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A Characterization of Normal Matrices'

Alan J. Hoffman and Olga Taussky

A matrix A is called normal if AA*=
matrix of A.
ordering of the characteristic roots ay, . .

A*A, where
It is known that for a pair of commuting matrices, A, B, there exists an
.,a,of Aand By, . . .
polynomial p(A,B) has as characteristic roots the numbers p(a;.8:).
general, weaker than commutativity, but does imply it if B=

A* is the transposed and conjugate

, B, of B, such that every
This property is, in

A*. It is shown that this

property already implies commutativity of A and A* if it is assumed fo hold for only one

polynomial, provided the latter is suitably chosen.

are examined for their suitability.

Normal matrices can be characterized in many
ways. In the original definition [1]?* a matrix A
is called normal if AA*=A*A, where A* is the
transposed and conjugate matrix of A. It is known
that for a pair of commuting matrices A, B, there
exists an ordering of the characteristic roots ay, . . ., @,
of A and By, . , B, of B, such that every poly-
nomial p(A,B,) has as characteristic roots the
numbers p(a;B;), see [2]. This property is, in
general, weaker than commutativity, but does imply
it if B=A%*  This follows from the fact that two
matrices with this property can be transformed to
upper triangular form simultaneously by a unitary
similarity transformation [3]. Even if the property
is assumed only for linear polynomials p(A,A4%),
commutativity follows. This is a consequence of
the fact that A i1s the sum of two normal matrices,

A+A* A—A*
A=""F"5

For the matrices (A+A4%)/2, (A—A%*)/2 will again
have the above property with respect to hnom
polynomials; this, however, implies that they com-
mute [4, 5]. Hence A and A* commute.

It will now be shown that the above property
already implies the commutativity of A and A* 1if
it is assumed to hold for only one polynomial,
provided the latter is suitably chosen. Two special
results in this direction were obtained earlier [6];
the polynomials considered then were A-+A* and
AA* and it was assumed that the special ordering
of the characteristic roots implied that B,=«a;.

Certain polynomials of first and second degree are
examined for their suitability. The result is that
any polynomial of first degree is suitable, while not
every polynomial of second degree is, although a
large class among them is suitable.

In what follows we assume that A=(a;) 1s an
nXn matrix with complex numbers as elements.

TarorEM 1. If a1, . . ., a, are the eigenvalues of
an nXn matrix A, « and B are two complex numbers
different from 0, and the eigenvalues of aA-+BA* are
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Polynomials of first and second degree

aa;+Bap;, where P is a permutation of the integers

1,. , then A is normal.
Proor. It is clearly no restriction to assume
B=1. Further, since the hypothesis and conclusion

of the theorem are concerned with eigenvalues of an
operator A in unitary n-space, we may assume that
an orthonormal basis has been chosen in the unitary
n-space, so that the matrix A is (upper) triangular;
1. e., a;=0 for i >k, and a;;=a;. We shall eho\\
that
a;=0 for 1 #k, (1)

which implies that A is normal.

The argument is based on the fact that the second
elementary symmetric function S, of the eigenvalues
Y1, Yn Oof @A+ A* may be computed in two
ways. First, since

vi=aa;+ap; (l I o N,

we have
n

2 82:2 Z [azaiak+al’iapk+ a(aia}’k "l'al’iak)]-

i=1 ki

(2)

Second, since S, is also the sum of all principal
22 minors M ;. of aA+A* we have

2S2:i P Alik:i 25 [+
i=1 k=i i=1 ki
(3)

A a(aiak+aiak_ a iiﬁz‘k)]-

As i and k range over all possible distinet ordered
pairs of elements of the set {1, nt,so do P;and

Py. Hence if we subtract (3) from (2), we obtain
£ — — — — —
— § (aiapk+apiak“aiak—aiak+aikaik):0 (4)
i=1 k#i
But @@, >0. Therefore, if we show that
RZ 2 (azaPk+aPzak— oy —azay) 20, (5)

i=1 k#i

then (4) will imply (1).



Write '
a;=N;+1p;

where \; and y; are real.
Then (5) becomes

)\k) +#i(#Pk_ #k)] 2 0.

221 > MO (6)

We shall prove
; ;}M(M—M) >0.

The same argument will apply to the u’s, and
hence (6) will be established. Now for fixed 7,

kz#.)\i(xm— )‘L): M;()\Pk— )‘k): >\i()\i_ 7\1’1)-

Hence (7) 1s equivalent to
n
SONi(Ni—Ap) > 0. (8)
i=1

Inequality (8) is a special case of a known in-
equality ([7], theorem 368), which states that if

@G> . >, b > .>b,, and P is any permutation
of {1,. . . ,n}, then
a6, > abp,. (9)
Set @;=b,=X\;, and (8) is an immediate consequence
of (9).

TaeorEM 2.° If ay, . . . e, are the eigenvalues of
an_nXn matric. A, and the eigenvalues of AA* are
aapy, . . ., @,ap,, where P is a permutation of the
antegers 1, . . ., n, then A is normal.

Proor. As in theorem 1, we may assume A is
upper triangular. We shall compute trace AA4* in
two ways. First, since trace AA* is the sum ot the
eigenvalues of AA* we have by hypothesis

n
trace A 1'1* = Z_: aiaPi; ai&Pi Z 0. (1 0)
i=

Second, since trace AA* is the sum of the elements
on the diagonal of AA* we have

n n
trace AA*:Zlaiar{—Zl, é}_aik‘—iik- (11)
i= 1= (#=1

Write a;=p;e'%; where p;>0. We have, from (11)

and (10),
n n
Zp?+2 Zalkalk_zplpPz (12)
But from inequality (8), we see that
ZP?ZZPH)P% (13)

# This theorem can also be proved from known inequalities, see [8], between
the eigenvalues of a matrix A and the eigenvalues of AA4*.
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Since a;@;.>0, the only way for (12) and (13) to

be consistent is for
@ @ep=0) for all i=Fk;

e., A is normal.

One can use essentially the
establish

TreOREM 3. Let ay, . . ., ay be the cigenvalues of
an nXn matriz A, P a permutation of the integers
1, ., n, and al, as, by, by, ¢, ¢, complex numbers.
Let the eigenvalues of

same argument to

(L]A +(1/2A*+ b1A2+ bgA*2+(7111 A*+02A*A (14)
be
a0+ asapi+ b + bray; +-crauap,

+02a—piai (’izl, , ).

If, in addition
(71+Cg¢0, (15)
then A is normal.
What if condition (15) is omitted; 1. e., if ¢;=¢,?
Then theorem 3 may not hold. There are two
cases to consider:

@) =0, (1) ¢; #0.

In case (1), if b;=5b,=0, then the theorem reduces to
theorem 1, so A is normal (unless @,a;=0, where the
theorem fails). The theorem fails unless b,=b,=0.
A counterexample is furnished by

(C d)
0 0/,
where d#0 is arbitrary, ¢=

E:—Q/Q/bQ (lf bz#O)
For case (i1), the situation is somewhat more

—01/61 (lf b1¢0>, or

complicated. For example, if a,a; 1s real and nega-
tive, the theorem fails, as one can see from the

counterexample
0 a

(0 0),

where a’ci=—a,a,.

On the other hand, if (14) is formally Hermitian,
the theorem does hold. Specifically, we have

TraeoreM 4. Let ay, . . .,a, be the eigenvalues of
an nXn matriz A; let P be a permutation of the
integers 1, ., n; a, b complex numbers, ¢, d real
numbers not both 0; let the eigenvalues of

aA+TA*+bA*+DA*+cAA*

+dA*A (¢, d real, not both 0) (16)
be

o+ Qo+ bod -+ bay, +caiap

—f—dc_xpioz,- (’121, . .,'72);

then A is normal.



Proor. 1If ¢ —d,

theorem 3. If ¢=—d,
erality to take c¢=1,
eigenvalues of A, so that

the situation is covered by
it is clearly no loss of gen-
d=-—1. Now order the

e

Raa,+bod) > > Raa,+ba?). (17
We may assume that A is upper triangular, and
that the eigenvalues of A appoar on the main diagonal
in the order oy, aw, . .
Then let B stand for thc Hermitian matrix (16),
and denote its eigenvalues by 8, > >B,.

It has been shown ([9], theorem Ij that

)

bll Sﬁl
bll":—bﬂsﬁl%_62

b!l+ +bn~1;n—lsﬁl+ +ﬁn-—1-

But
== ((1a1+ba1)+2(514111L, (19)

and

By =max[R(aa;+tap;+bo+bas;)| 2R (aa;+bo?),

(20)

by (17). Since aya@y;>0 (k=2, . .., n), the only
way for (19) and (20) to be consistent with the first

mequality of (18) is if

@y=0 (o=, . n). (21)
Now, in view of (21), it follows that
b +by=2R[a (e + a) +b(ai +az)]+20uam, (22)
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and

BurtBo=max R (et )+ (@, + )
i]

o

(o2 +a3)+b(ad+o3:) }
Plafar+an) +b(ai+ad)].

The only way for (22) and (23) to be consistent
with the second inequality of (18) isif a,,=0 (k=3
).
~ Continuing in this way, one sees easily that ik
implies @;,=0; hence, A is normal.
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