Journal of Research of the National Bureau of Standards

Research Paper 2466

Heat Capacity, Heats of Transitions, Fusion, and Vaporization, and Vapor Pressure of Octafluorocyclobutane

George T. Furukawa, Robert E. McCoskey, and Martin L. Reilly

The heat capacity of octafluorocyclobutane of 99.98_{9} -mole-percent purity was deter-The heat capacity of octafluorocyclobutane of 99.98_9 -mole-percent purity was deter-mined in an adiabatic calorimeter from 17° to 270° K. The heat of fusion is 2768.2 ± 2.0 abs j mole⁻¹ at the triple-point temperature of 232.96 $\pm 0.05^{\circ}$ K. The three heat-of-vapori-zation experiments at the vapor pressure of 590.9 mm Hg and 261.25° K gave an average value of 23721 ± 20 abs j mole⁻¹. Four solid-solid transitions were observed with the heat-capacity peaks at 141.3 $\pm 0.2^{\circ}$, 174.6 $\pm 0.2^{\circ}$, 214.84 $\pm 0.05^{\circ}$, and 216.99 $\pm 0.05^{\circ}$ K. The anomalous behavior in the heat capacity at about 97° K, where the heat capacity changes its slope abruptly, is attributed to glass transformation. The vapor pressure was measured from 177° to 274° K. The results of this measurement from the triple-point temperature to 274° K cap be represented within ± 0.5 mm Hg in most cases by the equation to 274° K can be represented within ± 0.5 mm Hg in most cases by the equation

 $\log_{10} p \,(\mathrm{mm~Hg}) = 6.70267 - \frac{1315.906}{T} + 8.778482 \times 10^{-3} T - 1.739691 \times 10^{-5} T^2.$

The entropy of octafluorocyclobutane in the ideal gas state at 261.25° K and 1 atm was computed from the experimental data to be 380.52 ± 0.71 abs j deg⁻¹ mole⁻¹ or 90.95 ± 0.17 cal deg⁻¹ mole⁻¹ (1 cal=4.1840 abs j). The entropy computed from the spectroscopic assignments by Claassen and the molecular constants based on the D_{4h} model amounted to 87.83 cal deg⁻¹ mole⁻¹.

1. Introduction

Octafluorocyclobutane can be prepared by pyrolysis of polytetrafluoroethylene² and by cyclic dimerization of tetrafluoroethylene.³ The latter material has come into importance in the recent years as the monomer in the production of polytetrafluoroethylene plastic (Teflon), which has a remarkably high chemical and thermal stability. In order to obtain a wider thermodynamic knowledge regarding the fluorocarbons, fluorocarbon polymers, and monomers or prototype molecules, calorimetric and vaporpressure measurements have been made with octafluorocyclobutane. This material is interesting also from the viewpoint of its structure; some ^{4 5} of the investigators have interpreted its vibrational spectra in terms of a planar ring model (D_{4h}) . More recent spectral 6 and electron diffraction 7 studies seem to favor the nonplanar ring structure (V_d) . There is at present an investigation being conducted at the Bureau to make spectral assignments in light of the evidence for a V_d structure.

Calorimetric studies with the tetrafluoroethylene⁸ and the polytetrafluoroethylene⁹ have been reported recently by the National Bureau of Standards.

2. Apparatus and Method

The heat-capacity, the heat-of-fusion, and the vapor-pressure measurements with the octafluorocyclobutane were carried out in the adiabatic calorimeter described previously by R. B. Scott, et al.¹⁰ For the vapor-pressure measurements the calorimeter valve was opened to a mercury manometer, which was read by means of a mirror-backed glass The calorimeter served as a thermostated scale. container. No provision was made to stir the sample. The pressure readings were converted to standard mm Hg (g=980.665 cm sec⁻², temperature=0° C.) on the basis that the local gravity is $980.076 \text{ cm sec}^{-2}$.

The heat-of-vaporization measurements were made in another adiabatic calorimeter similar in design to those described by Osborne and Ginnings ¹¹ and by Aston, et al.¹² This calorimeter contained a throttle valve within the space enclosed by the adiabatic shield. During the vaporization experiments, the vapor was removed isothermally by controlling the valve and introducing a known electric energy continuously. A nickel resistance thermometer wound on the tube between the valve and the calorimeter container served to sense the temperature of the vapor removed. When a desired quantity of the material was collected, the electric power was cut off and the valve closed. The heat of vaporization per mole, L, was computed from the total energy

 ¹ This paper is based on research sponsored by the Ordnance Corps, U. S. Department of the Army.
 ² United States Patent 2384821.
 ³ United States Patent 2404374.
 ⁴ W. F. Edgell, J. Am. Chem. Soc. 69, 660 (1947).
 ⁵ H. H. Chaassen, J. Chem. Phys. 18, 543 (1950).
 ⁶ W. F. Edgell and D. G. Weiblen, J. Chem. Phys. 18, 571 (1950).
 ⁷ H. P. Lemaire and R. L. Livingston, J. Chem. Phys. 18, 569 (1950).
 ⁸ G. T. Furukawa, R. E. McCoskey, and M. L. Reilly, J. Research NBS, 51, (1953) RP2432.
 ⁹ G. T. Furukawa, R. E. McCoskey, and G. J. King, J. Research NBS 49, 972 (1929) RP2642.

 ^(1.553) R1 2452.
 (9, T. Furukawa, R. E. McCoskey, and G. J. King, J. Research NBS 49, 273 (1952) RP2364.

 ¹⁰ R. B. Scott, C. H. Meyers, R. D. Rands, Jr., F. G. Brickwedde, and N. Bekkedahl, J. Research NBS **35**, 39 (1945) RP1661.
 ¹¹ N. S. Osborne and D. C. Ginnings, J. Research NBS **39**, 453 (1947) RP1841.
 ¹² J. G. Aston, H. L. Fink, G. J. Janz, and K. E. Russell, J. Am. Chem. Soc. 73, 1939 (1951)

nput, Q, and the mass, m, of material collected by the relation

$$L = \frac{MQ}{m} \left(1 - \frac{u}{u'} \right), \tag{1}$$

in which u and u' are the specific volumes of the liquid and vapor, respectively, at the vaporization temperature and M is the molecular weight.

All temperature measurements are in accordance with the International Temperature Scale ¹³ and below 90° K in accordance with a provisional scale ¹⁴ based on a set of platinum resistance thermometers calibrated against a helium-gas thermometer.

3. Material

The octafluorocyclobutane used in this investigation was kindly furnished by the E. I. du Pont de Nemours & Co. Although the sample was considered quite pure, the possible impurities were tetrafluoroethylene (C_2F_4) and chlorodifluoromethane $(CHClF_2)$. The material was purified further by fractional crystallization. The procedure was similar to that described by Schwab and Wichers.¹⁵ The purity of the material so treated was determined prior to the heat-capacity experiments from the equilibrium melting temperatures ¹⁶ and was found to be 99.98, mole percent. The equilibrium temperatures and the corresponding reciprocal of the fraction melted, F, are given in table 1. The triple-point temperature (obtained by extrapolating the temperature versus 1/F plot to 1/F=0) was found to be $232.96 \pm 0.05^{\circ}$ K. (In this paper, unless defined otherwise, the figure following the plus or minus is the authors' best estimate of the uncertainty.) A second purity measurement at the end of the heatcapacity studies gave essentially the same result.

TABLE 1. Equilibrium melting temperatures of octafluorocyclobutane

Mole fraction impurity = 0.00613 ΔT , °K=273.16+°C

Reciprocal of fraction melted, $1/F$	T
	°K
12.74	a 232, 7587
8.33	232.8012
6.74	232.8215
3.93	232.8676
2.05	232.9114
1.55	232.9278
1.22	232.9420
0.00	^b 232. 9580
Triple-point 232.96±0.05° 99.989 mole po	temperature, K. Purity, ercent.

^a The temperatures given are accurate to $\pm 0.01^{\circ}$ K. Wherever temperatures are given to the fourth decimal, the last two figures are significant only insofar as small temperature differences are concerned. ^b Extrapolated.

¹³ H. F. Stimson, J. Research NBS **42**, 209 (1949) RP1962.
 ¹⁴ H. J. Hoge and F. G. Brickwedde, J. Research NBS **22**, 351 (1939) RP1188.
 ¹⁵ F. W. Schwab and E. Wichers, J. Research NBS **32**, 253 (1944) RP588.
 ¹⁶ G. T. Furukawa, D. C. Ginnings, R. E. McCoskey, and R. A. Nelson, J. Research NBS **46**, 195 (1951) RP2191.

In these purity determinations the system was assumed to behave ideally and to form no solid solution.

4. Heat Capacity

The heat-capacity measurements were carried out from 17° to 270° K. The observed values are given in table 2 and are also plotted in figure 1 to show the four solid-solid transitions observed. The temperatures given in the table are the mean temperatures of heating intervals. The temperature rise associated with each heating interval is also given. The corresponding heat-capacity values, which are under conditions of saturation have been corrected for curvature (see footnote 16) and vapor saturation ¹⁷ wherever applicable.

The heat capacity in the temperature range of each transition was carefully investigated. Of the four solid-solid transitions, two were found very close together, similar to those in hydrogen bromide.¹⁸ Equilibrium was attained within these two transitions (214.84° and 216.99° K) in the usual time of 6 to 10 min. On the other hand, the relaxation time for the transitions at the two lower temperatures (141.3° and 174.6° K) was found to be extremely long; small but definite temperature drifts were observed even 2 hr after the end of heating. On account of this long relaxation time, the heat capacity in these transition ranges was dependent somewhat upon the thermal history or the rate of cooling prior to the experiments. Thus, the results in the transition region are scattered, up to as much as 0.3 percent. The peaks of the heat capacities within the four transitions were found to be $141.3 \pm 0.2^{\circ}$, $174.6 \pm 0.2^{\circ}$, $214.84 \pm 0.05^{\circ}$, and $216.99 \pm 0.05^{\circ}$ K. The heat of transition was not determined for any given temperature; instead, the enthalpy change was determined for an interval of convenient temperatures, which included the transition. These results are given in section 5.

Figure 1 shows an anomalous behavior in the region of 97° K, in which the heat capacity under goes a rather abrupt change in slope. Also, a longer time (about 30 min) was required for temperature equilibrium. A magnified plot of this temperature range is shown in figure 2. The cooling rate prior to the heat-capacity measurements had a decided effect upon the results in this temperature range. Slow cooling yielded significantly higher values. As pointed out in section 5, the increase in the enthalpy change corresponding to the higher heat-capacity values in this temperature range seems to be offset by an almost equal enthalpy change decrease in the interval 130° to 150° K.

Although not as pronounced, the heat-capacity behavior of the substance near 97° K is similar to the glass transformation found in organic glasses,¹⁹ high polymers,²⁰ and other noncrystalline solids. Similar

H. J. Hoge, J. Research NBS 36, 111 (1946) RP1693.
 W. F. Giauque and R. W. Wiebe, J. Am. Chem. Soc. 50, 2193 (1928).
 G. S. Parks, H. M. Huffman, and F. R. Cattoir, J. Phys. Chem. 32, 1366

^{(1928).} ²⁰ G. T. Furukawa, R. E. McCoskey, and G. J. King, J. Research NBS **50**, 357 (1953) RP2425.

TABLE 2. Observed molal heat capacities of octafluorocyclobutane

Molecular weight=200.04; $^{\circ}$ K=273.16 + $^{\circ}$ C

Т	Csatd.	ΔT	T	$C_{\mathrm{satd}}.$	ΔT	Т	$C_{\mathrm{satd}}.$	ΔT
	RUN 1			RUN 6			RUN 12	
$^{\circ}K$ 221. 27 225. 27 229. 23	abs j deg ⁻¹ mole ⁻¹ 188.13 190.01 191.99 Fusion	$^{\circ}K$ 4. 0158 3. 9845 3. 9511	$^{\circ}K$ 181, 58 189, 74 198, 52 205, 40 208, 87 210, 70	$abs \ j \ deg \ ^{-1} \ mole \ ^{-1} \\ 159. \ 24 \\ 166. \ 45 \\ 175. \ 39 \\ 184. \ 12 \\ 189. \ 66 \\ 102. \ 12 \\ 189. \ 189. \ 12 \\ 189. \ 1$	$^{\circ}K$ 7. 3718 8. 9346 8. 6249 5. 1513 1. 7764 1. 8892	$^{\circ}K$ 92. 25 94. 77 97. 25 99. 67 95. 49	$\begin{array}{c} abs \ j \ deg \ ^{-1} \ mole^{-1} \\ 87, 06 \\ 88, 50 \\ 90, 29 \\ 93, 09 \\ 89, 18 \end{array}$	° <i>K</i> 2. 5503 2. 5009 2. 4518 2. 3915 2. 52 37
234.73 237.87 241.00	199.00 199.87 200.70	$3.1500 \\ 3.1335 \\ 3.1194$	$210.70 \\ 211.43 \\ 212.83 \\ 213.82$	$ 193.13 \\ 193.57 \\ 199.60 \\ 202.47 $	1.8880 1.6146 1.1887 0.7842		RUN 13	
$\begin{array}{c} 241,00\\ 246,04\\ 253,35\\ 260,98\\ 268,52 \end{array}$	$202, 28 \\ 204, 48 \\ 207, 05 \\ 209, 77$	$\begin{array}{c} 3.1154\\ 6.9656\\ 7.6644\\ 7.5822\\ 7.5034 \end{array}$	215. 82	Transition 215.00	. 5659	223. 41 229. 92	$ 191.64 \\ 192.72 $	$1.9694\\1.0460$
	RUN 2			Transition		237.23	Fusion 200_02	4 7629
	101.77	1 6640		RUN 7		241. 97	201.47	4.7318
210.25 211.95 213.80	$ 191.77 \\ 195.46 \\ 252.55 $	1.0640 1.7359 1.9638	55.86	57.77	5. 8959		RUN 14	
215.78 219.71 222.06	Transition 273.48 Transition 187.58 188.58	1. 8586 2. 3583 2. 3493	$\begin{array}{c} 61.45\\ 66.52\\ 71.20\\ 75.59\\ 80.13\\ 84.83\\ 89.29\\ 93.57\\ 98.17\end{array}$	$\begin{array}{c} 62,25\\ 66,36\\ 69,94\\ 73,45\\ 77,26\\ 81,22\\ 84,90\\ 87,92\\ 91,30\\ \end{array}$	$\begin{array}{c} 5,2849\\ 4,8475\\ 4,5216\\ 4,2568\\ 4,8230\\ 4,5657\\ 4,3577\\ 4,1982\\ 5,0130\\ \end{array}$	$\begin{array}{c} 86.\ 06\\ 88.\ 62\\ 91.\ 13\\ 93.\ 89\\ 96.\ 61\\ 99.\ 25\\ 101.\ 83\\ 104.\ 34\end{array}$	$\begin{array}{c} 82,37\\ 84,46\\ 86,26\\ 88,03\\ 89,48\\ 92,32\\ 95,50\\ 98,17\end{array}$	$\begin{array}{c} 2.5249\\ 2.6105\\ 2.4014\\ 3.1275\\ 2.2982\\ 2.9847\\ 2.1792\\ 2.8383\end{array}$
226. 60 229. 82	190.70 192.53	$2.3288 \\ 4.1002$	103.07	96.60	4. 7848	107.14	100.97	2.7717
	RUN 3			RUN 8		RUN 15		
126,76 134,47 138,99	125, 18 143, 70 174, 84 Transition	9, 1535 6, 2668 2, 7702	$18.13 \\ 18.56 \\ 19.49 \\ 21.69 \\ 24.64 \\ 27.11 \\ 29.92 \\ 32.89 \\ 32.8$	$17.18 \\ 18.14 \\ 19.90 \\ 23.59 \\ 28.17 \\ 31.60 \\ 35.06 \\ 38.40 \\ 26.27 \\ 31.60 \\ 35.06 \\ 38.40 \\ 38.4$	$\begin{array}{c} 0.\ 1117\\ .\ 7424\\ 1.\ 1328\\ 3.\ 2563\\ 2.\ 6484\\ 2.\ 2921\\ 3.\ 3206\\ 2.\ 6231\\ 2.\ 6231\end{array}$	$\begin{array}{c} 87.34\\ 89.65\\ 92.09\\ 94.47\\ 96.80\\ 99.09\\ 101.69\\ 104.65\end{array}$	$\begin{array}{c} 83.47\\ 85.24\\ 87.05\\ 88.86\\ 90.86\\ 93.14\\ 96.06\\ 98.98\end{array}$	$\begin{array}{c} 2.\ 1532\\ 2.\ 4628\\ 2.\ 4078\\ 2.\ 3574\\ 2.\ 3098\\ 2.\ 2602\\ 2.\ 9378\\ 2.\ 9830 \end{array}$
148. 25 154. 30	145.00	4,0824 8,0648	40.89 46.20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		RUN 16		
	RUN 4		52.43 58.16 63.31	$55.34 \\ 59.72 \\ 63.86$	$\begin{array}{c} 6.\ 0745\\ 5.\ 3968\\ 4.\ 8957 \end{array}$	82.82	79.59	2.7401
$111.38 \\ 118.42$	$105.60 \\ 113.37$	6.6270 7.4492		RUN 9		85.95 89.41 92.76	82. 23 85. 06 87. 58	3.5220 3.3966 3.2929
$ \begin{array}{c} 126.77\\135.03\\139.90\\\\ 142.02\\143.26\\\end{array} $	124, 99 147, 21 210, 26 Transition 264, 30 169, 51	$\begin{array}{c} 9.\ 2458\\ 7.\ 2735\\ 2.\ 4853\\ 1.\ 0615\\ 1.\ 4173\\ \end{array}$	$17. 45 \\ 18. 83 \\ 20. 03 \\ 21. 24 \\ 22. 57$	$16, 21 \\ 18, 69 \\ 20, 84 \\ 22, 87 \\ 24, 96$	$\begin{array}{c} 1.\ 4819\\ 1.\ 2747\\ 1.\ 1343\\ 1.\ 2789\\ 1.\ 3893 \end{array}$	$\begin{array}{c} 96.00\\ 99.16\\ 102.22\\ 106.89\\ 110.69\\ 115.31\\ 120.30\\ 126.13\\ \end{array}$	$\begin{array}{c} 90.14\\ 93.18\\ 96.70\\ 101.06\\ 104.94\\ 109.68\\ 115.56\\ 123.93 \end{array}$	$\begin{array}{c} 3.\ 2229\\ 3.\ 1997\\ 3.\ 1057\\ 3.\ 0126\\ 2.\ 8944\\ 4.\ 7038\\ 4.\ 5350\\ 5.\ 4474\\ 6.\ 2149\end{array}$
$ 144.98 \\ 147.02 \\ 149.08 $	151.79 145.33 143.23	2.0136 2.0588 2.0686		RUN 10			Transition	
$151, 15 \\ 157, 23 \\ 171, 49 \\ 172, 52 \\ 173, 50$	$\begin{array}{c} 142.75\\ 146.69\\ 159.08\\ 160.67\\ 189.08 \end{array}$	$\begin{array}{c} 2.\ 0665\\ 10.\ 1044\\ 0.\ 9510\\ 1.\ 1034\\ 0.\ 8580 \end{array}$	82. 20 86. 41 89. 09 91. 71	$\begin{array}{c} 79.\ 04\\ 82.\ 66\\ 84.\ 79\\ 86.\ 69\end{array}$	$5.7036 \\ 2.7175 \\ 2.6443 \\ 2.5828$	153.42	144.17	3.6295
	RUN 5			RUN 11				
$163. 21 \\ 169. 55 \\ 172. 12 \\ 173. 77$	151, 63 157, 59 159, 45 210, 46	9, 8138 2, 8631 2, 3639 0, 9319	$\begin{array}{c} 93.\ 29\\ 95.\ 99\\ 98.\ 43\\ 100.\ 82\\ 103.\ 53\end{array}$	$\begin{array}{c} 87.49\\ 89.05\\ 90.72\\ 94.44\\ 97.38\end{array}$	$\begin{array}{c} 2.\ 9379\\ 2.\ 4637\\ 2.\ 4207\\ 2.\ 3531\\ 3.\ 0604 \end{array}$			
175.84	154.63	. 9589						
$176.71 \\178.06 \\179.96 \\185.59 \\194.74$	$155. 28 \\ 156. 72 \\ 158. 21 \\ 162. 94 \\ 171. 42$	$\begin{array}{c} .7965\\ 1,8992\\ 1,8869\\ 9,3856\\ 8,9116\end{array}$						

FIGURE 1. Observed heat capacities of octafluorocyclobutane.

behavior was reported by Huffman, et al.²¹ for cyclopentene and other compounds.

The heat-capacity values given in table 2 are probably accurate to 0.2 percent, except in the transition regions of 141.3° and 174.6° K, the anomalous region of 97° K, and the temperature range below 50° K, where larger tolerances must be allowed.

5. Heats of Fusion and Transitions

The heat of fusion was determined in the usual manner by introducing a known electric energy from a temperature just below the triple point to just above it and correcting for the premelting and heat capacity. The results of three measurements are summarized in table 3. The values given in the fourth column are the total heats required to melt 141.9302 g of the sample in the calorimeter. Considering the precision of the measurements and various sources of error, the uncertainty of the heat of fusion is believed to be ± 2.0 abs j mole⁻¹.

TABLE	3.	Molal	heat	of	fusion	of	$octa {\it fluorocyclobutane}$
		 			· · · · · ·		

Molecular weight-	-200.04; mass (of sample-	—141.9302 g	; triple-point	temperature=
	232.9	6° K: °K	$=273.16+\circ$	C	

Temperature interval	Heat input	Heat capac- ity and premelting correction	ΔH	ΔH_f
°K 227.6435 to 237.3363 227.7655 to 234.7512 227.4253 to 234.8109	$abs \ j$ 4199. 9 3567. 3 3657. 7	$abs \ j$ 2236. 9 1602. 2 1693. 9	abs j 1963. 0 1965. 1 1963. 8	abs j mole ⁻ 2766. 7 2769. 8 2768. 0
Mean heat of fusion Standard deviation				$2768.2 \\ \pm 0.7$

 21 H. M. Huffman, M. Eaton, and G. D. Oliver, J. Am. Chem. Soc. $70,\,2911$ (1948).

FIGURE 2. Observed heat capacities of octafluorocyclobutane from 85° to 113° K.

 TABLE 4. Molal enthalpy changes over even temperature intervals, including the solid-solid transitions and the anomalous region

Molecular	weight=200.04;	$^{\circ}K=273.16+^{\circ}C$
-----------	----------------	------------------------------

Temperature interval	Total energy input	Heat capacity correction	ΔH
	$H_{150^{\circ}\kappa} - H_{130^{\circ}}$	° ĸ	
°K 122.1832 to 150.2725 a 133.2603 to 150.6635 b	abs j mole ⁻¹ 5095. 7 3739. 7	$abs\ j\ mole^{-1}\ -1010.\ 0\ +346.\ 0$	abs j mole-1 4085. 7 4085. 7
		Mean	4085.7
129.2400 to 151.6058 b c	4405.2	-328.8	4076.4
	$H_{180}^{\circ}{}_{\kappa} - H_{170}^{\circ}$	³ К	
170.9367 to 180.8963 a 168.7525 to 177.2341 b	5002.3 4768.1	$+6.0 \\ +237.8$	5008.3 5005.9
		Mean	5007.1
	$H_{220^{\circ}{ m s}}{-}H_{210}$	° к	
209.4137 to 220.8877 ^a 212.4227 to 222.1278 ^b	$\begin{array}{c} 4878.4\\ 4529.9\end{array}$	-278.9 +70.0	4599.5 4599.9
		Mean	4599.7
	H105° к-H90	° K	
87.1084 to 105.4621 a 89.9824 to 105.7577 a	$1659.0 \\ 1450.4$	-289.9 -81.2	$1369.1 \\ 1369.2$
		Mean	1369.2
88.4184 to 106.1372 a c 87.7140 to 103.7215 a c	$1626.9 \\ 1446.5$	$-247.7 \\ -67.3$	$1379.2 \\ 1379.2$
		Mean	1379.2

^aHeated in increments over this temperature interval under adiabatic conditions. ^bHeated continuously over this temperature interval under adiabatic con-

ditions. $^\circ$ The sample was cooled slowly over 1 week from 230° to 80° K prior to the heat-capacity measurements.

As mentioned in section 4, in the temperature range of the four solid-solid transitions, small increments of heat were added to obtain the shape of the heat-capacity curve. Instead of attempting to determine the heat of transition at a given temperature, the enthalpy change was determined over an interval of convenient temperatures. This was done both by summing the increments of heats added in the determination of the shape of the heat-capacity curve and by heating continuously through this interval. The results of both experimental methods are summarized in table 4. The values given in the third column are corrections used to reduce the enthalpy changes to the even temperature intervals indicated. The anomalous region was treated in a similar manner by summing the heats added in the interval from 90° to 105° K. In one series of measurements (see table 2, runs 15 and 16), the material was cooled slowly over a period of 1 week from 230° to 80° K. The enthalpy change, as well as the heat capacity in the interval 90° to 105° K, was higher. The enthalpy change from 90° to 105° K was 10.0 abs j mole⁻¹ higher. Also, there was found a decrease in the enthalpy change in the interval 130° to 150° K of 9.3 abs j mole⁻¹.

6. Heat of Vaporization

Three heat of vaporization experiments were made at 261.25° K (p=590.9 mm Hg). The experimentally observed quantity, MQ/m, the conversion factor, 1-u/u', and the heat of vaporization, L, are given in table 5. The specific volumes, uand u', for this material were kindly furnished by the E. I. du Pont de Nemours & Co. Considering the precision obtained and various sources of error, the uncertainty of the heat-of-vaporization value is believed to be ± 20 abs j mole⁻¹.

TABLE 5. Molal heat of vaporization of octafluorocyclobutane at 261.25° K

Pressure=590.9 mm Hg; molecular weight=200.04; °K=273.16+°C

MQ/m	1-u/u'	L
abs j mole-1		abs j mole-
23,842	0.99550	23,735
23, 818	. 99550	23, 711
Mean		23, 721
Standard de	eviation	±6

7. Vapor Pressure

As there was no provision made to stir the sample, several series of vapor-pressure measurements were made under different conditions to make certain that temperature equilibrium was attained. The measurements were made going down the temperature scale as well as up. The close agreement in the results given in table 6 indicates that good temperature equilibrium existed. The results above the triple-point temperature $(232.96^{\circ} \text{ K})$ were fitted to an equation given by

$$egin{aligned} \log_{10} \ p(\mathrm{mm~Hg}) &= 6.70267 - rac{1315.906}{T} \ + 8.778482 imes 10^{-3}T - 1.739691 imes 10^{-5}T^2. \end{aligned}$$

The observations are compared with this equation in table 6. The equation gives the normal boiling temperature as $267.17 \pm 0.01^{\circ}$ K and the triple-point pressure as 142.8 ± 0.3 mm Hg.

TABLE 6.	Vapor	pressure	of	$octa {\it fluoro cyclobutane}$

			11 210				
$T_{\rm obs.}$	$p_{\rm obs.}$	peale.	$p_{\text{obs.}} - p_{\text{cale.}}$	$T_{\rm obs.}$	$p_{\rm obs.}$	pcale.	$p_{\text{obs.}} - p_{\text{cale.}}$
	S	eries I		°K	mm Ha	mm	mm Hg
°K 267.89 270.95	mm Hg 782.6 886.2	Tmm Hg 782.9 885.9	M M H g -0.3 .3	$\begin{array}{c} 241.\ 32\\ 246.\ 99\\ 253.\ 01\\ 259.\ 51\\ 263.\ 88 \end{array}$	$\begin{array}{c} 11g\\ 226.3\\ 303.3\\ 406.5\\ 547.3\\ 661.9\end{array}$	$\begin{array}{c} 11g\\ 226.5\\ 303.3\\ 406.5\\ 547.6\\ 662.2 \end{array}$	2 .0 .0 3 3
273.05	984. 8 Se	eries II	. 0	266. 65	743.7 Se	743.9 ries III	2
$\begin{array}{c} 179.\ 16\\ 191.\ 94\\ 201.\ 23\\ 215.\ 30\\ 223.\ 60\\ 230.\ 81\\ 232.\ 91\\ 233.\ 16 \end{array}$	$5.0 \\ 8.2 \\ 14.7 \\ 43.4 \\ 77.7 \\ 125.7 \\ 142.4 \\ 144.6 \\ \end{cases}$	142.5 144.5	-0.1	$\begin{array}{c} 177.\ 36\\ 191.\ 82\\ 196.\ 86\\ 197.\ 17\\ 206.\ 70\\ 213.\ 09\\ 221.\ 60\\ 271.\ 94 \end{array}$	$\begin{array}{r} 4.9\\ 8.2\\ 10.9\\ 11.0\\ 21.7\\ 35.9\\ 67.7\\ 921.4 \end{array}$	921.3	0.1

8. Experimental Entropy

The experimental data were used to calculate the entropy of the octafluorocyclobutane in the ideal gas state at 261.25° K and 1 atm. The results of the various calculations are summarized in table 7. In the temperature intervals in which the transitions occurred, the entropy change was evaluated by suming the various experimentally observed $C\Delta T/T$'s, where C is the observed heat capacity, ΔT the temperature rise, and T the midtemperature of the heating interval. The entropy change so obtained was corrected to the even temperatures indicated in table 7. Below 180° K, the results from the slowcooling experiments were used to evaluate the en-

 TABLE 7. Summary of the experimental molal entropy of octafluorocyclobutane

Molecular	weight=200.04:	$^{\circ}K = 273$	$16 \pm ^{\circ}C$
-----------	----------------	-------------------	--------------------

C D I	$abs \ j \ deg^{-1} \ mole^{-1}$
S_{15} °, Debye	$4,38\pm0.04$
$\Delta S_{15^{\circ}-90^{\circ}}$, numerical	78.24 ± 0.16
$\Delta S_{90}\circ_{-105}\circ$, transition	$14, 15 \pm 0, 10$
$\Delta S_{105^\circ-130^\circ}$, numerical.	$24, 03 \pm 0, 05$
$\Delta S_{130}\circ_{-150}\circ$, transition	20.14 ± 0.06
ΔS_{150} °-170°, numerical	$18,67\pm0.00$
$\Delta S_{1709-1809}$, transition	10.07 ± 0.04
$\Delta S_{1809-2109}$, numerical	28.05 ± 0.03
AS 100-2000 transition	20.54 ± 0.05
A Same and the numerical	21.32 ± 0.02
$\Delta S_{220} = 232.90^{\circ}$, numerical	10.92 ± 0.02
A Same and an and numerical	11.88 ± 0.01
A Sau are venerization 92791/021 of	23.22 ± 0.04
$\Delta S_{261,250}$, vaporization, $25/21/201.25$	90.80 ± 0.09
AS261.25°, gas imperiection	0.67
$\Delta S_{261.25^{\circ}}$, compression	-2.09
The second	
Entropy, ideal gas at 261.25° K and 1 atm	380.52 ± 0.71

tropy. The gas-imperfection correction was computed on the assumption that the octafluorocyclobutane vapor can be represented by the Berthelot equation of state. The critical constants used were those reported by Renfrew and Lewis.²²

The uncertainties given in table 7 were based on the precision, the probable nonreproducibility of the physical state below 180° K, and various other sources of error. The absolute entropy obtained is probably in error by more than is given in the table because the results of the measurements indicate a certain degree of glassy state or randomness in the solid at the lower extreme of our measurements.

9. Entropy From Molecular and Spectroscopic Data

The entropy of the gaseous octafluorocyclobutane was computed from the molecular and spectroscopic data based on the D_{4h} structure. The results are summarized and compared with the calorimetric entropy in table 8. The rotational entropy was computed directly from the principal moments of inertia given by Smith, et al.²³ in which the C-Cand C-F bond distances and C-C-C and F-C-F angles were 1.53 A and 1.36 A and 90 deg. and 112

deg., respectively. The moments of inertia wer^e $I_x = I_y = 796 \times 10^{-40} \text{ g-cm}^2 \text{ and } I_z = 951 \times 10^{-40} \text{ g-cm}^2.$ The vibrational entropy was calculated on the basis of the assignments by Classen (see footnote 5).

On the basis of the existence of residual entropy in the calorimetric work, the discrepancy in the two results given in table 8 would be increased. Work is now in progress at the Bureau for the reassignment of the frequencies on the basis of the recent evidence for a V_d structure.

Molal entropy of octafluorocyclobutane at 261.25° K TABLE 8. from molecular and spectroscopic data

Molecular weight=200.04; °K=273.16+°C; 1 cal=4.1840 abs ...

The authors are indebted to E. I. Du Pont de Nemours & Co. for the sample of purified octafluorocvclobutane.

WASHINGTON, July 24, 1953.

M. M. Renfrew and E. E. Lewis, Ind. Eng. Chem. 38, 870 (1946).
 D. C. Smith, J. R. Nielsen, L. H. Berryman, H. H. Claassen, and R. L. Hudson, NRL Report 3567 (September 15, 1949).