Journal of Research of the National Bureau of Standards

Corrosion of Nickel Cast Irons in Soils

Irving A. Denison and Melvin Romanoff

The results of measurements of the corrosion and of the strength of nickel cast irons after exposure to different soil conditions for a maximum of 14 years are reported. The magnitude and progress of corrosion, as determined by weight-loss and pit-depth measurements, are correlated with the composition of the materials and the nature of the environmental conditions to which the specimens were exposed. The residual strength of the corroded cast iron that had been removed from the more corrosive soils was evaluated by subjecting the pipe specimens to hydraulic pressures up to 500 lb/in².

1. Introduction

Corrosion of cast iron in soils is characterized by the development of an adherent layer of corrosion products that increases in thickness as corrosion progresses. The thickening of this layer is due in part to electrochemical action between the ferritic and graphitic constituents of cast iron and partly to differences in potential that arise from contact of the cast metal with the soil, as, for example, by differential aeration. To the extent that corrosion of cast iron is caused by differences in potential within the metal itself, improved corrosion resistance would be expected to result from improvement in the quality of the casting. Wesley, Copson, and LaQue [1]¹ have shown that the addition of small amounts of nickel and nickel plus chromium alters the structure of cast iron in such manner that galvanic action between the different constituents is reduced considerably. Larger additions of these alloving elements in amounts sufficient to produce an austenitic structure were shown to be considerably more effective in reducing corrosion under the experimental conditions because of the ennobling effect of nickel and chromium on the potential of iron.

In order to evaluate the effect of additions of nickel and of nickel plus chromium on the corrosion of cast iron in soils, samples of alloy cast irons were included in an extensive series of exposure tests of materials for underground construction. In 1932, samples of a high-alloy austenitic cast-iron pipe were buried at 15 test sites, and in 1941 samples of several low-alloy cast irons were buried at 13 of the same test sites, and at 1 other site. In a previous report [2], corrosion data were reported for five periods of exposure for the samples of high-allov cast iron and for a single period for the samples of low-alloy cast irons. With the completion of the exposure tests in 1952, data for the latter materials became available for four periods of exposure, with a maximum exposure of 11 years.

After removal of the samples from the test sites, the procedure followed during the early periods of the exposure program was to clean the samples of all corrosion products preparatory to measuring the weight losses and the depths of the deepest pits. This procedure was later modified by subjecting those samples in the form of pipe to hydraulic pressure before removal of the corrosion products. This modification was introduced in order to evaluate the strength of the corrosion products remaining in the pits of the samples that had been perforated by corrosion. The methods used for cleaning the corroded samples and for measuring the depth of pitting have been previously described [3].

2. Properties of the Soils at the Test Sites

The location of the test sites, the identification of the soil types, and the properties of the soils that are associated with corrosion are given in table 1. The retentiveness of the soils for water is indicated by the values for moisture equivalent, which is the quantity of water retained by a previously saturated soil against a centrifugal force of 1,000 times gravity. Because the real specific gravities of rock-forming minerals lie within a narrow range, values for apparent specific gravity are an index of the relative compactness or porosity of inorganic soils.

3. Description of the Materials

The forms, dimensions, and compositions of the specimens are given in table 2. The ends of the pipes were closed with cast-iron screw caps of the same composition as the specimens in order to exclude moisture from the interior. As an extra precaution against internal corrosion, the interior surface of the specimens was coated with heavy grease.

4. Weight Losses and Maximum Pitting

The data of table 3 indicate that the high-alloy cast iron E was considerably more resistant to corrosion, as measured by both weight loss and maximum pitting, than either the plain cast iron A or the low-alloy cast irons B, C, D, NC, and N. It is noteworthy that, except in cinders, the deepest pit measured on the specimens of material E in more than 14 years of exposure was only 74 mils.

The effect of composition on the corrosion of the low-alloy cast irons can be observed to somewhat better advantage by calculating the weight losses of

¹ Figures in brackets refer to literature references at the end of this paper.

these specimens on a relative basis. This would have the effect of eliminating the differences in corrosivity of the soils due to differential aeration and emphasizing the effect of graphitic corrosion. In table 4 the weight losses of materials B, C, and D are shown for each soil and for each period of exposure relative to the plain cast iron A. Except for the well-drained soils of high resistivity (soils 53, 55, and 62), and soil 66, in which accelerated corrosion of the allov cast irons occurred, the relative weight losses of the specimens during the initial period of exposure is seen to have decreased with increasing content of nickel. For example, during the first period of 5 years' duration the weight losses of material D in soils 58 and 63 were only 20 and 16 percent, respectively, of the weight losses of plain cast iron in the same soils for the same period. However, this initial advantage from the addition of nickel was usually not maintained, with the result that the weight losses of the alloy cast irons exposed for the maximum period usually did not differ greatly from the losses of plain cast iron. Hence, it would appear that the rates of corrosion of the alloys containing the higher amounts of nickel decrease less with time than do the rates for the alloys containing the lower amounts of nickel and plain cast iron.

5. Strength of Corroded Cast-Iron Pipe

Corrosion of cast iron in soils is characterized by the conversion of the metal into a layer consisting chiefly of oxides of iron and graphite. Although the original shape and appearance of the metal are retained, visual observation gives no indication of the extent of corrosion (fig. 1). It is generally recognized that corroded cast iron retains some of its original strength, but the extent to which cast-iron pipe may corrode underground and still retain sufficient strength to withstand the pressures commonly used in water- and gas-distribution systems has not previously been estimated.

In order to evaluate the residual strength of corroded cast-iron pipe, the samples of pipe that had been removed from the more corrosive soils after the longer periods of exposure were subjected to hydraulic pressures. The screwcap on one end of each sample was replaced by a similar cap in which a fitting had been inserted and the pipe section connected by copper tubing to a hand pump of suitable capacity. The pressure was increased at the rate of approximately 10 $(lb/in.^2)$ /sec until failure of the pipe occurred or the maximum pressure of 500 Ib/in.² was attained. After the application of hydraulic pressure, the corrosion products were removed, and the condition of the specimens was evaluated in the usual manner. The hydraulic pressures applied to the samples and the number of perforations in the samples after being cleaned are given in table 5.

The data in table 5 show that most of the specimens withstood a maximum pressure of 500 lb/in.², although removal of the corrosion products revealed numerous holes of various diameters. The few low values of bursting pressure given in the table probably should not be taken as accurately measuring the strength of the corroded pipe because of oxidation and probable damage to the pipe in handling and shipping. Hence it is reasonable to conclude that cast-iron pipe in an advanced stage of graphitic corrosion is able to withstand the minimum pressure required of class 150 pipe.

In considering the data of table 5, it is important to note that the pipe samples were subjected to hydraulic pressure from 6 months to a year after removal from the test sites. Inspection of the samples showed that during this interval some oxidation of the corrosion products occurred, as was indicated by slight increase in the volume of the corrosion products. Because oxidation is associated with loss in strength, it is reasonable to assume that if the samples had not been removed from the test sites, they would have withstood the applied pressure, even if they had been in a more advanced stage of corrosion. Instances of the loss in strength of graphitized cast-iron objects on exposure to air have been cited by Speller [4].

In order to evaluate the strength of the corrosion products of cast-iron pipe undisturbed by removal from the test sites, 3-ft sections of 6-in. cast-iron pipe, closed at both ends, were buried at 4 of the Bureau test sites. The investigation was undertaken with the cooperation of the Cast Iron Pipe Research Association. Provision was made for applying hydraulic pressure to the pipe sections by means of a fitting inserted in the closure at one end of the pipe. According to the plan of the test, a pressure of 400 lb/in.² is applied to the pipe sections at approximately 2-year intervals until rupture occurs, at which time the section will be removed and the extent of corrosion evaluated. As none of the pipe sections has failed as yet to withstand the applied pressure, the test is necessarily incomplete. However, the data obtained to date in certain of the soils provide significant information on the strength of corroded cast-iron pipe under normal conditions of exposure.

In table 6 are shown the number of years during which the pipe sections have withstood the applied pressure. For comparison, the condition of similarly exposed specimens of cast-iron pipe, as indicated by the maximum and average penetration, is also shown. The data reported for site 70 is especially significant. Although 1 of the control specimens was perforated within 6 years, the 3-ft section has withstood the applied pressure for 24 years, during which time it would be expected to be converted almost entirely to corrosion products. Similarly, the development of a pit 302 mils in depth in 6 years on the control specimens in soil 118 indicates that the 3-ft section, which withstood the applied pressure after 24 years of exposure, should also be in an advanced stage of corrosion.

6. Summary

This report contains the results of measurements of weight loss, maximum depth of pitting, and of hydraulic bursting pressure made on samples of nickel cast irons after exposure to different soil conditions. Additions of nickel up to 3 percent significantly reduced the initial corrosion of cast iron in poorly drained soils of low resistivity, but this advantage was not maintained for the duration of the exposure tests. Samples of austenitic cast iron containing 15 percent of nickel, together with chromium and copper, showed good resistance to corrosion in most of the soils, especially with respect to maximum depth of pitting.

With some exceptions, samples of severely corroded plain and low-alloy cast-iron pipe withstood a maximum hydraulic pressure of 500 lb/in.² after exposure at the test sites for periods up to 11 years and storage in the laboratory for approximately 1 year. Because the effect of oxidation in the air is to weaken the layer of corrosion products, the observed values for hydraulic bursting pressure are probably to be considered minimum values. The results of incomplete field tests of the bursting pressure of undisturbed sections of plain cast-iron pipe are in good agreement with the results of the measurements made on the stored samples.

The direction of this program by Mr. K. H. Logan prior to his retirement in 1946 is acknowledged.

7. References

- W. A. Wesley, H. R. Copson, and F. L. LaQue, Metals & Alloys 7, 325 (1936).
 Irving A. Denison and Melvin Romanoff, J. Research NBS 44, 47 (1950) RP2057.
- [3] Kirk H. Logan, Underground corrosion, NBS Circular 450 (1945). [4] F. N. Speller, Corrosion, causes and prevention (McGraw-
 - Hill Book Co., New York, N. Y., 1951).

TABLE 1. Properties of the soils at the test sites

Г	Pest sit	ces		Mois-	Appar-	Resis- tivity at		Total acidity ^b (milli-	Compos	ition of '		tract (n 0 g of soi	illigram l)	equivale	ent per
Environment and soil type	Soil	Location	Aera- tion ^a	ture equiv- alent	ent specific gravity	200 E	рĦ	gram equiv- alent per 100 g of soil)	Na+K as Na	Са	Mg	CO_3	HCO3	C1	SO_4
					INORGA	NIC OXID	IZING S	SOILS					×		
Cecil clay loam Hagerstown loam Susyuehanna clay Chino silt loam Mohave fine grav- elly loam.	53 55 62 65 66	Atlanta, Ga Loch Raven, Md Meridian, Miss. Wilmington, Calif Phoenix, Ariz	G G F G F	Percent 33.7 32.0 34.6 26.4 16.5	$ \begin{array}{c} 1. \ 60 \\ 1. \ 49 \\ 1. \ 79 \\ 1. \ 41 \\ 1. \ 79 \\ \end{array} $	$\begin{array}{c} Ohm\text{-}cm \\ 17,800 \\ 5,210 \\ 6,920 \\ 148 \\ 232 \end{array}$	$\begin{array}{c} 4.8 \\ 5.8 \\ 4.5 \\ 8.0 \\ 8.0 \end{array}$	5. 1 10. 9 12. 0 A A	 7. 65 6. 55	 12. 40 0. 51	2. 20 0. 18	0.00	1. 30 0. 73	6. 05 2. 77	16. 90 2. 97
					INORGA	NIC REDU	JCING S	SOILS							
Sharkey clay Docas clay Lake Charles clay Merced silt loam		New Orleans, La Cholame, Calif El Vista, Tex Buttonwillow, Calif	P F VP F	$30.8 \\ 41.1 \\ 28.7 \\ 24.7$	$ 1.78 \\ 1.88 \\ 2.03 \\ 1.69 $	$943 \\ 62 \\ 406 \\ 278$	6.8 7.5 7.1 9.4	4.9 A 5.1 A	$\begin{array}{c} 0.\ 73\\ 28.\ 10\\ 3.\ 12\\ 8.\ 38\end{array}$	$\begin{array}{c} 0.\ 68\\ 2.\ 29\\ 0.\ 69\\ .\ 38 \end{array}$	$\begin{array}{c} 0.\ 33 \\ .\ 76 \\ .\ 47 \\ .\ 22 \end{array}$	0.00 .00 .00 .02	$\begin{array}{c} 0.\ 71 \\ .\ 89 \\ .\ 80 \\ 1.\ 87 \end{array}$	$\begin{array}{c} 0.\ 10\\ 28.\ 80\\ 1.\ 59\\ 1.\ 12 \end{array}$	$\begin{array}{c} 0.\ 91 \\ .\ 26 \\ 3.\ 04 \\ 5.\ 57 \end{array}$
					ORGA	NIC REDU	CING SO	DILS							
Carlisle muck Muck Rifle peat Tidal marsh	59 58 60 63	Kalamazoo, Mich New Orleans, La Plymouth, Ohio Charleston, S. C	VP P P VP	$\begin{array}{c} 43.\ 6\\ 57.\ 8\\ 43.\ 4\\ 46.\ 7\end{array}$	1.43 1.28 1.47	$1,660 \\ 712 \\ 218 \\ 84$	5.6 4.8 2.6 6.9	$12. \ 6 \\ 15. \ 0 \\ 297. \ 4 \\ 14. \ 6$	$\begin{array}{c} 1.\ 03\\ 2.\ 03\\ 2.\ 91\\ 33.\ 60 \end{array}$	3.08 2.23 10.95 6.85	$\begin{array}{c} 2.\ 70\\ 1.\ 29\\ 2.\ 86\\ 4.\ 00 \end{array}$	0.00 .00 .00 .00	0.00 .00 .00 .00	$3.47 \\ 0.47 \\ .00 \\ 12.70$	$\begin{array}{c} 1.04 \\ 2.54 \\ 56.70 \\ 36.60 \end{array}$
						CIND	ERS								
Cinders	67	Milwaukee, Wis	VP			455	7.6	A	0.77	3.03	0.53	. 00	. 55	0.08	2.89

G, good; F, fair: P, poor, VP, very poor. ^b A, alkaline reaction

TABLE 2. Composition of the materials

Material	Identi- fica- tion	Form	Nominal Width or Di- ameter	Length	Thick- ness	C (total)	Si	Mn	s	Cr	Ni	Cu
Plain cast iron Low-alloy cast iron Do	A B C NC	Pipedo do Plate	$in. \\ 1.5 \\ 1.5 \\ 1.5 \\ 2.5$	in. 13 13 13 13 14	in.0.250.250.250.250.5	$\begin{array}{c} \% \\ 3.22 \\ 3.28 \\ 3.24 \\ 2.80 \end{array}$	% 2. 19 2. 09 2. 08 2. 03	% 0. 91 . 83 . 80	$\% \\ 0.12 \\ .12 \\ .12 \\ .12 \\ .12 \\ .12 \\$	% 	% 1. 27 1. 71 2. 08	% 0.32 .98 1.10
Do Do High-alloy cast iron	N D E	do Pipe do	2.5 1.5 1.5	$\begin{array}{c}14\\13\\10\end{array}$.5 .250 .250	$\begin{array}{c} 2.\ 75\\ 3.\ 21\\ 2.\ 98 \end{array}$	$\begin{array}{c} 2.\ 00\\ 2.\ 11\\ 2.\ 13 \end{array}$.72 1.00	. 12	2. 61	$\begin{array}{c} 3.10 \\ 3.32 \\ 15.00 \end{array}$	6.5

279683 - 54 - 2

	Soil	Expos	1170			\mathbf{L}	oss in weig	ht					Maxi	num penet	ration		ø
	5011	Expos	ure		C	ast-iron pi	pe		Cast-ir	on plate		C	ast-iron pi	pe		Cast-ir	on plate
Num- ber	Туре	For all mate- rials except E z	For mate- rial E only °	Plain cast iron A	1.27 Ni 0.32 Cu B	1.17 Ni 0.98 Cu C	3.32 Ni D	15.0 Ni 6.6 Cu 2.6 Cr E	2.08 Ni 1.10 Cu NC	3.10 Ni N	Plain cast iron A	1.27 Ni 0.32 Cu B	1.71 Ni 0.98 Cu C	3.32 Ni D	15.0 Ni 6.6 Cu 2.6 Cr E	2.08 Ni 1.10 Cu NC	3.10 Ni N
							INORGANIC	-OXIDIZING	SOILS	1							
53	Cecil clay loam	Years 4.9 7.2 8.6 10.8	Years 2.0 5.4 7.4 9.3 14.3	$0z/ft \ ^{2} \\ 3. \ 2 \\ 5. \ 1 \\ 6. \ 0 \\ 5. \ 9$	<i>oz/ft</i> ² 3.9 4.2 6.3 4.7	<i>oz/ft</i> ² 3.5 4.9 5.7 5.5	<i>oz/ft</i> ² 3.5 4.6 5.9 5.1	$0z/ft \ ^{2} \\ 1. \ 2 \\ 0. \ 7 \\ . \ 7 \\ 1. \ 4 \\ 1. \ 2 \\ \end{bmatrix}$	$oz/ft \ ^2$ 3.3 4.1 4.4 3.2	$\begin{array}{c} oz/ft \ ^{2} \\ 3. \ 0 \\ 3. \ 2 \\ 3. \ 4 \\ 3. \ 7 \end{array}$	Mils v 179+ 131 194+ 145	<i>Mils</i> 124 131 129 136	Mils 144 122 215+ 132	Mils 136 120 139 120	Mils 30 36 51 23 44	Mils 133 138 148 149	Mils 120 131 144 163
55	Hagerstown loam	$\begin{cases} 5.1 \\ 7.0 \\ 8.7 \\ 11.1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$2.0 \\ 5.4 \\ 7.4 \\ 9.3 \\ 14.3$	2. 2 3. 8 5. 1 3. 5	2.5 3.5 4.8 3.8	2.6 3.8 4.8 4.1	2.6 4.2 4.5 4.3	0.8 .6 .7 4.3 1.1	1.6 2.8 3.4 3.8	$2.1 \\ 3.1 \\ 3.1 \\ 4.1$	110 108 116 132	114 118 115 158	123 114 117 114	96 115 126 157	30 37 41 34 51	110 123 148 147	113 119 140 171
62	Susquehanna elay	4.9 7.2 8.7 10.9	$ \begin{array}{r} 1.0 \\ 5.4 \\ 7.4 \\ 9.3 \\ 14.3 \end{array} $	3.6 6.7 8.7 5.6	3.5 5.1 9.0 6.5	3.8 4.9 7.7 6.7	2.6 5.1 8.5 5.4	1.7 1.1 1.0 2.7 2.3	3.1 1.8 5.8 4.9	2.5 4.5 5.9 5.2	53 76 74 117	77 89 110 199+	112 122 120 180+	104 135 175+ 223+	43 49 37 53 60	94 89 143 152	76 84 139 144
65	Chino silt loam	(5.0 7.2 8.8 10.9	$2.0 \\ 5.4 \\ 7.4 \\ 9.3 \\ 14.3$. 86 5.6 11.9 3.4	7.7 3.1 6.6 3.0	9.9 3.4 5.5 2.6	7.0 2.3 6.0 3.7	$ \begin{array}{r} 1.5 \\ 3.0 \\ 2.0 \\ 2.6 \\ 3.1 \\ \end{array} $	7.9 4.9 8.6 7.4	8.2 4.2 9.7 8.6	113 109 121 111	148 114 117 114	129 123 154 112	157 107 197+ 185+	26 42 42 35 59	149 110 163 154	100 102 152 158
66	Mohave fine gravelly loam.	(5.0 7.2 8.8 11.0	$2.0 \\ 5.4 \\ 7.4 \\ 9.3 \\ 14.3$	6. 2 29. 6 25. 6 5. 3	8.2 27.5 28.5 6.8	9.3 27.8 D 9.5	8.3 28.6 D 9.4	3.1 3.0 3.5 3.3 7.6	6.6 29.9 21.7 9.0	z 10. 2 27. 7 22. 4 8. 6	67 209+ 189+ 160+	80 227+ 141 142	80 250+ 250+ 143	80 250+ 250+ 115	$26 \\ 36 \\ 38 \\ 40 \\ 54$	88 237 218 153	z 80 221 230 147
	.35					1	INC	RGANIC-RE	DUCING SO	ILS				1			
56	Lake Charles clay	(4.9 7.2 8.7 10.9	$2.0 \\ 5.4 \\ 7.4 \\ 9.3 \\ 14.3$	$ \begin{array}{c} 6.5\\ 19.4\\ 19.4\\ 19.3\\ \end{array} $	3.9 20.5 18.3 21.7	$ \begin{array}{r} 4.1 \\ 20 9 \\ 20.8 \\ 20.3 \end{array} $	2.9 16.3 20.7 19.4	3.3 4.6 9.4 14.6 17.3	4.8 18.8 15.7 26.6	7.3 16.2 15.6 27.2	124 202+ 188+ 250+	96 210+ 250+ 250+	$ \begin{array}{r} 64 \\ 188 \\ 208 + \\ 213 + \\ \end{array} $	50 179 250+ 192+	42 32 53 58 72	110 198 220 216	120 183 231 248

TABLE 3. Losses in weight and maximum pitting of plain and alloy cast irons

	(1997) 영상 : 영소 그 전 그 같은 것																
		(4.9	2.0	6.8	5.7	5.6	5.2	0.3	3.4	3.4	78	122	112	104	36	84	96
		7.2	5.4	6.6	5.4	5.3	5.1	1.8	5.0	4.7	93	108	110	116	39	113	107
61	Sharkey clay		7.4	7.9	7.8	5.6	6.2	1.7	4.9	4.1	96	136	133	122	30	121	128
		10.9	9.3	4.0	3.7	3.4	3.5	2.3	3.1	2.9	85	172	122	132	36	139	104
			14.3	1.0.0.1				5.2							58		
									S								
		(5.0	2.0	19.7	20.4	18.7	14.4	4.4	15.5	15.8	151	187 +	210+	226+	28	138	138
		7.2	5.4	22.1	20.4	17.2	9.5	3.1	23.4	23.1	242+	237 +	229+	175+	27	206	191
64	Docas clay	8.8	7.4	24.2	24.7	14.5	15.0	5.8	37.5	35.7	240+	185+	161	189+	40	220	218
04	Docas clay	11.0	9.3	25.1	14.8	23.6	21.1	12.8	26.5	25.0	214+	213+	206+	250+	74	178	195
		11.0						4.8						1	34		
		1	14.3			· · · · · · · · ·		4.0							94		
	방송(영상, 가슴, 것이 가지, 것이 같아.	1-0	0.0		1.0	1.0	0.7		7.0	7.0	104	100	00	02		101	107
		(5.0	2.0	7.5	4.8	4.2	3.7		7.0	7.6	104	106	90	93		101	107
		7.2	5.4	35.3	34.4	31.4	D		26.8	26.1	250+	250+	250+	250+		254	240
70	Merced silt Joam		7.4	34.4	D	D	D		25.4	25.5	217	250+	250+	250+		268+	255+
		11.0	9.3	D	D	D	D		37.2	38.1	250+	250+	250+	250+		268+	265+
	2016년 2017년 1월 19일 - 19일	(14.3														
																	1.000
							OR	GANIC-RED	JCING SOIL	8							
					12 Mar 11								1.1.1				
		(4.9	2.0	6.8	4.4	3.5	1.4	0.8	3.6	3.2	106	140	019	144	50	118	119
		7.2	5.4	6.4	4.8	4.2	6.1	4.9	4.8	5.1	160+	171 +	168 +	168+	34	148	139
58	Muck		7.4	6.8	7.6	5.8	6.0	8.6	5.2	5.5	116	121	82	100	58	123	118
00		10.9	9.3	5.4	4.3	4.5	3.7	9.9	5.3	6.7	151+	190 +	168 +	136	53	206	143
		10.01111111	14.3					10.0							54		110
		1	11.0					10.0							01		
		(5.1	2.0	14.4	13.3	11.1	7.6		5.4	5.4	89	89	111	87		78	80
		7.1	2.0 5.4	14.4	8.3	8.7	9.1	0.4	8.7	8.5	81	84	78	76	14	82	89
-0	Guiliala annab		5.4 7.4	10. 5						9.0	76	80	86	86	28		
59	Carlisle muck				11.3	13.2	11.1	. 6	9.0							93	92
		11.1	9.3	16.0	15.5	15.6	15.4	.7	16.0	16.4	107	107	103	106	26	113	128
		(14.3					1.3							30		
		(5.1	2.0	6.5	2.0	1.0	3.5	4.2	4.4	3.6	52	39	32	94	24	56	00
						1.9											66
		7.1	5.4	13.6	12.1	10.8	11.8	4.9	10.4	9.7	71	69	72	75	80	74	78
60	Rifle peat	{8.7	7.4	14.2	13.8	12.8	14.9	z 1.3	11.7	11.7	66	64	54	60	z 22	68	65
	1	11.1	9.3	10.1	16.8	6.2	7.3	10.0	8.0	9.7	71	61	65	56	45	81	79
		\	14.3					11.6							72		
					1.19.00	100		1.1.1									
		(4.9	2.0	3.8	2.4	2.3	0.6	0.6	z 4.3	z 3. 5	99	102	86	24	22	z 110	z 106
		7.2	5.4	5.9	3.9	4.8	6.2	. 6	5.3	4.6	111	97	104	015	16	114	121
					6.1	4.6	4.2	.7	3.9	3.7	55	58	58	42	55	62	58
63	Tidal marsh	8.6	7.4	4.5						6.4	92	152 +	124 +	55	32	187	226
63	Tidal marsh	8.6	7.4 9.3	4.5	4.8	3.6	2.0	1.6	8.0	0.4	04						
63	Tidal marsh					3.6	2.0	1.6 1.5	8.0	0.4					30		220
63	Tidal marsh		9.3			3.6	2.0		8.0					1.1.1.1.1.1.1			
63	Tidal marsh		9.3			3.6	2.0		8.0	0.4				1.1.1.1.1.1.1			
63	Tidal marsh		9.3			3.6	2.0	1.5	8.0					1.1.1.1.1.1.1			
63	Tidal marsh		9.3			3.6	2.0	1.5	8.0	 D	250+			1.1.1.1.1.1.1			250+
63	Tidal marsh	10.8	9.3 14.3	4.3	4.8			1.5 CINDERS							30		
	e	(5.1	9.3 14.3 2.0 5.4	4.3	4.8	DDD	D D	1.5 CINDERS 17.6 38.4	 D		250+250+	250+ 250+	250+	250+250+	30 94 250+	250+250+	250+ 250+
63	Tidal marsh	10.8 5.1 7.1 8.7	9.3 14.3 2.0 5.4 7.4	4.3	4.8	D D D D	D D D	1.5 CINDERS 17.6 38.4 24.3	D D D	D D D	250+ 250+ 250+ 250+	250+250+250+250+	250+250+250+250+	250+ 250+ 250+ 250+	30 94 250+ 250+	250+ 250+ 250+ 250+	250+ 250+ 250+
	e	(5.1	9.3 14.3 2.0 5.4	4.3 D D	4.8	DDD	D D	1.5 CINDERS 17.6 38.4	D D	D D	250+250+	250+ 250+	250+250+250+	250+250+	30 94 250+	250+250+	250+ 250+

^d Data for 1 specimen only. The other specimen was missing.

* Average of 2 specimens removed at each of the 5- and 9-year periods. Average of 3 specimens removed at each of the 7- and 11-year periods. • D, Specimens destroyed by corrosion.

b Average of 2 specimens removed from each site at each period.

• + indicates that 1 or more specimens contained holes due to corrosion.

317

^f Data for 4 specimens.

TABLE 4. Weight losses of pipe specimens of low-alloy cast irons on a relative basis

	Exposure	1.27 Ni 0.32 Cu Pipe B	1.71 Ni 0.98 Cu Pipe C	Pipe D
	INORGAN	IC-OXIDIZIN	G SOILS	
			1	
	Years (5	122	109	109
=0	5	82	96	90
53	19	105	95	98
	[11	80	93 118	86 118
	5	$ \frac{114}{92} $	118	118
55	{7 9	92	94	88
	11	84	91	96
	(5	97	106	72
62	7	76	73	76
04	9	103	88	98
	111	116	120	96
	5	90 55	$ \begin{array}{c} 115 \\ 61 \end{array} $	81 41
65	{7 9	55 55	46	50
	11	88	76	109
	INORGAN	NIC-REDUCIN	G SOILS	
	(5	132	150	134
	7	93	94	97
66	19	111	136	136
	(11	117	179	177
	[5	60	63	45
56	7	106	108 107	84 107
	9_{11}	$\frac{94}{112}$	107	107
	(11	84	82	76
	7	82	80	77
61	9	98	71	78
	[11	92	85	88
	(5	104	95	73
	27	$\begin{array}{c} 92 \\ 102 \end{array}$	$ \frac{78}{60} $	43
64)9	102		62
64	11	99	94	84
64		99 C-REDUCING		84
64	ORGANI	C-REDUCING	SOILS	
	ORGANI	C-REDUCING 65 75		20 95
64 58	ORGANI	C-REDUCING 65 75 112	SOILS 48 66 85	20 95 88
	ORGANI	65 75 112 80	SOILS 48 66 85 83	20 95 88 68
	ORGANI 5	65 75 112 80 92	SOILS 48 66 85 83 77	20 95 88 68 53
	ORGANI 5	65 75 112 80 92 81	SOILS 48 66 85 83 77 84	20 95 88 68 53 87
58	ORGANI 5	65 75 112 80 92 81 72	SOILS 48 66 85 83 77 84 85	20 95 88 68 53 87 71
58	ORGANI 9	65 75 112 80 92 81 72 97	SOILS 48 66 85 83 77 84 85 98	20 95 88 68 53 87 71 96
58 59	ORGANI 5	65 75 112 80 92 81 72 97 31	SOILS 48 66 85 83 77 84 85 98 29	20 95 88 68 53 87 71 96 54
58	ORGANI 9	65 75 112 80 92 81 72 97	SOILS 48 66 85 83 77 84 85 98	20 95 88 68 53 87 71 96
58 59	ORGANI 5	65 75 112 80 92 81 72 97 31 89 97 67	SOILS 48 66 85 83 77 84 85 98 29 79 90 61	20 95 88 68 53 87 71 96 54 87 105 105
58 59	ORGANI 9	65 75 112 80 92 81 72 97 31 89 97 67 63	SOILS 48 66 85 83 77 84 85 98 29 79 90 61 61	$\begin{array}{c} 20\\ 95\\ 88\\ 68\\ 53\\ 87\\ 71\\ 96\\ 54\\ 87\\ 105\\ 72\\ 16\end{array}$
58 59	ORGANI 5	65 75 112 80 92 81 72 97 31 89 97 67	SOILS 48 66 85 83 77 84 85 98 29 79 90 61	20 95 88 68 53 87 71 96 54 87 105 105
58 59	ORGANI 9	65 75 112 80 92 81 72 97 31 89 97 67 63	SOILS 48 66 85 83 77 84 85 98 29 79 90 61 61	20 97 88 68 55 77 90 54 87 100 71 100

[Relative to weight loss of plain cast iron A = 100]

TABLE 5.	Hyaraulic by	ursting	pressures	and	number	of	perforations	of	pipe	samples	

			Pip	e A	Pip	еВ	Pip	e C	Pip	e D
Soil	Exposure	Sample	Bursting pressure	Number of holes	Bursting pressure	Number of holes	Buisting pressure	Number of holes	Bursting pressure	Number of holes
	Years		$lb/in.^2$		$lb/in.^2$		lb/in,2		lb/in^2	
		ſa	350	2	500+	1				
	[7.2	{b	500 +	$\frac{2}{1}$	500+	î				
		ja	500+	3	500+	î	500 +	3	500+	9
56	8.7	b	000 1	0	500+	i	000 1	0	500+	2
		ía	500+	1	500+	1			0001	1
	10.9	la	500 + 500 +	5	500+ 500+	10	500+	6	500+	8
		(0	500 +	0	500+	10	000+	0	300-	0
	(79	a	500 +	1	500 +	1	500+	1	500 +	1
58	$\left\{ \begin{array}{c} 7.2\\ 10.9 \end{array} \right.$	a		1		1	500+ 500+	2	300 -	1
	(10. 9	a	500 +	1	500+	1	500+	2		
	7.2	ſa	500 +	6	0	7	50	10	500 +	3
	1.2	(b	500+	5	200	5	150	6		
	8.8	a	425	$\frac{4}{2}$	500 +	4			500 +	1
64	1 0.0	(a	500 +	2	500+	3	375	4	500 +	2
	11.0	3b	500+	10	0001		225	6	500 +	$\frac{2}{3}$
	1	C							350	7
			11 S. 11							
	7.2	Ja	450	$5 \\ 2 \\ 1$			500 +	$\frac{3}{6}$		
	1.2	(b	500 +	2			0		0	7
66	8.8	∫a	500 +	1			500 +	6	275	3
		1b					350	4	500 +	5
	[11.0	a	500 +	1						
		(a	500 +	5	0	14	500 +	6	500 +	7
	1 7.2	b	500+	4	0	11	0	12	0	14
		(b [a	500-	4	500+	6	0	$12 \\ 12$	0	12
70	8.8	{a b			425	8	500+	7	300	9
		(b) [a]	500+	12	175	18	000T	'	500 +	9
	11.0		50			18 6			500+	9
	(11.0	{b		16	500 +	0				
		le	500 +	11						

TABLE 6.Condition of cast-iron pipe withstanding a maximum
hydraulic pressure of 400 lb/in.²

	Soil	mea	ecimens sureme loss and	nt of we	ight	Speci expose applic of hyd presse 400 lb	ed for eation raulic ure of
Number	Туре	Ex- posure	Wall thick- ness	Maxi- mum pit depth	Aver- age pene- tration	Maxi- mum period of ex- posure	Wall thick- ness
a15	Houston black clay.	<i>Years</i> 17.6	$Mils \\ 450$	Mils 226	<i>Mils</i> 14. 9	Years 24	$Mils \\ 450$
64 70 (23) a118	Merced silt loam Niland gravelly sand.	$5.0 \\ 6.2 \\ 5.9$	$250 \\ 450 \\ 450$	250+ 450+ 302	30.4 58.4 49.3	$12.5 \\ 24 \\ 24 \\ 24$	$450 \\ 450 \\ 450$

^a See references [2 and 3] for properties of the soils.

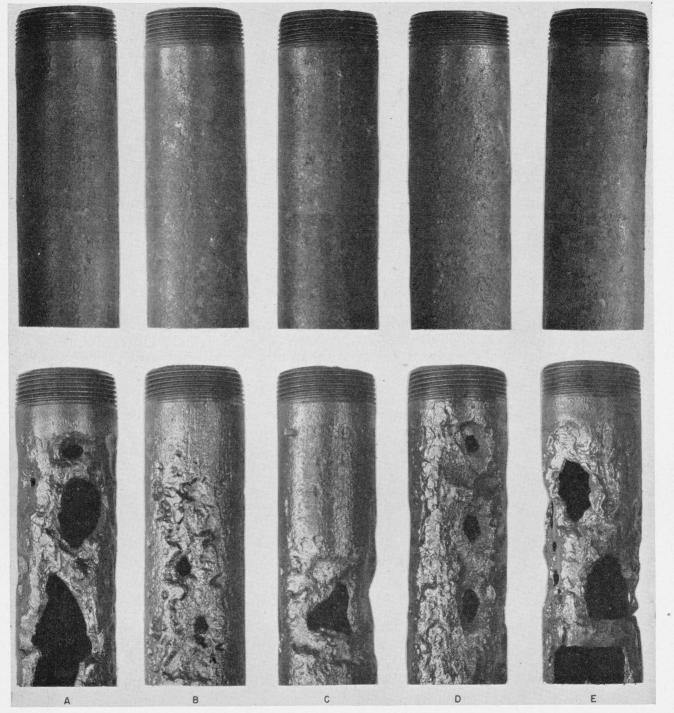


FIGURE 1. Condition of cast iron exposed to highly corrosive soils before (top row) and after (bottom row) removal of the corrosion products.

Exposure 11 years, approximately. A, Lake Charles clay at El Vista, Tex.; B, Muck, at New Orleans, La.; C, Tidal marsh at Charleston, S. C.; D, Docas clay at Cholame, Calif.; E, Merced silt loam at Buttonwillow, Calif.

WASHINGTON, August 28, 1953.