
Journal of Research of the National Bureau of Standards Vol. 52, No. I, January 1954 Research Paper 2467 

A Characterization of Normal Matrices 1 

Alan J. Hoffman and Olga Taussky 

A matrix A is called normal if AA *= A * A , where A * is t he transposed and con jugate 
mat rix of A . It is kno,,·n t hat for a pair of commuting matricef< , A , B , there exists an 
ordering of the characteristic roots "'I , . .. , "' n of A and fll, ... ,fin of B, s uch that every 
polynomial p(A,B ) has as characterist ic roots the 11L1mbers p(a t.fl i). This proper ty is, in 
genera l, weaker than commutativity , but does imply it if B = A*. I t is sho" ·n that t his 
property a lready impli es commutativity of A and A* if it is assumed t.o hold for only one 
polynomial, provided the latter is suitably chosen . Polynomials of firs t and second degree 
are examined for t heir suitability . 

Normal matrices can be characterized in many 
ways . In the original definition [1] 2 a matrix A 
is called normal if AA*= A*A, where A* i the 
t rftnsposed and conj ugate matrix of A. It is known 
that for a pair of commuting matri ces A , B, there 
exi ts an ordering of the characteri tic roots ai, ... , an 
of .l1 and f31 •... , f3" of B , sLlch that every poly­
nomial p(A,B,) ha as characteri tic roots the 
numbers p (a i,f3i), see [2]. This property is, in 
general, weaker than commutativity, but does imply 
it if B = A *. This follows from the fact that two 
matrices with this property can be transformed to 
upper triangular form simultaneously by a unitary 
similarity transformation [3]. Even if the property 
is assumed only for linear polynomials p(A,A *), 
commutativity follow. Thi is a consequ ence of 
the fact that A is the sum of two normal matrices, 

A + A * A-A* 
A = +- . 2 2 

For the matrices (A + A *) /2, ( 1- A *) /2 will agam 
have the above property with respect to linear 
polynomials; this, however , implies that they com­
mute [4, 5]. Hence A and .11* commute. 

It will now be shown that the above property 
already implies the commutativity of A and A * if 
it is assumed to hold for only one polynomial, 
provided the latter is suitably chosen. Two special 
rcsults in this direction were obtained earlier [6]; 
the polynomials considered then were A + A * and 
AA *, and it was assumed that the special ordering 
of the characteristic roots implied that f3 i=ai. 

Certain polynomials of first and second degree are 
cxamined for their suitability. The result is that 
any polynomial of first degree is suitable, while not 
every polynomial of second degree is, although a 
large class among them is suitable. 

In what follows we assume that A = (aik ) is an 
n X n matrix with complex numbers as elements. 

THEOREM 1. Ij aI, . . ., an are the eigenvalues oj 
an n X n matrix A, a and {3 a1'e two complex numbers 
different from 0, and the eigenvalues oj aA + {3A * are 

1 Tho preparation of t his paper ,,"as sponsored (in part) by the OHi ca of SCie ll i ific 
Hosearcb , United States Air Force. 

emi + f3ap i, where P is a permutation oj the integers 
1, ... , n, then A is normal . 

PROOF. It is clearly no restriction to aSS Llme 
{3 = 1. Further , since the hypothesis and conclusion 
of the theorem arc concerned with eigenvalues of an 
operator A in unitary n-space, we ma.y assume that 
an orthonormal basis has been chosen in the unitary 
n-space, 0 that the matrix A i (upper) triangular; 
i. c., aik= O for i > k , and a/i= ai . Vh shall show 
that 

for i~k , (1) 

whi ch implies that A is normal. 
The argument is based on the fact that the second 

elementary ymmetric function 8 2 of the eigenvalues 
'YI, . . . ,'Yn of aA+ A * may be compu ted in two 
ways. First, ince 

(i = l , ... , n) , 
we have 

n 
282= ~ ~ [a2ailXk+ apia pk+ a(aia Pk + apiak)]' (2) 

i= ! kr' i 

Second. since 8 2 is also the sum of all principal 
2X 2 minors M ik of aA+ A *, we have 

(3) 

As i and k range over all possible distinct ordered 
pairs of elements of the set {I , .. . ,n }, so do P i and 
P k . H ence if we sub tract (3) from (2), we obtain 

n 
~ ~ (aiaPk+ a pjak-aiak-ajak+ a jka ik)= O. 
i=l kr'i 

Therefore, if we show that 

n 
R~ ~ (aiapk+ apiak- aiak- a jak) ~ 0 , 

i=l kr'i 

(4) 

(5) 

' Figures in brackets ind icate the literature reforences a t the end 
of this paper . then (4) will imply (1). 
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Write 
(j= l, .. . ,n), 

where Aj and MJ are real. 
Then (5) becomes 

We shall prove 

n 

~ ~Ai(Apk-Ak)~O. 
i~l kr<i 

(6) 

(7) 

The same argument will apply to the M'S, and 
hence (6) will be established. N ow for fixed i, 

~Ai(Apk- Ak)= A i~(Apk- Ak)= Ai(Ai- APi). 
kr<i kr<i 

Hence (7) is equivalent to 

(8) 

Inequality (8) is a special case of a known in­
equality ([7], theorem 368), which states that if 
al ~ . • . ~an , bl ~ ... ~bn, and P is any permutation 
of { I, ... ,n }, then 

(9) 

Set ai= bi= Ai, and (8) is an immediate consequence 
of (9) . 

THEOREM 2.3 Ij ai, .. . ,an are the eigenvalues oj 
an n X n matrix A, and the eigenvalues oj AA * are 
alapJ, . . . , anapn, where P is a permutation of the 
integers 1, . .. , n , then A is normal. . 

PROOF. As in theorem 1, we may assume A is 
upper triangular . We shall compute trace AA * in 
two ways. First, since trace AA * is the sum ot the 
eigenvalues of AA *, we have by hypothesis 

n 
trace AA* = ~ajapi' 

i~l 

(10) 

Second, since traee AA * is the sum of the elements 
on the diagonal of AA *, we have 

Write a j= PJeiOJj where pj~ O. We have, from (11) 
and (10), 

(12) 

But from inequality (8), we see that 

n n 

~pi~~P iPPi' 
i~1 i=1 

(13) 

-------- -- --- - - -

Since aika ik ~ 0, the only way for (12) and (13) to 
be consistent is for 

f or all i r'= k; 

i. e., A is normal. 
One can use essentially the same argument to 

establish 
THEOREM 3. L et ai, ... , an be the eigenvalues oj 

an n X n matrix A, P a permutation oj the integers 
1, ... , n, and ai, az, b1 , bz, CI, C2 complex numbers. 
L et the eigenvalues oj 

atA + a2A *+ btA 2+ bzA *2+CIAA*+ czA* A (14) 

be 

Ij, in addition 
(15) 

then A is normal. 
What if condition (15) is omitted; i. e., if CI = CZ? 

Then theorem 3 may not hold. There are two 
cases to consider: 

In case (i), if bl = bz = O, then the theorem reduces to 
theorem 1, so A is normal (unless al a2 = 0, where the 
theorem fails). The theorem fails unless bl = b2 = O. 
A counterexample is furnished by 

where dr'=O is arbitrary, c=-at/ bl (if bl,r. O), or 
c= -az/b2 (if bz,r. O). 

For case (ii) , the situation is somewhat more 
complicated. For example, if ala2 is real and n ega­
tive, the theorem fails, as one can see from the 
counterexample 

where a2ci = - a1a2. 
On the other hand, if (14) is formally Hermitian, 

the theorem does hold. Specifically, we have 
THEOREM 4. L et ai, .. . ,an be the eigenvalues oj 

an n X n matrix A; let P be a permutation oj the 
integers 1, ... , n; a, b complex '/lumber!> , C, d real 
nuntbers not both 0; let the eigenvalues oj 

aA + aA*+ bA2+ bA*2 + cAA* 

+ clA*A (c, cl real, not both 0) (16) 
be 

+ clapiai (i = I , . .. ,n); 
3 This theorem can also he pro" cel from known ineq ualities, sec 18], bet ,,-een the""' A o's normal. 

the cigen values of a matrix A and the eigen values of A A *. " , 
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PnOOF. If c ~ - d, th e si tuation is covered by and 
th eorem 3. If c= - d, it is clearly no loss of gen-
erality to take c= l , d=- l. Now ord er the i31+ i3Z= max R {a(a ,+ a j) + a (ap,+ aJ'i 
eigenvalues of A , so that ir'i 

(17 ) 

W e may assume that A is upper triangular , and 
t hat the eigenvalues of A appear on the main diagonal 
in the order aI, az, ... , an. 

Then let B stand for the Hermitian matrL,( (16), 
.and denote i ts eigenvalu es by 131 "2 . . . "2i3n. 

It h as been shown ( [9], theorem I ) that 

bll ~i31 

(J 8) 

But 
n 

bll = 2R(aal + baD+ L:alka lk, (19 ) 
k~2 

and 

131 =max[R (aai+ aaPi+ ba~+ b a~i ) l ~2R\aal + baD, . 
(20) 

by (17). Sin ce a1kalk"2 0 (k = 2, ... , n), th e only 
way for (19) and (20) to be cons istent with the first 
inequali ty of (18) is if 

(k = 2, ... ,n). (21) 

l OW, in v iew of (21), it follows that 

n 
bll + b22 = 2R[a(al + az) + b(ai + a~) l + L:azka2k, (22) 

k~3 

+ b (a~+ a7) + b(~~i + ~7'j) } 

~ 2R[a(al + az) + b (a7 + a~)J. 

(2:1 ) 

The only way for (22) and (23) to be cons isten t 
with the second inequality of (18) is if GZk= O (k = :3, 
... ,n) . 

Continuing in this way, one sees eas ily that i~lc 
implies aik= 0 ; h ence, A is normal. 

The authors thank J . Todd and H . vVielanclt for 
h elpful comments. 
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