce a well known formula giving the value of 
the longitudinal aberration in terms of the paraxial 
ray tracing data. This formula is reproduced below 
for reference. 

Instead of deriving this formula from an optical 
path difference standpoint however , we shall attack 
the problem in a different manner, that is, by 
assuming that the longitudinal aberration is known 
and determining J:.(D- d)IlN by using this informa­
tion. Suppose there is a longitudinal difference in 
focus Ol between the image positions for two wave­
lengths. In the neighborhood of the axis each wave 
front is a sphere centered about its focus. Consider 
a fixed point on the axis, well removed from the 
focus, and the two spherical wave fronts passing 
through this point (see fig. 7). We ask the question, 
how does the distance between these spheres behave 
as a function of aperture? 

If x and yare the coordinates of a point on the 

8R. t 
o· 

FIGURE 7. 

Two wave fronts in ligh t of different colors in the neighborhood of the axis. 
The longitudinal abberration is oZ. T he wave front separation is ru: 

sphere of radius r, then X= !y2r- l is valid for a 
meridian section in the neighborhood of the axis, 
where r is the radius. The x-axis coincides with the 
optical axis, and x= o at the vertex of the sphere. 
Differentiating with respect to r, one has Ilx=-! 
y2r- 2llr as the approximate displacement of the sphere 
of radius r+ M from the sphere of radius r. But 
Ilx=-IlVjN', where IlV= J:.DIlN and N' is the 
final index (see eq (3), section 2). Then Il V = !N' 
y2r - 2 Ol, since ol= llr. Also sin U = yr- 1, and so 
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Il V = !N'oZ sin2 U. (5) 

Equation (5) shows that the curve of Il V against 
sin U is a circle or parabola for small values of U 
and that the curvature is N' oZ. This then is the 
paraxial correspondence desired . Another way of 
expressing this resul t is to consider Il V as a power 
series in sin U. For an axial object point this series 
has the form IlV= CO + C2 sin2 U+ C4 sin4 U+ ... . 
The odd powers of sin U are absent because of 
symmetry. The first term Co is of no importance 
because it only represents a displacement of the 
reference point, which indicates that the wave fron ts 
for the two wavelengths do not pass through the 
same axial point. This term Co is similar to the 
quantity J:.dIlN, which it is customary to sub tract 
from Il V . 

The coefficient C2 depends upon the paraxial 
difference in focus, and by eq (5) c2 = !N'Ol. The 
coefficients C4, C6, etc. are related to the chromatic 
difference in spherical aberration. It might be 
emphasized that the D-d method gives the sum of 
this series precisely for small wavelength variations 
and approximately for fini te differences in wave­
length. 

In practice, the designer determines Ol either 
exactly from a paraxial ray trace, or approximately 
by a formula given below. Then Il V is determined 
from the D- d method for a number of points 
throughout the aper ture. (Frequently the values at 



the margin and the 0.7 zone are sufficient.) Then a 
curve can be drawn for .6 V versus sin U by mAking 
use of the value of 51 to draw the curve near the origin. 
The curves shown in figure 2 were obtained in this 
manner. 

The approximate formula for 01 is 

where 
a= L2Ykik(t::.Nk- J.l.kt::.N;) . 

k 

(6) 

The meanings of the above symbols, which all refer 
to the paraxial ray, are as follows: 

u is the paraxial inclination angle in the final 
medium. 

y is the height of incidence. 
J.I. = N jN' at the refractive surface. 

.6N and .6N' are the differences in indices for two 
wavelengths for the media preceding and following 
the refracting surface. 

The subscript k refers to the kth surface and the 
sum runs over 1)11 the refracting surfaces in the 
system, the expression (N'U2)-1 refers to the final 
medium. 

Combining eq (6) with eq (5), one finds that 
.6 V = !a if one takes sin U= u. This means that if 
one traces a paraxial ray through the system and 
computes a by eq (6), then .6 V along this ray is 
simply!a. 

WASHINGTON, July 15, 1953. 

49 U. S. GO VER NMENT P'RIItTlItG OFFICE: 19'54 
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