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Tables for Use in the Interpretation of Paramagnetic

Behavior Below 1° K; for the Chromic Alums (J=3/2)

Ralph P. Hudson and Charles K. McLane

The method of interpreting susceptibility and entropy data, obtained in adiabatic
demagnetization experiments, by means of the theory of Hebb and Purcell in order to derive

absolute temperatures is recounted briefly.

This forms an introduction to tables that

enable one to carry out this procedure for the case of the chromic alums.

The low-temperature behavior of the chromic
alums is largely determined by the fact that the
fourfold degenerate ground level of the Cr™** ion is
split by the crystalline electric field (Stark effect)
into two doublets separated by an energy 5. The
theory of Hebb and Purcell [1]! yields expressions
for the susceptibility, x,, and the entropy, S, as
functions of the absolute temperature, 7', and this
splitting 6. Thus one may obtain a relation between
S and x, for any chosen 6. In practice one usually
employs the ‘“magnetic temperature” 7™ instead of
X0, and T*=c/xy, “Where ¢ is the Curie constant per
cubic centimeter.

Now experiment also leads to a x, versus S (or
T* versus S) relation, for S may be calculated quite
accurately, simply from the conditions of magnetic
field and temperature at the beginning of the isen-
tropic demagnetization process, and x, is measured
at the end. One therefore has only to find that value
of 6 which leads to an S versus 7* curve fitting the
experimental points. Then over the range of agree-
ment one may suppose the Hebb and Purcell xo(7)
and S(7T) formulas to be individually correct, and
the former leads at once to the establishment of
the absolute temperatures.

Table 1 gives, effectively, corresponding values of
T/ and T#/6 calculated from the Hebb and Purcell

Tasre 1. Corresponding values of kT/6 and k(T*—1T)/s cal-
culated from the Hebb and Purcell [1] formula: T*/6=~=1X T/s
(see text)

- irt=1r Pr=T Rt Iy
kT/s ok kT/s ok kT/s ok
0.05 0. 02813 1.0 0. 03125 3.0 0.01103

.10 . 04708 i . 0287, 3.2 01035

.15 . 05842 1.2 . 02655 3.4 00974

.20 . 06390 1.3 . 02467 3.6 0092,

.25 . 06534 1.4 . 02303 3.8 00871

.30 06431 1.5 . 02159 4.0 0083,

.35 . 06197 1.6 . 02030 4.2 00799

.40 . 05901 1.7 01917 4.4 00754

.45 . 05585 1.8 .01814 4.6 0072,

.50 . 05271 1.9 01729 4.8 00693

.55 . 0497; 2.0 . 01639 5.0 00664

.60 . 0469¢ 2.1 . 01563

.65 . 04432 2.2 01494

.70 . 04193 2.3 0143,

.75 . 03975 2.4 01373

.80 . 03775 2.5 01313

.85 . 0359; 2.6 . 0127

.90 . 03423 2.7 . 01223

.95 . 03263 2.8 0118y
1.00 . 03125 2.9 01139

3.0 . 01103

1 Figures in brackets indicate the literature references at the end of this paper.

33

282952—54 3

formula [1]: T*/6=~"1X T/s, where

y= 1+e W [<%+4“n)+(‘ ~#>ew”]- (1)

Tables 2 to 5 contain the data necessary for cal-
culating the “experimental entropy,” that is, in the
magnetic field at the initial temperature, and the
field-free entropy as a function of £77s.

Considering first the case of the entropy in zero
field and at low temperatures, two effects contribute
to a reduction in the entropy below the ‘ideal”
value of R log, 4, namely, the Stark splitting and
magnetic interaction. The theory treats these two
contributions separately, and they are additive.
The “Stark entropy’” is calculated from the partition
function, Z,=2(1-+¢7%*T) and is given in table 2.
Table 3 lists as a function of z (where x=£kTY/s),
the quantity (d/dx)(Q/x), @ being as defined in
reference [1]. The magnetic entropy, S,, is then
given by

S, JR=(+ /a)za‘% (%) (2)

where 7/k=3c(=0.0211 deg and 0.0194 deg for the
potassium and methylammonium alums, respec-
tively). Hence

e 4——S/R:(logc 4_S/R)Stark+ Sm/lg.

TaBrLE 2. “Stark entropy”, or the reduction in entropy below
the value R log. 4, caused by the effect of the crystal field

kT/s loge 4—S/R ‘ kT/s log. 4—S/R ‘ kT/s log. 4—S/R
0 0. 69315 ‘ 1.0 0. 11094 3.0 0. 01379
0.05 69315 11 . 09353 3.2 . 01206
.10 69265 1.2 . 0798, 3.4 0107
.15 . 68349 i3 . 06883 3.6 . 00955
.20 . 65297 1.4 05993 3.8 . 00858
.25 . 60305 L5 05262 4.0 . 00775
.30 . 54328 1.6 04654 4.2 . 00704
.35 . 4821, i,y 04145 4.4 . 00642
.40 . 4246, 1.8 03714 4.6 . 00587
.45 3729 19 03346 4.8 . 00549
.50 . 3278, 2.0 03030 5.0 . 0049
55 . 2888 2.1 02756
60 . 25535 2.2 02517
65 . 22670 2.3 02308
70 . 20214 2.4 02124
75 . 18104 2.5 01961
80 . 16284 2.6 01815
85 . 14709 2.7 0168
90 13339 2.8 01569
95 .12143 2.9 01465
1.00 . 11094 3.0 01379




TaBLe 3. Corresponding values of kT/s and the function
[1

(d/dx) (@)

The ‘“magnetic entropy”’, Sm, or the entropy diminution additional to the
Stark entropy (table 2), is obtained from the relation Swm/R= (7/5)*(d/dz)(L/z),

(see text).
— — TR —
; d (9 d (2 [ d (s’z ‘
KT - (z) ET/s - (Z) | e | 2 (5)
0 | 1.0 0. 77065 3.0 0.12283
0.05 | __________ 1.1 -6795; 3.2 - 10902
.10 7.16166 1.2 .60056 3.4 L0975
.15 2. 96187 1.3 .532T, 3.6 L0871
.20 1.4571¢ 1.4 . 4745, 3.8 - 07852
.25 0. 94785 1.5 - 4245 4.0 L0711
.30 87771 1.6 38170 || 4.2 L 06474
.35 L9611 %7 34445 || 4.4 L 05917
.40 1.07056 1.8 .3122 | 4.6 L0542
.45 1.15187 1.9 L9841 4.8 - 04995
.50 1.19406 2.0 . 25950 5.0 - 04616
.55 1. 20076 2.1 . 23785
.60 1.18206 2.9) . 21876
65 1.14513 2.3 . 20175
70 1.09676 2.4 . 18667
75 1.0425¢ 2.5 17313
80 0. 98575 2.6 L1610
85 L9292, N ~15009
90 L8738 2.8 L1402,
95 . 82085 2.9 L1313
1.00 .T7066 3.0 L1228,

Table 4 lists values of the entropy, for correspond-
ing values of H/T, calculated by means of the
“Brillouin formula.” For the case J=3/2, one has

(S/E)g=acotha—4acoth4a-+log,sinh4a—log,sinh a,
(3)

where a=uH/ET; u 1s the Bohr magneton,
9.271 X107 emu, and k£ is the Boltzmann constant,
1.3805X 1071 erg deg™'.

In order to derive an accurate value of §, however,
one must take cognizance of the fact that the
Brillouin entropy (table 4) is only appropriate to the
ideal case of a fourfold degenerate ground level.
The effect of the crystalline electric field is to modify
the pattern of the level splitting in a magnetic field,
and for small fields the correction, AS/R, to be

applied to the entropy reduction, log,4—Sz/R, is
relatively large.

An entropy formula has been derived [3] that takes
this effect into account, but it is more unwieldy than
the Brillouin formula (a straightforward function of
H|T) as it is a function of H, T, and é. For the
chromic alums the value of é/k is always close to 0.25
deg, and starting temperatures (that is, bath temper-
atures) will, in general, be of the order of 1.1° to
1.2° K. Because AS/R<Sg/R, the Brillouin and
exact entropy curves run very close together, and
the following approximate method of calculating a
new AS/R under slightly changed conditions of &
and/or T (say &, 1), given a table of exact values
for conditions &, 7, is found to be very useful.

Let A=6/2, a=A/T, and B=uH/A. One may then
take the expressions for both the Brillouin entropy
and the exact entropy and obtain their derivatives
with respect to «. Denoting derivatives by a
primed symbol, we then have

(S5/R)a = (S p/R)ay+ (S5/R)ag X (a— o), (Brillouin) (4)
and

(S/R)a = (8/R)ay+(S'[R)ey X (@—a).  (exact)  (5)
Subtracting (5) from (4)—for a positive quantity—
we find

(AS/R)e=(AS[R)ay+ (AS"[R)ay X (a—a0)  (6)

to a satisfactory degree of accuracy. It must be
emphasized that eq (4) and (5) are only approximate.
Higher derivatives have been neglected, but these
effectively disappear in the subtraction, which leads
to eq (6).

In table 5 the entropy values have been calculated
for various values of H, and with §/k=0.27 deg,

TaBLE 4. Entropy as a function of a(=uH/kT) calculated from the ¢‘Brillouin formula”: S/R=a coth a—4a coth 4a--log, sinh
4a—log, sinh a

Tables for J=1/2, 3/2, 5/2, 7/2 can be found in an article by Hull and Hull [2]; the greater part of table 1 has been taken from this source.

|
a S/R loge 4—S/R ‘t a SIR loge 4—S/R. l @ S'R loge 4—S/R
0 1.38629 0 0.40 1.07179 0.3145 1.50 0. 20817 1.1781
0.01 1. 38604 0.0003 .45 1. 00961 . 3767 1.55 . 19228 1.1940
.02 1.38530 . 0010 .50 0.94754 . 4387 1.60 17756 1. 2087
.03 1.38405 . 0022 i . 88658 . 4997 1.65 . 16393 1.2224
.04 1.38231 . 0040 .60 . 82750 . 5588 1.70 . 15131 1. 2350
.05 1.38007 . 0062 .65 77083 . 6155 175 . 13963 1. 2467
.06 1.37735 . 0089 .70 . 71690 . 6694 1.80 . 12882 1. 2575
.07 1.37415 .0121 .75 . 66591 . 7204 1.85 . 11882 1. 2675
.08 1.37047 L0158 .80 61796 . 7683 1. 90 . 10957 1. 2767
.09 1. 36632 . 0200 .85 . 57303 . 8133 1. 95 10102 1. 2853
.10 1.36171 .0246 .90 . 53102 . 8553 2.00 . 09311 1. 2932
.12 1.35115 . 0351 .95 49185 . 8944 2.1 . 07904 1. 3072
o1} 1. 33887 0474 1.00 . 45543 . 9309 2.2 . 06705 1. 3192
.16 1. 32496 0613 1.05 . 42156 . 9647 2.3 . 05681 1.3295
.18 1. 30952 0768 1.10 .39011 . 9962 2.4 . 04809 1. 3382
.20 1. 29266 0936 1.15 . 36091 1.0254 2.5 - 04068 1. 3456
.22 1. 27449 1118 1.20 . 33382 1. 0525 2.6 . 03438 1.3519
.24 1.25514 1311 1.25 . 30871 1.0776 2.7 . 02903 1.3573
.26 1.23471 1516 1.30 . 28543 1.1009 2.8 . 02449 1.3618
.28 1. 21334 1730 1.35 . 26386 1.1224 2.9 . 02064 1. 3656
.30 1.19115 1951 1.40 . 24386 1.1424 3.0 . 01739 1. 3689
.32 1.16824 2181 1.45 . 22534 1.1609
.34 1.14475 2415 1.50 . 20817 1.1781
.36 1.12077 2655
.38 1. 09642 2899
.40 1.07179 3145
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T=1.1° K (the Brillouin entropy itself is, of course,
independent of &, but the values of /1 are listed in
terms of w//A, which appears in the analytical
expressions for the exact entropy). We thus have
A=0.135 and a;=0.1227273. The derivatives are
given in columns 3 and 5.

Now, in any experiment, 7" is determined by
experimental conditions, and § is usually known
fairly accurately. (It is not illogical to derive an
accurate value of 6 from entropy data, the calcula-
tion of which involves §; it is essentially the method
of successive approximation.) These together fix
the value of «, and a tabulation of AS/R is readily
obtained by making use of table 5 and eq (6).

One then plots a curve of AS/R versus (Sp/R).
(using eq (4)) to obtain the correction curve appro-

TaBLE 5. Brillouin entropy, entropy correcticn, and first
derivatives with respect to o =A/T) for the “standard value”
g of 0.1227273 (=0.135/1.1), for varying values of B(= uH/

A). A=15/2 (see text)

B=uH/A (SB/R)a, —(S'8/R)a, (AS/R)a, { (AS'[R)«,
0 1. 38629 0 0.00747 0. 1209
0.4 1. 38029 0. 097397 . 00744 L1197

8 1. 36259 . 380323 L 00734 L1162
1.2 1. 33400 . 821912 L 00716 L1110
19 1. 26186 1. 856246 00674 L0983
2.8 1. 14042 3.337499 . 00605 - 0790
3.7 1. 00451 4.610410 . 00529 . 0600
4.6 0. 86918 5. 478282 L 00454 L0435
6.0 . 67952 6.036330 . 00350 L0238
7.5 . 51466 5. 909656 . 00260 . 0097
9.0 38737 5. 417034 .00191 L0010

10.5 20057 4, 787534 . 00137 —. 0038
12.0 21734 4. 128350 . 00093 —. 0022
282952—54——-4
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priate to one’s own experimental conditions. For
any one demagnetization, Sgz/l2 is readily obtained
from the /)T value and table 1, and AS/R is read
off from the correction curve.

To illustrate the efficiency of the method, table 6
lists values of AS/R calculated rigorously and by
the above approximation for the case a=0.113043
(6=0.26 deg, T=1.15° K) and for the case a=
0.133333 (6=0.28 deg, 7=1.05° K). Inasmuch as
one is only interested in an accuracy to the fourth
decimal place, or two significant figures, it may be
seen that the method is very useful.

Tasre 6. Comparison of entropy-correction values calculated
exactly and by the approximale method for the cases (a)
a=0.113043 (5/k=0.26 deg, T—=1.15°K), and (b)
0.133333 (5/k=0.28 deg, T—1.05°K)

a—

a=(.133333 a=(.113043
B=uH|A 1
AS/R AS/R AS/R AS/R
(exact) (approx.) (exact) (approx.)
0 0. 00881 0. 0087g 0. 60635 0. 00630
3. . 0059, . 00592 . 0047 . 00479
10. 5 . 00132 . 00133 . 00139 . 00144

[1] M. H. Hebb and E. M. Purcell, J. Chem. Phys. 5, 338
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[3] R. P. Hudson, Phys. Rev. 88, 570 (1952).

WasHaINGTON, September 17, 1953,
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