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On the Accuracy of the Numerical Solution of
the Dirichlet Problem by Finite Differences’
J. L. Walsh? and David Young?®

This paper derives numerical bounds for the error, in certain closed regions, of the differ-
ence analog of the Dirichlet problem. It is concerned only with the difference between the
exact solution of the difference equation and the solution of the Dirichlet problem. The
error bounds obtained involve quantities which can actually be computed, such as the mesh
size, and the oscillation and modulus of continuity of the given function on the boundary.
So far as the method is concerned, the chief novelty is the use of the difference analogs of
harmonic measure and the Schwarz Alternating Process.

1. Introduction

Although finite difference methods afford a powerful tool for obtaining numerical solutions
of partial differential equations, little is known about the accuracy. It is the purpose of this
paper to derive numerical bounds for the error, in certain closed regions, of the difference
analog of the Dirichlet problem. We shall be concerned only with the difference between the
exact solution of the difference equation and the solution of the Dirichlet problem. The error
bounds that we obtain involve quantities that can actually be computed such as the mesh
size, and the oscillation and modulus of continuity of the given function on the boundary. So
far as method is concerned, the chief novelty is the use of the difference analogs of harmonic
measure and the Schwarz Alternating Process.

Gerschgorin [4] * derived error bounds for boundary value problems associated with elliptic
partial differential equations. These, and similar bounds derived by Collatz [2] and Mikeladze
[10] involve bounds, in the closed region, of certain partial derivatives of the solution of the
differential equation. However, the solution of the differential equation itself is not known,
to say nothing of its derivatives, (although approximate values for the derivatives may some-
times be found by examining the corresponding difference quotients). Also, it may happen
that although the derivatives in question are not bounded in the closed region, the solution of
the difference equation may still converge to the solution of the differential equation.

Rosenbloom [13] presented an error bound for the Dirichlet problem which is closely
related to Gerschgorin’s but which utilizes special properties of harmonic functions. By use
of well-known inequalities giving bounds for the partial derivatives of a harmonic function at
an interior point in terms of the oscillation on the boundary and the distance from the bound-
ary, he obtains upper bounds for the derivatives in closed subregions. Then, by solving the
difference equation on subregions and, as the mesh size approaches zero, letting these sub-
regions approach the given region, Rosenbloom obtains an error bound involving w*(s), the
modulus of continuity in the closed region of the solution of the Dirichlet problem. However,
Rosenbloom does not discuss the question of finding »*(5) in terms of w(8), the known modulus
of continuity of the given function on the boundary. Furthermore, in practical numerical
work one would not wish to change the boundary of the network as the mesh size is decreased.

In section 3 we use the explicit solution of the difference analog of the Dirichlet problem
for the rectangle, obtained by Le Roux [9] and by Phillips and Wiener [12], to derive an error
bound involving bounds for the derivatives of the given function on the boundary. Wasow
[15] has obtained error bounds for the rectangle which are applicable when the boundary values
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have bounded third derivatives. Our results are somewhat more general in that we allow the
second and third derivatives to fail to exist at a finite number of points. Also, we obtain error
bounds for the case where only the second derivative is bounded, and we allow the first and
second derivatives to fail to exist at a finite number of points. In sections 4 and 5 harmounic
measure and its finite difference analog, discrete harmonic measure, are used to obtain bounds
for the moduli of continuity of harmonic and discrete harmonic functions, respectively, in
certain regions in terms of w(8). Phillips and Wiener [12] showed the existence of such bounds,
whereas we obtain suitable bounds in a precise numerical form. Then, in section 6 these upper
bounds are used to yield a uniform error estimate for the closed rectangle in terms of the oscillia-
tion on the boundary and 4(w). In section 7 the extension to regions made up of two or more
overlapping rectangles is discussed.

2. Discrete Harmonic Functions

Let b and £ be arbitrary positive numbers, and let L[h,k] denote the set of points (z, y)
such that both z/h and y/k are integers. Let Q be a simply connected closed region with interior
R such that the boundary S of @ consists of straight lines, each of which is parallel to a co-
ordinate axis and contains a point of L[hk]. Let @, denote the subset of points of L[h k]
contained in Q. Two points (#;,y;) and (x2,5.) of L[hk] are adjacent if

[(@—22) (R + [ —y2) [k} =1. 2.1)

A point of Q is an interior point of @ if the four adjacent points belong to @,. All other points
of Q, are boundary points. We let R, and S; denote, respectively, the set of interior and
boundary points of Q. Evidently, we have B, R and S, &S.

A function U(z,y) defined on ©y, is said to be discrete harmonie,® (d. h.) in R, if it satisfies
the difference equation

FU@y)]=[20*/ A+ AU @+hy)+ U@—hy)—2U(y)]
+2/A+)NU @y +k) + Ule,y—k) —2U@,y)]=0, (2.2)

a=k/h. (2.3)

The finite difference analog of the Dirichlet problem is the following problem: given a
function f(z,y) defined on S, to find a function U(z,y) defined on Qz, d.h. in R, and coinciding
with f(z,y) on S;. The existence and uniqueness of a solution of this problem for bounded
regions is easy to prove; see for instance Gerschgorin [4]. The convergence to the solution
of the Dirichlet problem has been proved using nonconstructive methods by Le Roux [9],
Phillips and Wiener [12], and others.

where

3. Error Estimate for the Rectangle Under Differentiability Assumptions

Let @ be bounded by the lines £=0, z=a, y=0, and y=0b, where a=Ah, b=DBk and A and
B are positive integers. Let f(x,y) be defined and continuous on S and let u(x,y) and U(x,y)
denote respectively the solution of the Dirichlet problem and its finite difference analog with
boundary values determined by f(z,57). In this section we shall derive an upper bound for the
error U(z,y) —u(z,y) in the region @, under certain assumptions about the derivatives of f(z,y).
If fi(z,y) is defined and continuous on S, we denote generically by w(x,y) and U,(z,y) the solu-
tions respectively of the Dirichlet problem and its finite difference analog with boundary values

Ji@,y).
First, one can verify directly that the function u,(z,y) defined by
u(2,y) =f(0,0) +[f(a,0) —£(0,0)] (x/a) +[£(0,b) —£(0,0)] (y/b)
+[f(a,b) +£(0,0) —f(a,0) —£(0,b)] (/a) (y/b), (3.1)
$ Heilbronn [5] introduced the term discrete harmonic function, and studied the properties of these functions.
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which is linear on every line parallel to either coordinate axis, is both harmonic in £ and d.h. in
Ry. Thus if fi(z,y) is defined on S and equal to u,(x,y) on S, then u,(x,y)=U,(x,y) in Q.

Next, if fo(z,y)=f(x,y) —fi(z,y) on S, then we have by linearity of Laplace’s equation and
(351

U(I,y) —u (%3/) = [ U2 (I,y) + (]1 (x;y>] A [u2 (.I',’y) _I_ Uy (Tyy)]

Evidently both U,(z,y) and wus(z,y) vanish at all the corners of Q.

We study arbitrary boundary values f(z,5) by studying in turn four functions each of
which has the boundary values f,(z,5) on one side of Q@ and values identically zero on the other
three sides. By the symmetry of the situation, it is sufficient to study in detail only one of the
latter functions. Let us set f3(2,5) =/(2,0) when y=0 and f;(z,y) =0 elsewhere on S. Since
Jfo(2,y) is continuous and vanishes at the corners of Q, f3(x,y) is continuous on S.

It can be verified directly ® that if the Fourier series of f;(2,0) converges to f3(x,0), then we
have

= é s R () Q[EZ;I ”(ib “125)1/;) y/o), (3.3)
where
A, = (2/a) JO O e, (3.4)

and that’

. & e sinh [(mmb/a)(1—1vy/b))
ba(ar;,y)—nA?1 A¥ sin (nrx/a) — S , 3.5)

where

A= (21]a)’ S sin (un jh/a) 3(j1,0), (3.6)

and where m and 7 satisfy the relation

sinh (mnk/2a) =0 sin (nwh/2a). 3.7)

Now let g(x) =f3(2,0). We now prove the following theorem:

TrarorEM 3.1 Let g(x) satisfy the following conditions: (a) g(x) and its first (s—2) deriva-
tives are continwous, 0<z<a; (b) ¢~V (x) fails to exist or fails to be continuous for, at most, @
Sinate number of points in the interval 0<x=<a, and g~ (x) s uniformly continuous in each open
anterval in which it exists and is continuous; (¢) ¢'9 (x) exists, except possibly for a finite number of
points, and s bounded, 0< =< a.

Then uniformly for all (x,y) €, we have

|Us(@,y) —us(@,y) | < 2+ C) Dy (h/a), (3.8)
if s=2, and
| Us(a,y) —us(z,y) | < (14 Ce) Ds(h/a)?, (3.9)
if s=3, where
O=(1/24)7*(1+ ¢?) coth (awb/a)/ae, (3.10)
0222(a/7r)2[2J1M1/a+M2], D3:2(a/7r)3[2<g]2’+‘1)M2/d+ﬂ4’3] (3.11)
a=(2/mo) sinh™ (o), (3.12)

8 See, for instance [8], pages 95 and 96.
7 See, for instance, Le Roux [9] or Phillips and Wiener [12].
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and J,, i=1,2, denotes the number of points in the open interval 0<a<a at which ¢* (z) does not
exist or is not continuous. Here M;,1=1,2,3, denotes the least upper bound of the modulus of g'* (x).

Proor.
LemMa 3.1, If m and n satisfy (3.7), then

0<n—m<(1/24) 1+ ) rn(h/a)?, (n=1,2, .. . 4). (3.13)
Proor. Let p=mnk/2a, q=nwh/2a. Then (3.7) takes the form
sinh p=g¢ sin g¢. (3.14)

We now study the function p(g) defined by (3.14) in the interval 0<¢<w/2. One can
verify directly that p(0)=0, p’(0)=0, and

—o(1+¢?% sin ¢

e
p"(¢)= (1+ o? sin’q)*? & <),

1 )_"0(1 +¢*)(1—20%sin’g) cos ¢
b ey (142 sin?q)®? ’

where primes denote differentiation with respect to ¢. By the extended mean value theorem,
since p’’(q) <0, we have p<ogq. Therefore, m <n. On the other hand, we also have

Ip"(g)| < a(1-+4¢%)|1—2¢? sin?q|

(142 sin?q)*/*
since [(1—2a%in%g) (1+ o’sin%q) %% < 1.
Again using the extended mean value theorem, we get

p(q)—oq=(1/6)g’p""’ (¥) (0<t<9)

<o(l40?

and
lp(q)—oql <(1/6)g*s(1+ 0%,
and the lemma follows.
Lemma 3.2.  If m and n satisfy (3.7), and if « 1s given by (3.12), then

m>an, Gn=1132, 5 » opil), (3.15)

Proor. Defining p and ¢ by (3.14), we have

diq @(@)/)=[0"(Qa—p@)¢"

By the mean value theorem, we have p(q)=¢p’(§) (0<¢<¢). Since, as shown in the proof
of lemma 3.1, p"/(¢)<0, we have p'(¢)<p’(¢) and p’(¢)g—p(¢g) <0. Therefore, the ratio
p(g)/q 1s a nonincreasing function of ¢, (0<¢<w/2). Its minimum value in the interval
0<q<w/2 is assumed when ¢=m/2. Therefore, p(q)/q=p(7/2)/(r/2)=(2/7)sinh~*(s), and
the lemma follows.

Now for convenience, let us define the function

_sinh [(mrb/a)(1—y/b)]
Lt (3.16)

We shall study its behavior as a function of both m and y, where m is assumed to be a con-
tinuous variable.
Lemma 3.3, If m=0, then for 0 <y <b we have

0> L1, > —(wyja) coth (mrbja) exp [~ mryfa].
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Proor. Differentiating (3.16) with respect to m we obtain

L (1)=(wb/a){ (1—y/b) cosh [(mmb/a)(1—y/b)] sinh (mxb/a)
—cosh (mwb/a) sinh [(mxb/a)(1—y/b)]} sinh=*(m=b/a)
=(b/a)ln(y){ (1—y/b) coth [(mb/a)(1—y/b)]—coth (mmb/a)}.
We note that for K >0, 2>>0,

1 sinh(2K2)—2Kx
2 sinh!(Kz)

Ed; (z coth (Kz))=coth (Kz)—Kuz csch? (Kz)=

But since sinh(2Kz)> 2Kz, the last expression is nonnegative; therefore by the mean value
theorem we have

(1—y/b)coth[(m=b/a)(1—y/b)] <coth(m=b/a), (0<y<bh),
and

d
On the other hand,

iz Tn(0) = (rbja){ (1 —y/b) RO U] cotymed/a) 1)}

—(xb/a)coth(mb/a) { (1—y/b) COSh[(;Z;Lb(% 21/5 y/b)] —I‘m(y)}

. sinh (mwry/a)
=(wb/a) coth (m”b/“)§(1 Y/%) Goh Gmwba) cosh (mabja) Y/ "‘(y)}'

For 0 <y <b, the terms in the brackets are, respectively, nonnegative and nonpositive, whence

1) > — (ry/a) coth (mb/a) T(y).
Finally, we note that

1—exp [—2(mwxb/a) (1—y/b)]

1—exp [—2mxb/a] <exp (—mmy/a),

I'n(y)=exp (—mwy/a)

provided® 0 <y <b. The lemma now follows.
Lemya 3.4, If m and n satisfy (3.7), then

H:diml‘m(y):|m=m1’§[coth(ourb/a)/ae]n“, W) e ety

where o is given by (3.12).

Proor. It is easily verified that if 0<¢, 0<K, then |te=®!|<(Ke)"!. Therefore,
y exp(—mmy/a) <[(mr/a)e]'. The lemma follows from lemmas 3.2 and 3.3, and from the fact
that coth(z) is a decreasing function of x, for #> 0.

Levuma 3.5.  If m and »n satisfy (3.7), then

[Pm(y)_rn(y)lsa(h/a)znzy (OSySb); (1SnSA))
where C and o are given by (3.10) and (3.12), respectively.

8 This inequality was proved by Phillips and Wiener [12).
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Proor. By the mean value theorem we have

[ 1], | lm—=nl.

l Fm(y)_rn(y) ] Sl\jaxmngSn

The lemma follows from (3.13) and (3.17).
LemMma 3.6.  If A, is defined by (3.4), then
|A,,ISD,/7L", (n=2,3), (3.18)

where Dy is defined by (3.11).

Proor. The proof involves the use of repeated integration by parts of the integral ex-
pression for A,, and is similar to that given by Jackson[8, p. 13-14] for the case s=2. We
omit the details.

We now define the function fy(x,y):

A
fa(z,y)=0 unless y=0 and fl,(ac,O)z‘_;‘,1 A, sin (nwz/a).

For s=2,3 and 0 <z<a, we have

©

|f4(x,0)—g(x)|= i A, sin (nwz/a) | <D, n“gDsfmt“dt:DsA"s/(s——l),
n=A+1 A

n=A+1
or

|fs(@,0) —9 @) | <[Ds/(s— )] (h/a)*~". (3.19)

On the other hand, if we replace f;(x,0) by fi(z,0) in (3.4) and (3.6), we get AX=A,,
(n=1,2,...,A-1). Therefore, for (x,y) € L [h,k], we have, since sin (Arz/a)=0,

U e, = aa,) =2 A sin (o2 /0)Ln(y)—Ta(0) (3.20)
and
U o)~z S 2 14 () —Ta(0)] S O, () 35 n~ 321

by lemma 3.5 and (3.18). It can be shown that

A-1 4 A=(h/a)™!, (s=2)
Ll +f 2o dt < { (3.22)
2=l L 1+log A=1—log (k/a), (s=3).

Therefore, if s=2,
|Us(z,y) —us(z,y)| < CDy(hfa). (3.23)

Evidently (3.22) could be used to obtain an error bound for the case s=3, and this was done
in the original manuscript of the present paper. Since then, however, a paper by Wasow [15]
has appeared which contains a stronger result for the case s=3 than the original form of theorem
3.1. A combination of his methods and the original ones now yields an improvement (the
present theorem 3.1) of Wasow’s result in this case since we allow ¢'¥ (z) and ¢‘”(z) to fail to
exist for a finite number of points.

Thus following [15], we obtain from lemmas 3.1, 3.2, 3.3, and the mean value theorem

T () —Tu(y)| < Cae(h/a)*(my/a)n’exp(—anwy/a).
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By (3.20) and lemma 3.6 we have
| Ui (z,y)—us(2,9)| < CDsae (h]a) (/@) exp (— anry/a) < Ce Dy (h/aY, (3.24)
n=1

since for y>0,i exp (—anry/a)=exp (ary/a)— 1] <(ary/a)'.
n=1

Since d.h. functions possess mean value properties, they assume their maximum and mini-
mum values on the boundary as do harmonic functions. Since the functions [u;(z,y) —wus(z,y)]
and [Us(x,y) — Uy(z,y)] are harmonic and d.h., respectively, we have

[ (@,9) — 4 (2,9)| <Max |g (1) — fu (2,00, |Us(x,9)— Us(x,9)| sMax |g (@) —f4(2,0)].
Therefore, in @,
| Us (2,y)—us (z,9)| < |Us(2,y) — Us(2,9)|+| Us (x,y) — s (2,9) |+ w4 (z,y) —us (2,9)|
<|Ui(@,9)—ua(2,9)|+2 Max [g (2)— f4(2,0)].

By (3.19), (3.23), and (3.24), the theorem follows.
4. Harmonic Measure

Let © denote a simply connected region with interior £ and boundary S. Let S” denote a
subset of S consisting of a finite number of connected subsets of S. We define the harmonic
measure, (h.m.), H[(x,y),S’,Q2] as the unique function which is harmonic and bounded in 7, is
continuous in Q except perhaps at a finite number of points of S, and equals unity on S” and
zero on S—S8’. The properties of harmonic measure have been studied in considerable detail,
see Nevanlinna [11], chapter III.

By analogy we define discrete harmonic measure, (d.h.m.), for regions of the type described
in section 2, as follows: I, [(xz,y),S,2.] is a function d.h. and bounded in R;, equal to unity on
S:NS’ and to zero on (S—S’)NSy.

For bounded regions the existence and uniqueness of h.m. is well known, see [11]. The
existence and uniqueness for the half plane can be proved by the use of conformal mapping.

The existence and uniqueness of d.h.m. for bounded regions follows from the existence
and uniqueness of the solution of the difference analog of the Dirichlet problem. Later we shall
prove existence and uniqueness of d.h.m. for a half plane and for certain other unbounded regions.

We list some elementary properties of d.h.m., which are analogs of well-known properties

of h.m.
0 <H[(x,y),S,2])<1 for all S’<=8. (4.1)

It S’7=8”<8S, then
HL[(x;y))S,)QL] SHL[(%?/),S”,QL]- (42)

If 87 is included in the boundary of both @, and Q@ where Q,=Q; and if (z,7)e?;, then
HL[(xyy):SlyﬂL]SHLKx’y)’S,) Z] (43)

The first property follows at once from the fact that the maximum and minimum values
of d.h. functions are assumed on the boundary. The second follows from this fact and from
the fact that the expression {HL[(:c,y),S”,QL]—HL[(z,y),S’,QL]} is nonnegative on Sz. The
third follows since by the maximum and minimum principles Hy[(xz,),S’,2]1=0 and hence
{Hy[(x,y),S Q8 — Hy[(x,y),S",2,]}= 0 for any point (z,5) on the boundary of ;. This is the
so-called principle of gebietserweiterung.

We shall use h.m. and d.h.m. for two purposes. In this section and in section 5 lower
bounds will be derived to enable us to obtain upper bounds for the modulus of continuity of
harmonic and d.h. functions in a closed region in terms of their moduli of continuity on the
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boundary. In section 7, upper bounds will be derived which will enable us to use the Schwarz
Alternating Process and its difference analog for overlapping rectangles.
Let @ denote the rectangle of section 3, and let S” denote the side contained in the line y=0.
Taeorem 4.1.  If (z-0/2)*412< % then

H[ (xyy);S,;Q] =l —V(b/a’) (5/66), (44>
Hy[(z,y),8",2] >21—w»(b/a)(3/a), (4.5)

where
v(b/a) =[4+ wcoth?(wb/a)]/2. (4.6)

Proor. Let u(x,y), U(z,y) be harmonic and d.h. functions respectively in R vanishing
on S—S8” and equal to sin(wz/a) on S’. By (3.3) to (3.7) we have

sinh[(7b/a)(1—y/b)]

u(x,y)=sin(rz/a) S y and Ul(x,y)=sin(rz/a) sinh|(mabja)(1—y,b)]

sinh(mrbja)

where sinh(mwk/2a) =o sin(wh/2a).
By lemma 3.1 we have m<1. Also by lemma 3.3 we have (d/dm)T,(y)<0. Therefore,
Tw(y) = Ti(y), and we get
Ulayy) Zu(@y). (4.7)

Now, for 0<6<7/2 we have? sin 62> (2/m)f; and hence for 0<z<a/2, we have
sin(wz/a) > 2x/a=1—(2/a) (a/2—z). But since sin [(r/a)(a/2+p)l=sin [(x/a)(a/2—p)] for all p
it follows that sin(wz/a)>1— (2/a)|a/2—z|, (0<z=<a).

Also

diysinh[(rb/a)(l —y/b)]|=|(w/a)cosh[(rb/a)(1 —y/b)]| < (x/a)cosh(rb/a),

and by the mean value theorem

sinh[(wb/a) (1—y/b)] >sinh (7b/a) — (zy/a)cosh (xb/a).
Therefore,

1—u(zy) <1—{[1—(2/a)|a/2—2||[1— (ry/a)coth(xd/a)]} < (2/a)|a/2—a|+ (xy/a)coth(xb/a).
By the Schwarz inequality the last expression does not exceed

(1/a)[(a/2—z)*+y*]*v(b/a) < (6/a)v(b/a),
provided (z—a/2)*+y*<é%

We now observe that H[(xz,y),S”,Q=wu(x,y), Hl(x,y),S",]= U(z,y). The theorem now
follows from (4.7).

Now let Q; denote the subset of L[A,k] such that y=> 0 and let R, and Sz denote the interior
and boundary of Q;, respectively.
TraEOREM 4.2.  For the region Qp, d.h.m. exists and is unique.

Proor. Consider the sequence { Hf (z,y)}, where
Hl(zn) (x)y) :HL[ (x,?/),S' nSI(Jn) JQI(‘n)])

and where @’ denotes the rectangle with vertices (nh,0), (—nh,0), (nh,nk) and (—nhnk).
Evidently Hi" (x,y) exists, since d.h.m. exists for bounded regions. By (4.3) it follows that the
sequence { H{" (x,y) } is nondecreasing and bounded above by unity. Therefore, a unique limit
exists which we denote by H;,(x,y).

% This is Jordan’s Inequality; see Copson [3, p. 136].
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Since Hi" (z,y) is d.h., it satisfies (2.2). Taking limits of both sides of (2.2), we find that
H;(z,y) satisfies (2.2) and is therefore d.h. Evidently H,(z,y) <1, H.(z,y)=1 on S’NS; and
Hy(z,y)=00n S"—S8.. Hence H,(z,y) has all the properties required for d.h.m.

In order to establish uniqueness, we prove

Levmma 4.1, If U(zy) is d.h., bounded in Ry, and vanishes on Sy, then U(x,y) vanishes in Ry,

Proor. By hypothesis there exists a constant /2 such that for (z,y)eQ, we have |U(z,y)| < P.
Given any (x,7)eQ, and any e >0, let @ and & be chosen so that (a,b)el[h,k] and

a> PQ*+y%)"2(1/2) 2, b= a.

Let Q* denote the rectangle with vertices at (a,b), (—a,b), (a,0), and (—a,0), and let 7, denote
the interval (—a<z<a). Since |U(z,y)|<P on S* and vanishes on /,, we have

|U(z,y)| < PH [ (3,y),8*— Lo, E].
By theorem 4.1 we have, replacing a by 2a,
Hy[(2,y) 10,27 2 1—v(b/2a) (6/2a),

provided 2*+4*<é*. But by hypothesis, we have (z?49%)"?<2ea/Pr(1/2). Substituting, we
get
Hy[(2,y),10,] 2 1—v(b/2a)e/ Pv(1/2).

Since b= a, we have »(b/2a) <v(1/2); hence,
HL[(T;?/),I«,Q:]Z 1_6/1)7 and !IY(I;]/” <e

This proves the lemma. ‘

The uniqueness can now be proved by assuming two d.h.m.’s and showing that their
difference vanishes identically.

The proof of theorem 4.2 is complete.

We note that the existence of a unique bounded solution of the difference analog of the
Dirichlet problem for @, with bounded boundary values is almost immediate. If the boundary
values are determined by ¢g(z), then the limit of the absolutely and uniformly convergent series

i_‘, H[(xy), ph,Q)g(ph) is d.h. in Rz, bounded in Q;, and equals g(z) on S;,. Thus a solution
“:—m

exists. The uniqueness follows at once from lemma 4.1.

We next consider the region 2>0, > 0. To find d.h.m. for subsets of the line y=0 we
perform a sign-changing reflection about the line =0 and use theorem 4.2. Since the d.h.m.
is zero on the line =0, this can be done in such a way that the new function will be d.h. in
R;. Similarly to find d.h.m. for subsets of the line y=0 we reflect in the line z=0.

By similar methods the existence and uniqueness of d.h.m. can be established for other
regions such as the semi-infinite strip 0 <z <a, y=> 0.

5. Modulus of Continuity

The modulus of continuity of a function f(z,y) in a closed region @ is defined by
w(©0) =LUB|f(@,y1) —f (x2,y2) |,

where (z1,21),(@,:) €@ and (2,—x5)*+ (1—12)? <% Evidently if 6 is not less than the diameter
of Q then w(8) equals the oscillation of f(z,y) in Q.

For harmonic functions we prove the following theorem:

Tuarorem 5.1. Let Q denote a bounded simply connected closed region with interior R and
whose boundary S is a closed Jordan curve with the following property: there exist constants
700 and 020 such that for any point P of S there exists a circular sector with vertex at P, with
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radius ro and inecluded angle 0 containing no point of R.  Let u(x,y) be harmonic in R, continuous
an Q with modulus of continwity w(6) on S. If for some positive number D we have

6 <Max{ry,D,D (ro/D)=+¥i=}
then the modulus of continwity of w(x,y) in Q satisfies the inequality
W*(0) Sw[DE/D)* * V] 4-(4 M/x) 8/ D)™/ =+¥, (6.1

where y=Max (2r—8,7) and
M=Max [u(z,y)] —(M)in [u(z,y)] (5.2)
z,y)eS

(z,9)eS
1s the oscillation of w (x,y) on S.
Proor.
Levva 5.1.  Let I, denote the interval —r<z<r, y=0 and let C, denote the region
2?4y <p% y20. If (a,y)eC,, then

Hl(zy),1,,y>0]1>1—2p/wr.

Proor. It is easy to show that if ¢ is the angle at (—7,0) from I, to the circle €' through
the points (—7,0), (r,0) and (z,y), then H[(z,y),I,,y=>0]=1—¢/.

Now if p/r=(1—cos ¢)/sin ¢, then (J, is contained in the region bounded by € and the line
y=0. Hence, by the minimum principle for harmonic functions we have for (z,y)eC,

H[(z,y), 1,y 201 21— (2/m)tan™" (p/r) 2 1—2p/xr,

and the lemma is proved.

Levmva 5.2.  Let O,y denote the region x*+1y> <r?, 0 <tan~'(y/x) <¢ <27 and let B, y denote
the bounding radii of C,y. (If ¢y=2m, then B,y denotes the line 0 <z <r, y=0). If p<r and if
(2,)€C, y, then

H{(x,y),B:,y,Cr,y] 21— (4/7) (p/r)='¢.

Proor. We first consider the case y=m. If z*42°=r* and y >0, then as in lemma 5.1
we have H{(x,y),l,,y=0]=1/2. Hence, as we verify at once,

H| (Iry) 717707] = 21{[ (1’,?/) 7177?/ >0]—1.
If (z,9)eC, -, then by lemma 5.1 we have
H[ (T,Z/) 7IT,OT] Z = (4/7") (p/i') o

The lemma can now be verified for the general case by mapping C, . onto (, , by means of the
conformal transformation (w/r)=(z/r)¥*. We omit the details.

Now by the maximum principle for harmonic functions, for given 6 the maximum value of
| U (21,1) — U(a,2) | for (2,— )+ (1 —1y2)? < 6% occurs when either (z,,5,) or (2,:) belongs to S.
If (z1,1)eS, then for all » such that 0<r <7, there exists a circular sector (, 4 containing at
least one point of R with vertex at (z;,7;) with radius =6 and angle ¢, such that B, y the union
of the bounding radii is disjoint from R. Since the theorem is trivially true if (z,7.)eS, we
assume (2,,72)el2.  Let Q; denote the closure of the connected component of (z,,7,) for the region
oNC, y. Evidently Q¢C, 4. Since for (z,)e2 NS, we have

H[(x,y),B,, \P)Or, W] S 1 :H[(%y) len 8791]
and for (z,7) contained in 2; and on the arc of C, 4, we have
H[<ny) ’Bf,‘hOT.\b]:O;
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then for all (z,7)eQ; it follows that

H((z,y),B:,4,Cr o] <H[(z,y),2uNS,].
But by lemma 5.2 we have

H([(22,42),B:,4,Cr, 9] 21— (4/m) (8/r)™"¥

since the lemma is obviously true if we rotate the sector.
Therefore, we have

| (@2,2) —u(@n,yn)| () H[(22)2),Criy NS, Q)+ MH[ (22,y2) ,S— Cr, y, Q) S w(r) + (4 M) (6/r)"'¥.

Now by the assumptions on § we have D(5/D)~/=*¥) <D(ro/D)=r,. Hence, we can choose
r=D(5/D)*=t¥) <7y and the theorem follows.

We now consider the case where Q is an arbitrary simply connected region. We first prove
the following general theorem, which is essentially a formulation for harmonic functions which
is equivalent to Carathéodory’s form of the theorem of Milloux for analytic functions:

TuroreM 5.2.  Let G be a Jordan subregion of |z|< 1, whose boundary consists of a Jordan
arc ay which passes through z=0 plus an arc ey of T:|z|=1. Let u(z) be harmonic and bounded in
@, continuous in the corresponding closed region except at the end points of ay and as, equal to unity
in the interior points of ey and to zero in the interior points of ao.  Then in every point z of G we have

u(z) > 1— (4/7) tan=t|z|"/2, (5.3)

Proor. Let »(2) be conjugate to u(z) in G, and let f(z) =exp[—u(z)—iv(z)]. Except
perhaps at the end points of the arcs, on «; we have |f(z)|=¢7, and on a; we have |f(z)|=1; on
these open arcs |f(z)| is continuous in the two-dimensional sense. Then by the form of Mil-
loux’s theorem presented by Carathéodory, [1], 354, we have for ze@

log|f(2)|=—u(z) < —1-+ (4/7)tan1|z|"/?
as we were to prove.

TuroreEM 5.3. Let @ denote a bounded simply connected closed region with interior R and
boundary S. Let w(xy) be harmonic in R, continuous in Q and having modulus of continuity
w(8) on S. If D is any positive constant, then the modulus of continwity of w(x,y) in Q satisfies the
nequality

w*(0) <w[D(3/D)"°1+ (4M /=) (8/D)'"*
Jor all 6 <D.

Proor. As in the proof of theorem 5.1, it is sufficient to show that if €, is a circle

with center (x;,) on S and radius » and if (z2,2)eQ and (z;,—x,)2+ (1 —12)2 <862 <r?, then

H(22,y2),C:N S, Q)2 1— (4/m) (3/r)">. (5.4)

The theorem then follows if we let 7=D(8/D)"? since 6 <D and hence D(5/D)"*> 6.

Now, if @ is a Jordan region, (5.4) follows at once from theorem 5.2, since tan=!|z['?<|z|/2
for |z2|<1. We indicate the modifications necessary to include the case where Q is an arbitrary
simply connected region.

Let O be a boundary point of @, let C, be the circle |z|=r, and let z, be a point interior to Q
and to ;. If no point of Q lies exterior to (', then a function »(z) harmonic in £ and continuous
in © equal to unity on §'is identically unity in @ so we have v(z)=1. We proceed to study the
contrary case. If points of I lie exterior to 7, such points can be joined to z, by a Jordan arc
lying wholly in R, so at least one arc of C; lies in R. Let the totality of mutually disjoint arcs
of C;in B be Ay, A5, . . . . Denote by R, the subregion of  interior to (', containing z, and
by R the sum of Iy, its reflection (inverse) in (;, and the arcs A, which form part of the boundary
of Ry; if an arc of (), is part of the boundary of 2, it does not belong to £2,.  We modify R, by
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adjoining to R, the interior of each Jordan curve that can be drawn in R, and to which O and z,
are exterior. Denote this new region by .. Then R, contains z, is simply connected, and
has O as either an exterior or a boundary point. The subregion R; of R, interior to C, is also
simply connected, and part of its boundary is an open arc A, of ', of which every point is
accessible; we choose A, as the largest such arc, so that every boundary point of 2; not on A4, is
either a boundary point of 7 interior to €, or is a point of (), not contained in an arc of O,
consisting wholly of accessible boundary points of ;. By a conformal map of R; onto the
interior of a circle v (in which 4, necessarily corresponds to an arc of v) it is clear that F(z,Ay,Rs)
exists and is unique; this function takes the boundary value unity at every point of 4, and the
boundary value zero at every boundary point of 2; not on the closure of 4;. Carathéodory’s
proof of Milloux’s theorem is valid for the region R, the distance from z to the boundary of
R; is not greater than |z, so (5.4) is valid for an arbitrary simply connected region, and the
theorem follows.

The modulus of continuity of a function F(z,y) on any subset Qz, of L[A,k] is defined by
wr, (6) :LLYB|F(1‘1,’LI/1> e F(IZJ:I/Z) |7

where (21,51), (#2,2) €z, and where (z,—22)2+ (y1—12)* <8

For d.h. functions in a rectangle we prove the following theorem:

Turorem 5.4. Let Q@ denote the rectangle 0 <z <a, 0<y<b, where (a,b)el[hk]. Let Q
denote the subset of Llh,k] contained in Q. If Ulxy) is d.h. in Ry, the interior of Q, and has
modulus of continwity w(8) on Sz, the boundary of @, then for 6<r=/(ab)'* the modulus of
continuity of U(xy) in Q, satisfies the inequality

wp*(0) S w[2Y2{ (1) 2+ h-+k } 14 (M/2)v(1/2) (8/r)"? (5.5)

where M and v(1/2) are defined by (5.2) and (4.6), respectively.

Proor. As in the proof of theorem 5.1 the maximum value of |U(zy,y;)— U(xs,y.)| for
(21 —9) %+ (1 —1)* < 6% 1s assumed when either (2;,51) or (2.,7.) belongs to S;. Let us assume
that (z,51)eSz. Now if (20,52) also belongs to S the theorem is trivial, since 6 <r. We there-
fore assume (2,,7/) elly.

Let p denote a straight line containing (z,,7) and including one of the sides of the rectangle.
Let C denote the closed interior of a semicircle with center at (z,y,), with radius 6,=2*{ (6r)/2--
h-+k}, with bounding diameter included in p and containing at least one point of R,. Since
6<r we have 6.>2Y%5. Evidently there exists a rectangle 7" included in € with one side con-
tained in p and with vertices contained in L[hk] such that the sides perpendicular to p are
at least half as long as those parallel to p and such that the latter sides have length at least
2(or) Y2,

By (4.2) and (4.3) we have

]]L[(W:?/);ODSL,QL] > [IL[(J’,?/) , TnSL;QL] 2> ]IL[(%Z/) ) TnSLyQLn JHL
Now, for (z,7)eS.N7T we have
H[(xy), TNp, T <1=H.[(z,y), TNS.,2,NT].

Moreover, since the intersection of p and the boundary of 7'My, is contained in 7'N.S, we have
H,[(a,y), TNp,T]=0 for all points of the boundary of Q.1 7 not contained in S,N7. Therefore,
for all points of the boundary of 7'NQ; we have

H[(x,y), TNS, QN T)> H[(x,y), TNp,T).
It follows that for all (z,7)e7'NQ;, we have
H[(x,y), TNSL, QN T= H[(2,y), TNp,T].
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Now since (x2,2)e7'NQ;, we have by theorem 4.1

Hy[(22,2), T0p, T2 1—(1/2)v(1/2) (8/r)"*.
Hence,
Hy[(22,y2) ,Sp— (SN 0), Q) < (1/2)v(1/2) (8/r)*2.
Therefore,
(U (@1,91) — Ula,y2)| S 0[22{ (r8) 2 +-h+-k 1]+ (M/2)v(1/2) (8/r) 2,

and the theorem follows.

In the above proof if h=Fk, one could have obtained a rectangle with the desired properties
by letting C have radius 2Y%[(r5)"/*+h]. Therefore, we have

CororrAry: If h=Fk, then

w,*(8) < w[2V2{ (r8) Y24k }]+ (M/2)v(1/2) (8/r) V2.

6. Error Estimate for the Rectangle In Terms of the Modulus of Continuity on
the Boundary

In this section we obtain an error bound for the rectangle of section 3 under the assump-
tion that the function f(z,7), which determines the boundary values, has modulus of con-
tinuity «(6) on S. The function f;3(z,5) defined in section 3 is also continuous, and we denote
by w;(8) its modulus of continuity for 0 <z <a, y=0.

Let Us(z,y) and uz(2z,y) be given by (3.3) and (3.5), respectively. We define the function
f;(x) by the partial sum ;

fs(@)=2>d4 A, sin (nwz/a), (6.1)

n=1

where the A, are the Fourier coefficients for f3(2,0)=g(z) as defined by (3.4) and where the

coefficients dy4 , are summation coefficients defined by Jackson [7, p. 9]. Let us(z,y) and U,;(z,)

denote respectively the solutions of the Dirichlet problem and its difference analog vanishing

on S except for y=0. If y=0, the values are determined by f;(z). We now prove
Tarorem 6.1. If (2,)eQ and 0 <z <a, e<y<b, then

| Us (2,y) —us(2,y)| <8M*O\(hja)*(e/a)=?, (6.2)
where
6e | 27¢/a
X=&3—7;3+;$!e¢ M*=$\S435>§I.f/<x)l (6.3)

and where C and o are determined by (3.10) and (3.12), respectively.
Proor. It can be verified that

A

us(2,Y) = ZdA, nAa sin (nrz/a)T,(y), (6.4)
n=1
A

US(I)y):ZIdA,nAn sin (nvrx/a,)l‘m(y), (6'5)

where m and n are related by (3.7), and where I',,(y) is defined by (3.16). Evidently we have

A
| U5(ar,y)—u,5(x,y)| S’;[dA.nAnl'IFm(y)'—Pn(y)l' (66)

By lemma 3.3 we have
1367% I‘W(y)’ <(wy/a) coth (mmb/a) exp (—mwy/a),  (0<y<b), (m=>0). (6.7)

279683—54——4 355



By lemma 3.2 we have m>an for 1 <n <A, and
1dim I‘m(y)‘ <(wy/a) coth (arb/a) exp (— anwy/a). (6.8)

Using lemma 3.1 we get, as in the proof of lemma 3.5,

ITw(y) —Tu(y)| < Cae(lfa)’(ryla)n’ exp(—anwy/a).
Therefore, we have

"Z_,“: ITw (@) —Ta(¥)] S?;I ITw @) —Tu(y)| < Cae(h/a)Z(ry/a)gnz“ exp (—anwy/a),

which is convergent for 3 >0.
Now the following statement can be verified easily: if G(z) is a continuous nonnegative
function for >0, nondecreasing for 0 <z<.X| and nonincreasing for X<z, then

S6m< [ 60d+6.
Therefore, since for »>0 we have
Nzlggc [23 exp (—v2)]=(3/ve)’,
it follows that
ni;lns exp (—anmy/a) < ﬁ)mﬁ exp (—aryt/a) dt+(3a/arye)® <6(a/ary)*-+ (3a/arye)d.
Therefore, we get

ZJ‘II T () — T ()| NO(h]a)*(y/a) =2 <NC(h]a)*(e/a) 3, (6.9)

since 17 >e.
For the Fourier coeflicients, since lg(t)| < M*, we have
|A,,l-——](2/a)ﬁa J(0) sin (urtfa) di) < (20) fof'|g(t)ydtgzM*. (6.10)
Jackson [6] proved that [ —d,|<3n/A<3. Hence

| <4 6.11)

From (6.6), (6.9), (6.10), and (6.11) the theorem now follows.
CoroLrary. For (2,y)eQ, and 0<z<a, e<y<b we have

|Us(2,y) —us (,y) | <8M*ON(h/a)*(e/a) > +2Kwy (2h), (6.12)

where K is a positive absolute constant less than 3.
Proov.
| Us(x,y) —us (x,y) | < | Us(,y) — Us (x,y) |4 | Us () — s (@,y) |- s (2,y) — us (2,9) |
By the maximum and minimum principles for harmonic and d.h. functions, we have for (z,7) e
| Us(@y) — Us ()], lua(,y) — s (2,) | < Max| f(2) —g () .
Using a theorem of Jackson [7, p. 7], we obtain
Max |3(2) —g(a)| < Kux(20/4),
10 See Jackson [7, p. 7). 555
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where A is a positive absolute constant less than 3. The corollary now follows from the theorem.
We shall now derive an error bound for the original problem where we no longer assume
that the boundary values vanish at the corners or along the sides of the given rectangle.

TaroreM 6.2.  For all (x,y)eQy, we have
hEN"
U@, y)—u(z,y)| < Max{I; 2(.0:[7”(—77) ]}; (6.13)

where

IT=16M [N,Coo~%"(a/0)***(h/a)*/"+Np Cra®7(b @) (/b)) - |-
4K {w(2h)+w@k)+2M[h/a+k/b]},

r=(ab)"/? (6.14)
7r2 1 2 2 1 (7#2
Ca=~%4jea ) coth (arb/a), Obz%) coth (Bma/b) (6.15)
a=(2/wc) sinh~!(¢), B=(2¢/7) sinh~*(c7}) (6.16)
(620 T
)\a:a31r3 ol 2
(6.17)
Sl
4 B ﬁzﬂ_zez
M=Max u (z,y)—Min u (z,y) (6.18)
(z,y)eS (z,9) €S
wp 0)=w[2Y2{(rO)" 2+ h+k}]+(M/2)v (1/2) (5/r)'/ (6.19)

and «(8) is the modulus of continwity of w(x,y) on S.  The function v(bja) is defined by (4.6) and
v(1/)2) equals 3.97, approximately.

Proor.

LemMma 6.1, If w,(x,y) is defined by (3.1), then for all (x,y)eQ we have |u(x,y) —wu,(2,y)| < M.

Proor. Since u(z,y) and w(2,y) are harmonic, the maximum of |u(z,y)—wu (z,y)| is
assumed on S. We can assume, without loss of generality that the maximum occurs at a
point whose ordinate is zero. By (3.1) we have

wuy(2,0) = (1—z/a)u(0,0) + (x/a)u(a,0),
and
| (x,0) —u, (2,0)| <|1—2z/a|-|u(x,0) —u(0,0) |+ |z/a|-|w(x,0) —u(a,0)].
But,
]u(z,O) —U(0,0) |7|u(z:0) _u(aJO)] < Max u(:c,O) —Min ’U/(l',O) SM)
0<z<a 0<z<a

and the lemma follows,

The above result cannot be improved as one can show by considering the case where
uy(z,y) is identically zero and u(z,y)=0.

From lemma 6.1 we conclude that |us(z,y)|< M. In particular we have |g(z)|< M; hence,

M*< M. (6.20)

LeMma 6.2,
w3(0) <w(d) +oM/a. (6.21)

Proor. Evidently we have w;(8) < w(8)+w(8), where w;(8) denotes the modulus of con-
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tinuity of wu,(z,0) considered as a function of . But since
1 (246,0) —u (,0) = (6/a) [u(a,0) —u(0,0)],

we have w(8) <6M/a, and the lemma follows.
Lemma 6.3. If e<z<a—e, e<y<b—e, (x,y) ey, then

|U (2,y) —u(2,y)| L16M{ N, Co(h/a)?(e/a) =>4 NoCy (k/b)*(¢/b) = } + 4 K[w (k) + w (2k)+2M (h/a+F/b)].
(6.22)

Proor. We observe that |[U(x,y)—u(z,y)|=|U,(x,y) —us(z,y)|. The function [U,(x,)
—uy(z,y)] is the sum of [Us(x,y) —us(x,y)] and three other terms of similar type. The lemma
follows from (6.12), from (6.20) and from lemma 6.2. (We note that from the hypothesis
we have e/a, ¢/b<%.)

Lemma 6.3 affords us an error bound for those points of ©, which are at a distance of not
less than e from the boundary. In order to obtain a uniform error bound we now consider those
points which are within e of the boundary.

Since 4/7<»(1/2)/2 it follows from theorem 5.1, (with D=r), and theorem 5.4 that the
moduli of continuity of U(z,y) and u(z,57) do not exceed the upper bound for w;(8) given by
theorem 5.4, provided 6 <(ab)'?. If (x,)eQ, and if (x,5) is within e of a point of S, then there
exists a point of Sz, at a distance not greater than e from (z,5). We remark that every point of
Q, 1s within (ab)'? of some point of Sy. Since U(z,y) =u(z,y) on S, we have

It I denotes the right member of (6.22), then we have
|U(zyy)—u@y)| < Max{I;207(e) }. (6.23)

In order that the error in @, should approach zero with the highest power of y= (hk)/*
whenever w(8)/6 is bounded as a function of 8, we choose e=r(hk/r?)*?. Evidently we have

efa=a® (/) (bja)*™,  e[b=o~27 (k/b)*/ (afb)*,

The theorem now follows from (6.23), lemma 6.3, and theorem 5.4.
For the special case of the unit square theorem 6.2 and theorem 5.4, corollary, give
Cororrary. If a=b=0c=1, then we have

|U(zyy) —u(ey)| < Max{Ji;,},
where
J1=32MNCh*"+ 8 K[w(2h) + 2MH], O=(7*/12ae) coth (ar)~.572,

=20[2V/2(h¥7+h)]+ Mp(1/2) R, a=(2/x)sinh™!(1) ~.561,

27/2
= 3+a2 é 5 ~3.566.

Substituting numerical values, we obtain
J1 <66 MA*" 424w (2h) +48Mh, Jy < 20[2V2(h27+ k)] +-4 MR,

The above expressions for J; and .J; represent a slight improvement in the formulas previously
given by the authors [14].

7. Other Regions

In this section we consider regions of the type described in section 2 other than rectangles.
The case of two overlapping rectangles is studied in detail as an illustration of the method
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which can be extended to more complicated regions. We first prove a theorem valid for two
overlapping regions whether rectangles or not.

TraeorEM 7.1. Let Q=Q'UQ", where R'NR' s nol empty, and where neither region
wneludes the other.  Let w(x,y) and Ul(x,y) denote, respectively, the solution of the Dirichlet problem
and its finite difference analog for Q. Let Qy, Q, and Q; denote the points of Llh,k] belonging to
Q, @, and @7, respectively. Let Ty=S,NR;, Ty =S NRy, and let

,u,1=Mﬂ,X HL[(ZJ?/%TL,:QL’L pe=Max ,HL[(QZ?/)yTLQL]-

(z,9) €T, (z,9) €Ty,

Neat, let U’ and U’ denote functions d.h. in Q, and Q| respectively, and equal tow on Sy, and Sy,
respectively.  Then for (x,1)eQy, we have

I U(l',y)—u(ﬂf;?/)l SM&X (AyB)7

where
A=E A tm—pp) +E” E’'=Max |U’(z,y)—u(=z,y)|,
1—pipe (z,0) Ry,
B:E (1+N2_#1#2>+E ; E’=Max IU”((E,’_’/)"‘U(x,?/)[-
1—pipe (z,9) R},

Proor. Let

F'=Max |U(z,y)—u(z,y), F"=Max |U(z,y)—u(z,y)|.

(z,9) €Ty, (z,y)eTy,

Clearly, for (z,y)eT?,
U@, y)—u@,y)| <|U(,y)—U"@y|+|U" (=,y)—u,y)|
SmMax [U(z,y)—U"(@,y)|+|U" (z,y) —u(z,y)].

(z,9) €Ty
Hence, by the maximum and minimum principles for d.h. functions F/'<uF"" 4 E’".
Similarly, F"’ <u,F”+E’. Therefore,
7 <#1E’+E”’ o <},¢2E”+E’.
= 1—pupe 1— pipe

By the maximum and minimum principles,

Max IU(:U,’_I/)—’IL(QJ,’_I/)I _<_E/+F’; Max IU(%?/)“U(%WI SE”+F”,
(7,1)eQ, (z,9) ey
and the theorem follows.

The proof of this theorem was, of course, motivated by consideration of the difference
analog of the Schwarz Alternating Process. Indeed, in order to solve the difference equation
for @z, one might guess values for U(z,y) on S;'NE;"" and then solve the difference equation
in R’ obtaining in particular values on S;”/NE;’. Next one solves the difference equation
for R.'’, using the computed values on S;//NR;/, and obtains new values for Sy’NR;’. This
process can be repeated and the successive values thus obtained converge to the exact solution
of the difference equation. Moreover, the rapidity of convergence can be estimated if u; and
us are known. In fact, one can show that after a complete iteration the maximum error is
reduced by a factor of (1-uus).

If for @" and @’/ the quantities /2 and £’” are known whenever the modulus of continuity
and oscillation of wu(x,y) are known on S’ and S”’, then by using theorem 5.1 or theorem 5.3,
£’ and E” can be computed, provided the modulus of continuity of u(z,) on S is known. If,
moreover, u; and/or u, are known, an error bound for the composite region can be obtained.

We consider now the case of two overlapping rectangles @, and @, with sides parallel to the
coordinate axes. If the intersection of the interiors is not empty, and il neither region is a
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subset of the other, then the cases A through F shown in figure 1 occur.

L ]

Ficure 1.

The composite regions of cases C and D are of the same type as those of cases A and B,
respectively. The problem of determining u; and u, become problems in d.h.m. for the rectangle
of the types shown in figure 2.

Ficure 2.

Upper bounds for d.h.m. are required in points on the closed dotted lines for the open arcs
on the boundary indicated by heavy lines.

By (4.3), these upper bounds are not greater than the upper bounds for the problems shown
in figure 3.

e e e e e e et @

-
1
|
|
|
|
|
:
:
4

PROBLEM I PROBLEM II PROBLEM I PROBLEM IV
(FOR TYPE A) (FOR TYPE 8)) (FOR TYPES B, AND F) (FOR TYPE E)

Frcure 3.

For problem I, since the harmonic measure of the open arc is required, 3is an upper bound
on the dotted line, by symmetry.

TrrorEM 7.2.  Let Qp, be bounded in part by a segment of a line l. Let Ry, contain no point
of L. Let l' denote a line perpendicular to I and containing a point of INS,. Let S’ denote any
subset of INS, contained in one of the open half planes bounded by I'. If (z,y) is any point of
RN, then

HL[(%Z/);S’,QL] S %

Proor. The theorem follows easily by (4.2), (4.3), and problem I.
As a corollary we have an upper bound of % for problem II. Also, for problem III if we
extend the lines whose harmonic measure is required to the right, we get by symmetry as in
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problem I, 3 as an upper bound for the d.h.m. on the left dotted line. Similarly % is an upper
bound for the d.h.m. on the right dotted line.

For problem IV the situation is somewhat more complicated. We prove

TarEorREM 7.3: Let Q denote the region: 220, y=0, and let Qy, denote the subset of Llh,k]
contained in Q. Let I,, I, denote respectively the intervals 0<x<a, y=0 and 0<_y<b, z=0, where
the point (a,b) belongs to Llh,k]. We have

HL[(x,b),IaUIb,QL]gMax[1—*2—7’0;1—(1;;”)1) : (7.1)
where
w=(2/x) log %' (7.2)

Ficure 4.

Here 1y, is the smallest number not less than a/2a such that yo/k is an integer. The quantities o and o
are defined by (3.12) and (2.3), respectively.

Proor. Let I*, I} denote respectively the intervals 2>a, y=0, and y=b, 2—=0. We first
prove

Levmva 7.1, If 0L, 0y, then

HL[ (x)b))I;kJSZL] ZI]L[ (x,b)ylb;QL]) (7-3)

and
Hy[(a,y), 15,20 > Hyo[ (a,y),1 0, (7.4)

Proor: By theorem 7.2, we have
Hy[(z,b),y >bNz=0,0>0] > H,[(z,b),y<bNz=0,2>0].
Hence, we certainly have

Hy[(x,b),{y >bNa=0}U{—b<y<ON2z=0},2 >0]
> Hy[(z,b),{0<y<bNz=0}U{y < —bNa=0},2>0].

But by a sign-changing reflection about the line =0, we can show that the left member of the
above expression minus the right member equals I7;[(2,b), 1} Q) — Hy[(x,b) 15,212 0.

This proves (7.3). Evidently (7.4) can be proved by the same method.

From lemma 7.1, we conclude that

Hy[(2,0),1,U15,9] < Hy[ (,0), 10, u] + (1/2) Hy [ (2,0),0<CyNz=0,0]. (7.5)
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But by (7.4) we have
(1/2)Hy[(a,y),0<yNz=0,2]+ Hy[(a,y),10,%] <1/2.
Therefore, the d.h. function
W (@,y) =Hol(@,y), Lo, + (1/2) Hy[ (2,9),0<yN2=0,2] (7.6)
satisfies the conditions
W(z,0)=1, (0<z<b); WOy=1/2, (0<y); Way=1/2, (0=y). (7.7)

Let @* denote the region 0<z<aNy=>0, and let Qf denote the corresponding subset of
Lih,k]. Evidently,

I/V(x}y) S LTI (x,?/); (78>

where

(a) U(z,y) is d.h. and bounded in sz

(b) Ui,0)=1, (0<z<a) (7.9)
() Ui(0,y)=Ui(a,y)=1/2, (y=0). §
We now prove
Lemma 7.2.  Let Uy(x,) be d.h. and bounded for (x,y)eR} and such that
U(z,0)=1, (0<a<1); 2(0,y) =Us(a,y) =0, (y=0).
We have
Us,(x,c) <Max [w;1— (1—w)c/yo). (7.10)

Proof. Substituting in (3.5) and (3.6) and taking the limit as b becomes infinite we get

A
U, (z,)= > (2/A) cot (nw/2A4) sin (nrz/a) exp (—mwy/a),
n=1
n odd
where Ah=a.

By lemma 3.2, we have m=>an. Also, since cot [nr/24] <2A/nr for n< A we have

U, (z)y) < f:l(li/vrm exp (—mayn/a) < Z) (4/7n) exp (—mayn/a)=(2/r) log }jzg E:K%'

n ()—dd n odd

Evidently if 7> a/2a, we have

U, (z,y) <w. (7.11)
Now since 0<w<_1, the function
Us(y) =1—(1—w)y/yo (7.12)
is d.h in R} and is not less than U,(z,y) for SiNy <y, and for y=1,. Therefore, for y <7, we have
Us(ayy) <1—(A—w)y/yo, (7.13)
362



and the lemma follows.

Now U,(z,y) =2U,(2,y) —1. We also have by (7.5), (7.6), and (7.8).
Hy[(2,0),1,U 1, < W(x,b) < Uy(x,b),

and the theorem now follows.

In applying the theorem to problem 1V, we note that we can assume the value zero at the
point (0,0) without changing the d.h.m.

Thus, an error bound can be obtained for the case of two overlapping rectangles. The
above methods can also be used to find error bounds for other regions of the type considered in
section. 2.
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