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Conrady’s Chromatic Condition

Donald P. Feder

Nearly fifty years ago Conrady published a simple and ingenious formula for determining

the state of chromatic correction of an optical system.
matism”’, depends upon the variation of the optical path as a function of wavelength.

This method, called the “D-d achro-
It

can be used to evaluate both axial and lateral color, chromatic variation of spherical aberra-

tion, and secondary chromatic aberration.
or as widely used as it deserves to be.

Unfortunately, this method is not as well known

This paper proves the exact equation and discusses an extension of it which is approxi-

mate.

A numerical example illustrates the accuracy obtainable with the approximation.

The principal applications are presented and formulas derived giving the relations between
the “D-d method” and conventional means of expressing the chromatic aberration.

1. Introduction

Professor Conrady 1s among the best-known
teachers of the art of optical design. His book
“Applied optics and optical design’ is familiar to
most designers and is a bible to some. The “D-d
method” for calculating chromatic aberration, how-
ever, is not found in his book, and this may account
for the fact that it is not as widely known as it
deserves to be. The method was published in two
papers in the Monthly Notices of the Royal Astro-
nomical Society nearly fifty years ago.? It was
surprising to find recently that many good lens
designers are unacquainted with the method. Fur-
thermore, even those who wuse it do not often
apply it to off-axis imagery.

[t will be shown in this paper, that after rays have
been traced through the system to determine the
monochromatic aberrations, the complete state of
the chromatic correction can then be found with very
little extra work and without the necessity of tracing
ays at any other wavelength. In addition the D-d
method gives the results of ray tracing at three wave-
lengths.  Because this method gives answers in the
form of optical path differences, it is frequently
easier to obtain a well corrected system by this
method than by conventional methods. The use of
the IJ-d method is recommended to designers who
require a simple and elegant way for finding the
chromatic aberration of an optical system over the
entire field.

The proof presented by Conrady is not entirely
satisfactory, and later proofs, although more cumber-
some, are less convineing. Some of them depend
upon very complicated geometrical figures that are
difficult to follow.

The region of validity of the formula is not well
defined. A recent paper, for example, stated that
the chromatic variation of spherical aberration is not
always given correctly by the formula. Conrady,
himself, appeared to think that the secondary chro-
I‘l This work was done as part of a research project sponsored by the U. S. Air
orece.

2 A. E. Conrady, Monthly Notices of the Royal Astronomical Society, p. 182
(Jan. 1904); p. 458 (March 1904).
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matic aberration ® was exactly determined by the
D-d method. 1t will be seen below, however, that
any aberration determined by the first derivative
with respect to wavelength is precisely given by this
formula. Therefore, any chromatic aberration, in-
cluding chromatic variation of spherical, is accurately
given over a narrow wavelength region in the neigh-
borhood of the median wavelength no matter what the
monochromatic aberrations of the system may be. For
a somewhat wider wavelength region the method
gives an approximate answer, which is ordinarily
good enough to determine the secondary chromatic
aberration of the system.

2. Derivation of Principal Equation

Figure 1 shows a meridan section through a typical
lens.  The proof will be given for this case and
immediately extended to any number of elements.
A point source at 0 is emitting licht that is refracted
by the lens. For a particular wavelength X\, we
consider a wave front in the image space. We may
suppose that this wave front is located a considerable
distance from the image of 0. We take a point, P,
lying on the wave front, and draw the normal to the
wave front. This normal coincides with a ray in the
image space whose extension in the object space
passes through 0. This ray is shown as a solid line
in figure 1. In like manner for any wavelength X\,
there exists a unique ray passing from O to FP.
Another such ray 1s shown by the dotted line in
figure 1.

In order to find the chromatic aberration, we
should like to know what happens to the wave front
when the wavelength is varied. We first consider
what happens at the point P, and then, by letting
P move over the wave front, obtain the total effect.
We first mark off along the ray the distances D),
Dy, Dy, Dy intercepted on the ray by the various
media. The distance D, is the distance along the ray
from the last surface to the point . As the wave-

# Because of strong objections by some people to the term secondary spectrum,
the expression secondary chromatic aberration is used for this quantity throughout
the paper.



Ficure 1.

Meridian section of typical lens.

Light from a point source at O traverses a typical lens producing an emergent
wave front at P in light of wavelength Xo. The solid line shows such a ray with
the distances in the various media indicated by Di, D, D3, Ds. The dotted
line indicates a ray going from O to P for another wavelength X, The wave front
for N is not shown in the figure.

length changes, the distances D;, D,, D;, D,, change
and so are to be considered functions of \.

Let us define V(\) to be the optical-path length
from O to P. Suppose, for convenience, that the
object and image are in air; then

V()\) :Dl+N202+NsDz+D4,

where N; and N, are the refractive indices of the
corresponding media. Differentiating V with respect
to N gives the rate of change of the optical-path
length from O to P. One obtains

dV  (dD, dD, st dD,
N {dx +N ot N +d>\}
d N, dN3
+{ o Dt ;

One sees that the derivative is divided naturally into
two parts. In the first part (left-hand bracket), the
refractive indices are held fixed. Therefore, this
part results from the variation of the path of the ray
and is zero by Fermat’s principle.

Fermat’s principle states that the optical-path
length between two fixed points possesses a stationary
value with respect to arbitrary variations of the
mechanical path. In this case we are considering a
subset, of all the possible variations in path from O
to P: namely, only such variations as are generated
by varying N\. Because of the manner in which this
subset, was chosen, it is clear that it contains, for
light of any fixed wavelength N\, the actual path
traversed by the light. Furthermore, for light of
this wavelength \, the actual path possesses a station-
ary value. In mathematical language,

dD, /AN~ N,d D, [dN~+ Nyd Dy /dN+dD,JdN=0.

It follows that dV/dN=DdN,/d\+ DsdNs/dX\.
This equation can be immediately generalized to any
number of elements giving

av dN
= b

This is the principal equation, and forms the basis
for the method. It should be noted that nothing in
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its derivation restricts its application to axial object
points or even to meridian rays.

2.1. Significance of Principal Equation

To understand the significance of eq (1) recall that
for light of a fixed wavelength, the optical-path
length, V| from the object point to any point on the
wave front is a constant. Suppose that dV/d\ has
been calculated for all points P on the wave front of
wavelength \.  For a sufficiently small increment in
wavelength, A\, it is approximately true that
AV=(dV[dN)AN. A point P’ is now defined such that
P’ lies on the ray through P, and such that the
displacement of P’ from P is —AV. Ttis clear that
the optical-path length V"’ from O to P’ for light of
wavelength N4 AX is equal to V. In this manner a
set of points P’ is constructed, which constitutes a
wave front for light of wavelength N-+-AN. By the
nature of the construction, the displacement of this
wave front from the original wave front is
— (dV][dN\)AXN.  This equation becomes exact only in
the limit as AN—0.

The above argument shows that if AV is a constant
over the entire wave front, then the changed wave
front is “parallel”” to the original one, and there is no
chromatic aberration in the image of 0. Stated more
precisely, if dV/d\, evaluated at X=X\, 1s the same at
all points on the wave front, there is no chromatic
aberration in the wavelength region around \,. On
the other hand, the variation of dV/dX\, as P is moved
over the wave front, is a measure of the chromatic
aberration. A more detailed study of this point is
given later in this paper.

The actual calculation of dV/d\ from eq (1) is a
simple matter. After the monochromatic errors are
determined by tracing rays at a central wavelength,
the values of the [’s are available as a byproduct.
The quantities dN/dX\ are available from the known
properties of the glasses employed. It is a simple
matter to form the indicated sum for several points
on the wave front and to examine the chromatic
aberration in the vicinity of the central wavelength

2.2. The Approximate Equation

Now one may ask how to determine the secondary
chromatic aberration. For this it is necessary to
calculate @V /dN>. As eq (1) holds for all values of
\, it may be differentiated, yielding

PV AN =ZDd?V [dN*+-Z(dN [d\) (dD[dN). (2)
The first term of eq (2) is easy to obtain, but the
second term is more troublesome. Unfortunately, it
is not zero, but computations on several widely
different systems show that it must be considerably
smaller than the term ZDd? N/dX*. If this term, and
all terms of higher order in A\, are neglected, then
one has

dV

A4V gy L BV (AN

dx* 2

dN
=8 {—Jf AN+

&N (AN)?
aE 2



or finally,

AV=ZDAN. (3)
Equation (3) is an approximate equation, but it
gives more information than eq (1) because it takes
partial account of all higher derivatives of N with
respect to N\. Furthermore, it is much easier to
apply than eq (1) because the glass catalogs list the
indices for discrete wavelengths, and in many cases
list the values of AN directly. On the other hand,
in order to find ZN/d\ for use in eq (1) it is necessary
to fit one of the various dispersion formulas to the
glass data and to compute dN/d\ for the wavelength
at which the rays were traced. Although this is a
straightforward procedure, and has the advantage
of b('lnw mathematically exact, the use of eq (3) not
only entails less work but also gives an approximate
idea of the secondary chromatic aberration.

2.3. Modification When Final Medium Is Not Air

In the case that the final image is not formed in
air, then —AV/N’ rather than —AV is the correct
expression for the displacement of the wave front.
Here N’ is the index of the final medium.

It must also be remembered that the sum ZDAN
should include the term D’AN” for the last medium,
where 1)’ is the distance along the ray from the last
refracting surface to the focal surface.

3. Application of Method

After rays have been traced through the system to
determine the monochromatic errors, it is necessary
to determine the I’s in each medium for which
AN #0. Fortunately, in the usual lens there are
several air spaces (where AN=0), and these dis-
appear from the summation in eq (3). In some
ray-tracing schemes the values of the D’s are im-
mediately available for each medium, and in
others these quantities are not directly given.
Even in the latter event, however, they can easily
be computed from the ray-tracing data. A com-
mon method for meridian rays employs the angle
of incidence, I, and the angle of inclination, U, as
coordinates of the ray. In this case one has

D=7, cos I;—r; cos I,-+ (t;—ri+rs)cos Uy,
where 77 is the angle of refraction and 7, the radius
of the surface preceding the medium; 7, is the angle
of incidence, and r, is the radius of the surface fol-
lowing the medium, and Uy, is the angle of inclination
of the ray in the medium of thickness t,,.

The values of the I)’s need not be obtained with
high precision because each D is multiplied by a
small number, which is rarely larger than 0.03.
This is an important point from the standpoint of
the practical computer. Five place accuracy in
the [2’s is more than sufficient for even the most
precise work.

After the values of the D’s have been computed by
any suitable method, one forms for each traced
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ray the sum TDAN=AV. If one i1s achromatizing
for the region from F to (', then Np— N¢ for AN is
used. Then AV is plotted against some variable
that is a measure of the position of the ray in the
aperture. For meridian rays this variable may be
the coordinate of the ray in the entrance pupil,
the tangent of the slope angle of the image ray, or
any variable that locates the ray in the aperture.
For reasons of convenience, which will appear later,
we shall use in this paper sin U, where U is the angle
of inclination of the image ray.

3.1. Interpretation
a. Axial Object Points

If, for the axial bundle of rays, one P lots the value
of AV against sin U, a curve that is symmetrical
about the line sin U—0 is obtained. The displace-
ment of the curve is immaterial, and it is customary
to subtract from each ordinate the value of AV at
the origin. This value is 2dAN, where d is the axial
distance between surfaces. One obtains =(1)—d)AN,
and this is plotted against sin (7. This is the formula
that gives rise to the popular name for the methed,
the )—d method.

If the lens has no longitudinal chromatic aberra-
tion, the curve will be a straight line (see fig. 2).
If simple primary aberration is present, the curve
will be approximately parabolic and will be concave
upward i the case of overcorrection and concave
downward for undercorrection. (In establishing a
sign convention, AN is taken to be positive for all
the media, and sin [V is taken to be positive when

the final ray slopes downward to the right. It
should be noted that if AV is positive, the wave
front for N4 AN is behind the wave front for \.) A

simple relation between the curvature of the parab-
ola and the longitudinal aberration is derived in the
final section.

Usually the situation is complicated by the pres-
ence of chromatic variation of spherical aberration.
In many lenses initial undercorrection is followed
by marginal overcorrection producing a zone. A
case of this type is shown in figure 2. Good correc-

NO ABERRATION

I
PURE UNDERCORRECTION

\/AL\_/

ZONAL ABERRATION

SIN U
Ficure 2. Azial fan.

The ordinate for each curve is 2(D—d)AN. As these curves are for axial points,
they are necessarily symmetrical about the line sin U=



PURE LATERAL COLOR

o~ | —\

PURE LONGITUDINAL COLOR

/_\

MIXTURE

SIN U

Ficure 3.  Oblique fan.

The ordinate for each curve is AV. Because the displacement is of no impor-
tance, each curve can be zeroed about the chiefray. If the curve shows symmetry
about the value of sin U corresponding to the chief ray, then only pure longi-
tudinal color is present. A tilt indicates lateral color.

tion here makes =Z(D—d)AN=0 at the margin.
Then wave fronts that are tangent in the center of
the aperture will cross at the margin. At a point
usually near the 0.7 zone the wave fronts will be
parallel and the corresponding rays coincident.

b. Extra-Axial Object Points

As mentioned above, for meridian rays one plots
AV against sin U/, where U is the slope angle of the
final ray in the image space and AV=2DAN. In
this case, the symmetry present on axis is no longer
inherent. Figure 3 depicts some of the character-
istic types of chromatic aberration that may be
present in oblique bundles. If the curve is a straight
line inclined to the sin U axis, then pure lateral
aberration is present. One may think of the wave
fronts as being inclined to one another. The lateral
aberration is proportional to the slope of the line,
and its numerical value can readily be obtained (see
section 3.3). As before the displacement of the
curve is immadterial, only the differences in AV being
significant. If the curve is symmetrical about a line
parallel to the AV axis through the chief ray, then
pure longitudinal aberration is present. The longi-
tudinal aberration for an off-axis object point may be
quite different from that present on the axis.

In the ordinary case the curve possesses neither
symmetry nor straightness, and the aberration is a
mixture of lateral and longitudinal chromatic
aberration.

In the final stages of an optical design, one may
have curves of AV against sin U for several different
object points. It is desirable to obtain the best cor-
rection throughout the usable field. An advantage of
this method is that the chromatic aberration is repre-
sented in the same manner both on and off axis.

The skew-ray aberration is also represented by AV,
and in some cases it may be desirable to at least plot
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the sagittal rays. The author believes, however, that
the chromatic aberration of the skew rays will not be
troublesome if the meridian rays are properly
corrected.

c. Secondary chromatic aberration

To obtain an estimate of the secondary chromatic
aberration, one should recompute AV by using a
different set of AN. Suppose, for example, that the
central wavelength is sodium ) and that rays have
been traced in this color to determine the monochro-
matic aberrations. It is desired to correct the lens
in the spectral region €' to /. The procedure might
be as follows:

1. The sum 2(D—d)AN is made zero at the margin
using Ny— N for AN and using the values of the D’s
obtaied from ray tracing in sodium light.

2. Check 2(D—d)AN to make sure that it is satis-
factory over the whole aperture. There is no point
in worrying about the secondary chromatic aberra-
tion if there is a large amount of chromatic variation
of spherical aberration present.

3. After Z(D—d)AN is satisfactory over the
aperture, it can be recomputed by using the value
Ny—Np for AN and the same values for the I’s as
before. The value of this second sum is an indication
of the secondary chromatic aberration. There will
be some error owing to the fact that eq (3) involves
an approximation, but this is not serious for most
purposes.

It should be recognized that the important use of the
D-d method is to caleulate the higher order chromatic
aberrations. Before applying this method, a com-
petent designer will already know the primary values
of the longitudinal and lateral color and will have
reduced these aberrations to reasonably small values.

If the secondary chromatic aberration is to be cor-
rected, it must first be approximately corrected in the
paraxial region. The simplest way to determine this
1s by tracing paraxial rays for the separate wave-
lengths. After paraxial correction is made, it is
necessary to apply the D-d method as listed in steps
1,2, and 3 above to ascertain whether good correction
has been achieved over the entire aperture.

3.2. Tolerances

One can set up a tolerance for the variation of AV
on the basis of physical optics. Suppose that the
image in D light is sharp and that AV calculated from
Fto D does not vary more than one-fourth wave over
the aperture. Then at the D focus the image in /'
light will be sensibly perfect within the meaning of
the Rayleigh limit. Similarly, if the variation in
AV calculated from D to (Vis also less than one-fourth
wave, then the image in C light observed at the D
focus will be sharp. Under such circumstances the
chromatic aberration would be extremely well cor-
rected over the entire region from F to (. On the
other hand, the above tolerance is extremely strict
and will seldom be met in practice. Usually one
corrects the axial bundle of rays so that 2(D—d)AN



is zero at the edge of the aperture, and this correction
is ordinarily quite adequate. 1f there is a large zone
because of the presence of chromatic variation of
spherical aberration, then a basic change in the
design is necessary to reduce this aberration. 1If the
secondary chromatic aberration is to be corrected,
provision for this correction must be made in the
preliminary design.

In lenses covering an appreciable field, the curves
for several obliquities must be simultaneously cor-
rected, and this may lead to sacrificing best axial
correction in order to gain at the edge of the field.
The D-d method is ideally suited to making such
decisions because the chromatic aberration from
axial and extra-axial object points are both repre-
sented by the same type of graph.

In very many cases the tolerances are determined
by a combination of experience and such overriding
considerations as cost and complexity.

3.3 Relation Between Ray and Wave-Front
Aberrations

For designers who are more familiar with ray-
intercept methods for expressing chromatic aberra-
tion, it should be helpful to have a formula relating
one to the other. Such a formula is derived below
for meridian rays.

One considers a wave front in light of wavelength
N located a distance R from the focal plane (see fig. 4).
When the wavelength is changed by A\, the changed
wave front makes an angle § with the original wave
front at some arbitrary point /. It is clear that
d(AV)/ds=6, where s is the arc length measured
along the wave front. Also s=RU because the
wave front is nearly spherical. (Here U is the

OPTIC AXIS
N FOCAL
WAVE PLANE
FRONT
"
Ficure 4.

The full curve shows a wave front in light of wavelength A located a distance
R from the focus. A ray normal to this wave front at P makes an angle U with
the optic axis. A ray in light of wavelength A4-A\ makes an angle § with the
first ray. It is indicated by a dotted line through P crossing the focal plane at a
distance Ay from the first ray.
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angle of inclination that the final ray makes with
the optical axis.) Now one has

R O 7{@7@} =

cos U cos U | ds
Then
sy (IO doT)
cos U | RdU cos U dl
Finally, )
y:%- (4)

The existence of eq (4) is the reason for plotting
AV against sin [V rather than against some other
aperture variable, such as tan (7.

Equation (4) gives the displacement of the ray
because of a change in X\.  One can plot AV against
sin U for several traced rays. By measuring the
slope of the curve at any point, one finds the dis-
placement between rays in the two wavelengths at
that point. Using the formula, one can obtain the
ay-intercept curve for any other wavelength after
the curve has been found in the central wavelength.
In practice, however, it is not usually desirable to
do this because the single curve of AV against sin (7
is easier to interpret than two ray-intercept curves
for different wavelengths.

3.4. Numerical Example

Figure 5,a, shows a curve obtained in an actual
lens design. It represents the monochromatic aber-
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Ficure 5.

(a) The upper curve shows the meridian ray aberration at 60° obliquity from
the axis in D light. The ordinate F’ is the height of the ray on the focal plane,
the abscissa is the tangent of the final angle. (b) The lower curves show AV
for the same lens at the same obliquity. The solid curve is for the wave length
region F to D; the dotted curve from C to D.

These curves show the ray intercept curves at 60° in F light (solid line) and
C light (dotted line) predicted by equation (4) from the curves in figure 5. The
crosses show the actual results of ray tracing in F light (solid curve) and the circles
the results of ray tracing in C'light (dotted curve).
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Frcure 6. Ray-intercept curve for two colors.

ration for D light for an object point 60° from the
optic axis. This lens was a complex system con-
taining aspheric surfaces and was in an early stage
of design. Figure 5,b, shows the curve of AV from
F to D and the curve of AV from (' to D. Normally
one would plot only the difference (that is, AV from
F to (), but in this case the ray-intercept curves for
all three wavelengths were desired. From the slope
of these curves, the values of Ay have been calculated
by eq (4). These differences were then added to
the curve in figure 5,a, to obtain the curves in
figure 6 and these curves checked by ray tracing.
The crosses and circles show the position of the
traced rays. The agreement is good except on the
left end, where the aberration is large. The dis-
crepancy is due to the fact that the wavelength
interval used is not sufficiently small.

3.5. Paraxial Correspondence

One might ask the question how the curve for
3(D-d)AN against aperture is related to the paraxial
chromatic aberration. It would be possible to find
this correspondence by an investigation of the limit-
ing behavior of Z(D-d)AN as the aperture is reduced
to zero. Such an investigation, however, could only
produce a well known formula giving the value of
the longitudinal aberration in terms of the paraxial
ray tracing data. This formula is reproduced below
for reference.

Instead of deriving this formula from an optical
path difference standpoint however, we shall attack
the problem in a different manner, that is, by
assuming that the longitudinal abermmon is known
and determining X(D-d)AN by using this informa-
tion. Suppose there is a lonvltudmal difference in
focus 8/ between the image positions for two wave-
lengths. In the neichborhood of the axis each wave
front is a sphere centered about its focus. Consider
a fixed point on the axis, well removed from the
focus, and the two spherical wave fronts passing
through this point (see fig. 7).  We ask the question,
how does the distance between these spheres behave
as a function of aperture?

If  and 7 are the coordinates of a point on the
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\

Two wave fronts in light of different colors in the neighborhood of the axis.

Ficure 7.

The longitudinal abberration is 6/. The wave front separation is Az

sphere of radius », then z=3y>"! is valid for a
meridian section in the neighborhood of the axis,
where 7 is the radius. The z-axis coincides with the
optical axis, and =0 at the vertex of the sphere.
Differentiating with respect to 7, one has Ar=—3%
y*r—2Ar as the approximate displacement of the sphere

of radius »+Ar from the sphere of radius ». But
Ar=—AV/N’, where AV=ZDAN and N’ is the
final index (see eq (3), section 2). Then AV=3N"

Y2 8l, since 8l=Ar. Also sin U=yr~!, and so

AV=3N"6l sin* U. (5)

Equation (5) shows that the curve of AV against

sin U is a circle or parabola for small values of UU
and that the curvature is N’6/. This then is the
paraxial correspondence desired. Another way of
expressing this result is to consider AV as a power
series in sin UU. For an axial object point this series
has the form AV = cote sin? U+e¢, sin* U+ .
The odd powers of sin U are absent because of
symmetry. The first term ¢, is of no importance
because it only represents a displacement of the
reference point, which indicates that the wave fronts
for the two wavelengths do not pass through the
same axial point. This term ¢, i1s similar to the
quantity 2dAN, which it is customary to subtract
from AV

The coefficient ¢ depends upon the paraxial
difference in focus, and by eq (5) co=3N'6l. The
coefficients ¢s, ¢g, ete. are related to the chromatic
difference in spherical aberration. It might be
emphasized that the D-d method gives the sum of
this series precisely for small wavelength variations
and approximately for finite differences in wave-
length.

In practice, the designer determines o/ either
exactly from a paraxial ray trace, or approximately
by a formula given below. Then AV is determined
from the D—d method for a number of points
throughout the aperture. (Frequently the values at



the margin and the 0.7 zone are sufficient.) Then a
curve can be drawn for AV versus sin U by making
use of the value of 8/ to draw the curve near the origin.
The curves shown in figure 2 were obtained in this
manner.

The approximate formula for o/ is

l=a(N'u?)~!
a= Zk:?/kik(ANk_ uANY).

The meanings of the above symbols, which all refer
to the paraxial ray, are as follows:

u is the paraxial inclination angle in the final
medium.

7 1s the height of incidence.

w=N/N’ at the refractive surface.

(6)

where
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AN and AN’ are the differences in indices for two
wavelengths for the media preceding and following
the refracting surface.

The subscript k& refers to the kth surface and the
sum runs over oll the refracting surfaces in the
system, the expression (N’#?)~! refers to the final
medium.

Combining eq (6) with eq (5), one finds that
AV=1a if one takes sin U=wu. This means that if
one traces a paraxial ray through the system and
computes @ by eq (6), then AV along this ray is
simply 3a.
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