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On Mildly Nonlinear Partial Difference Equations of
Elliptic Type'

Lipman Bers?

The use of the finite differences method is in solving the boundary value problem of
the first kind for the nonlinear elliptic equation A¢=F (z,v,¢,¢2,¢,) is justified by first show-
ing that the problem of the corresponding difference equation has a unique solution, and
then that the solution of the difference equation tends to that of the differential equation

when the net unit tends to zero.

Also a numerical method of the Liebmann type for the

computation of the solution of the difference equation is developed, and these results are ex-
tended to more general nonlinear elliptic equations.

1. Introduction

The method of finite difference is frequently used
for the numerical treatment of nonlinear partial
differential equations of elliptic type. A theoretical
justification of this method, however, seems to exist
in the literature only for the case of linear equations.
In this note such a justification is given for the
simplest nonlinear elliptic equation

Ap=F(2,y,¢,¢:,6,). (1)

We assume that the partial derivative Fy, is non-
negative and the derivatives Fy , Fy uniformly
bounded, and approximate the differential equation
by the difference equation

@ +hy) +o@y+h) +o@—hy) +o@y—h) —46(zy)
hZ

=F {w,y,qb(x,y), ?(wﬂ"’y);hd’(x‘h ),

2h

We shall show that the first boundary value problem
for this difference equation possesses a unique solu-
tion that can be computed by a Liebmann iteration
method, and we shall estimate the difference between
this solution and the solution of the boundary value
problem for the differential equation.

These results extend almost at once to the case
when a more sophisticated difference equation is
used to approximate (1), and also, due to a recent
result by Motzkin and Wasow, to the elliptic equa-
tion

a(@,y) ¢rz+2b(2,Y) bzt (2,Y) b= F(2,Y,0,62,8,).-

Extensions to higher dimensions and to other nets
are also immediate. On the other hand, our method
is tied to the maximum-principle; it does not apply
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to such important quasi-linear equations as the
equation of minimal surfaces or the equations of gas
dynamics.

We state explicitly that the reasoning reproduced
below involves only a straightforward application of
familiar arguments. In section 3, in particular, we
paraphrase well-known facts in a form suitable for
our purposes.

2. Notations

We denote by @ a fixed bounded domain in the
(z,y)-plane. @ is the closure and @’ the boundary of
Q. F(z,,2,p,q) denotes a fixed continuous function
defined for (z,7)e2 and all z, p, ¢. We assume that
the partial derivatives F,, F,, F, exist and satisfy
the inequalities

F, >0, (3)

. |Fp[:[Fa|SA<+°°- (4)
Set

L[¢]:A¢_F(myyy¢)¢ry¢u)) (5)

where A is the Laplace operator (Ap=c,.+ ¢,,). Lgt

v(x,7) be a fixed continuous function defined on .
Boundary value problem P consists in finding a func-

tion ¢(z,y) continuous on £ and twice continuously
differentiable in Q such that
L[¢]=0 in Q, o= on . (6)

It is known that this problem has at most one
solution, and that a solution exists under appropriate
smoothness hypotheses.

We approximate L by a difference operator L,
defined (for A >0) by

Li[¢)=Au¢]— F{2,y,6,D,:[6],Dn 091},  (7)
where
Ml (@)=
qS(achh,y)wL4>(av,y+h)+¢>(wh—2 hy) +éy—h)—4é@,y)
(8)
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Let P, be the point with the coordinates ().
The points (xo+h,Y0), (@o,Yo+h), (@o—h,Yo), @o,Yo—
will be called the h-nelghbors of P, and will be de-
noted by Py, . . ., Py A lattice domain Q, is a
set of points, Pl, . . ., Py, situated in Q, having
coordinates that are integral multiples of %, and such
that all points Py, =1, ... N; »=1,.. . 4
belong to €. Neighbors of pomts of that are not
themselves points of @, form the boundary Q; of Q.
We denote the points of @, by Pyxii, . . ., Pa,
and the union of Q, and @; by Q,. 1If ©Q,is fixed, and

x is a function defined on ©,, we denote the value of x

at a point P; (or at a point P,) by x; (or xs). We
also set

Lo =0l —F {24,y 1,01, D0 :[d:], D@3l },  (77)

where
1 4

Mol = 23 o0l ®)

¢11 ¢’13 ¢12 ¢14 7

Dh2[¢] o5h 2 Dhy[¢] 2h ke (9)

The boundary-value problem P, (for some fixed
Q,) consists in determining a function ¢ defined on

Q, such that
Li¢:]=0, PEe=dl o a0

b=V S G fE

From now on we assume that A is so small that at
least one , exists, and that

Ah<20,  0<6<1,

where 6 1s some fixed number.

U

j=N+1, (10)

(11)

3. An Inequality

In this section we recall some properties of the
linear difference operator

lh[¢>i] =An[¢i] 7+ aiDh.z[¢i] +61Dh,y[¢i] — Y19, (12)
with

|o‘i|) rﬁl‘sAy (13)

7120, (14)

In particular, we want to establish the existence of
a constant
C=0(4,0,d), (15)

depending only on A, 6 and the diameter d of @ such
that the imequality

maxg,|¢| < C maxq, L[] +maxe|é|  (16)

holds for every function ¢ defined on Q.
We observe first that the equation

lh[d)i]:()y /L.:l, ..y N, (17)
may be written in the form
4 .
Z)”d)iv
qbi:’!—b:l hz <) ?:=1, .« v ey N, (18)
1+'Z'Yi
where
h b
L ATy Bl
=Z<1 2 LXl)) )\ 4—1(1—5613)‘
Since
N22(1—0>0, 3=l
(18) implies that
Smax <¢11, i ey ¢i4) lf ¢120
i (19)
>min (¢i1, ) if ¢,<0

and the equality sign in (19) holds only if ¢;;= . .
=du, vip:=0.

Let m and M be the minimum and maximum of a
solution of (17). If M >0 and ¢=M at a point P;
of @, then ¢=2»M at all neighbors of P, at all neigh-
bors of neighbors, etc. Hence ¢=M at a point of
Q. A similar argument holds if m<0. Thus

min(O,ming,/,¢)§¢i$maX(0,man,;go), ’L= 1, L0 ')N7
(20)
and, in particular,
maxg,|¢| <maxg]¢l. (21)
Consider now the boundary value problem
lh[¢1]=k1y 7’:1a s nenisy N7
dr=v;, j=N+1,..., M. (22

It is equivalent to the system

el

N M
2 Lt¢=kit 2> o%vy,
=1 i=N+1

where the matrices (L*) and (¢*/) depend only on
[, and @, In view of (21) the homogeneous system
(k=0, »=0) has only the trivial solution. Hence
the “(Jreen matrix”’ (G¥)=(L¥)"! of [, in @, exists,
and the unique solution of (22) is given by
N Miyb i
=2 G%k,+ > Ty, A
$=1 j=N+1

T e
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where

N
Iw,j:ZGllo.lj’
=1

we call (T') the “Green boundary matrix” of /.

Thus every function defined on Q, satisfies the
identity

N M
o=2G"[¢.]+ >3 T¢;,  i=1,...N,
s=1 j=N+1

and hence the inequality

maxo,|¢| < ¢ maxo,|li[9]]+cmaxer|g|  (23)
: :
with
Nl M o
ci=maxnilG e c=max’ >ONIEYIEE(94)
s=1 j=N+1

Let ¢ be a solution of (22) with k;=0, »,=d,,

(Kronecker §). Then ¢,=T%. By property (20) of
solutions of (17), 0<¢;<1, 1=1,2, . . . Thus
I >0 for all z,/. Next let ¢ be a solution of (22)

with £,=0, oy 1= . . . Then

TR T e
P o Bes 3 0 ATH),

j=NF1 J=NF1

‘—’I/Mh‘l

and by property (20) of solutions of (17), 0<¢,<1.
Hence,

c <1. (25)

Now let ¢ be the solution of (22) with k;=6, v,=0,
so that ¢,=@G". Let Q, denote the lattice domain
obtained from @, by removing F; Assume that

¢.>0. In Q, we have that lil#]=0, so that by (20)
0<¢,<#;,15%l. Inparticular,0<¢;, <¢;,v=1,2,3,4.
But [,[¢;]=1, so that

B2 12 4
‘4"*’(1'{‘?71) ¢z=§1 Nrou < ¢y,

which is absurd. Hence ¢,<0, and again by (20)

¢:<0 for i#l. Hence
G <0. (26)
Now set
Tolbd=0alos] + i Dnold]+B:Dnsled @7

and let G*, T, T,, T, be defined as before, with 1,
replaced by 7,. Let ¢ have the same meaning as

before, and let ¢ be the solution of the boundary
value problem

L[¢:]=6u, i=1,...,N;
=0, j=N-1, , M.
Then
EtZFNSO;
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and since for 1=1, I\
blgi—dd=lhsd—{ (6] —vid:i} =7:: <0,
m—aizé Gy, > 0.
Thus G <G%, or |G| < |G| so that
i ci<<Ci, (28)

Let ®(z,y) be a continuous positive function defined
on & for which 7,[®] >0, and

s (29)
ming, 4, [®]
We have that
N 3 e M Sl .
®=>" Gl [® )+ > T¥s, 4i=1,...,N,
s=1 j=N+1

and as the term on the left-hand side is positive,
Nt RS
2 [GU L@ < 35 T8,
gl j=N+1
Noting that ¢, <1, we obtain the inequality
¥ N
{ming, bie]} 33 (6] Smaxs o,

which implies that

C.

(28) and (30) the assertion (16)

—
C1

IA

(30)

From (23), (25),
follows.

We conclude the proof by exhibiting a function
®(z,y) having the desired property (without aiming
at the best possible value of ). Without loss of
generality we assume that @ is located within the
strip 0 <z <d.

If Ad<2, we set ®(x,y)=[z— (d/2)]>.

Dh, Z[q)]

Then

A [®]=2, =2r—d, D, [®]=

so that in Q:[,[®]>2—Ad, and of course ®<d?/4.
Hence in this case (29) holds with O=d?/4[2— Ad].
If Ad>2, set

il

Zren?
i tanh ! (302 % >: d(z, y)=e".
Then maxz® <e* and
inh (uh g
it [T,

D[] — 20 [“—h%@] cosh (uh/2), D ,[d]=



so that

7,> 264, sinh ]Eyh) I:tanh (uh/2)__zf1_].
© ' 2

Because (tanh §) /€18 a decreasmfr function of &, the
expression in the brackets is, for 0<h<26/A, not
less than

tanh (u/4) A _A

29A  —z=4 170

so that

A%(1—0) o (36——02).
2———20 tanh T

Thus (29) holds again with

_p2
20 exp {ﬂ tanh~! <30 g );
oy 0 2
A*(1—6) tanh-! (3“’7—9>

4. Existence and Uniqueness of the
Solution of the Difference Equation

1,[@]

The inequality

maxg,|¢'—¢"| < O maxq,| Ly [¢"] — Ly [¢"]|

+maxg|¢'—¢"| (31)

holds for any two functions defined on Q.

In fact, by the mean-value theorem, the function
d=¢'— ¢ satisfies the difference equation

il ¢l=Lal¢"]— L[¢"],
where [, is defined by (12) with
—F(@y0260040),
zi=rpi+(1—1)¢,

at:—Fﬂ(zi;yi;Zl”phqi): Bi=
'Yi:Fz (ziryiyzi)pirqi)’

1
pi=gg {rieh— o)+ 1= r)@li—eB},

Gi=g5 {ri@h— )+ =) e—elD),

the 7, being numbers such that 0<7,<1. Since
conditions (13), (14) are satisfied, inequality (16) is
applicable and yields (31).
1t follows from (31) that problem P, has at most one
solution.
Set
ngm&X‘n tF(Z,y,0,0,0) l (32)

Then |L,(0)| <, so that applying (31) to an arbi-
trary function ¢=¢' and to the function ¢"=0, we
obtain

maxg,|¢| < CC;+ C maxq,| Ly [¢]| +maxg;|¢| (33)

for every function defined on By

In particular, a solution ¢ of P, satisfies the in-
equality

maxg,|¢p| <K= CC,+maxz!v|. (34)

Now let (G*) and (') be the Green matrix and

the Green boundary matrix of the operator A, for
the domain Q,, and define the continuous transforma-

tion ¢*=T,(¢) in the N-dimensional (i, . . ., on)-
space by the equations

N
¢f:¢i—t21GiSF{ TiyY 1,04, D 2[9], D, o[ 3] }

=

M
— 3y 1y, 4i=1,... N, (35)
J=N+1

where t is a real parameter, 0<t<1. A point

¢> (¢1, - . ., ¢n) taken by this transformation into
the origin is a solution of the boundary value problem

A{z[d’z‘] —tF{ xi,?/i,¢i,Dh,x[¢i],l?h,y[¢i] }=0,
=B N G e N e (6]

Let S denote the domain ¢+ . . . +¢3% <NK*+1.
By virtue of (34) no point of the boundary S’ of S
is taken into the origin by 7,. Hence the degree of
the mapping 7', of S at the origin (that is the N-di-
mensional solid angle under which the image 77,(S”)
is seen from the origin, divided by the measure of the
N-dimensional unit sphere) is well defined. Since
T, depends continuously on ¢, this degree is in-
dependent of . For t=0 the mapping 7} i?\l a transla-

tion which takes the point ¢°, with ¢°= Z Ty, of
—+1
Thus for

t=1 at least one point ¢ of S satisfies T1(¢) =0, and
problem P, has a solution.

A somewhat longer but constructive existence
proof will be given later.

S into the origin. Hence the degree is 1

5. Convergence of the Solution of the Differ-
ence Equation to that of the Differential
Equation

We assume now that problem P has a solution
b(@,y).

Let w(n) be the modulus of continuity of ¢(z,y)
in Q, that is,

w(n) =Lu.b.|¢@x,y) —o@,y")| for

(w;y);(ml)y’)5§’ (x—x’)2+(y‘y')2§n2-

By 0P (n),m$ we denote the maximum of the moduli
of continuity and of the absolute values, respectively,
of the second derivatives of ¢(z,) in the closed
subdomain of © consisting of all points in @ having
a distance not less than 6>0 from Q. m$ and
(for a fixed 7 >0)w (y) are noninecreasing functions
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of 6. Set
I 2 =—m, Iim o () =w®(y).
-0 30

If the second derivatives of ¢(z,y) are continuous in
Q, then m® <+ o and w® (7)—0 for 7—0. If ¢(z,y)
possesses continuous partlal derivatives of the third
or fourth order, we define m®, m®, m{, m® in a
similar manner. Finally, we denote by w*(y) the
modulus of continuity of »(z,y) in Q.

Let @, be a lattice domain such that (i) every
point of @, has a distance not exceeding e from some
point of Q' (i) 2, is contained in a closed subdomain
of @ having a distance not less than 6 >0 from ’.
We denote by ¢®«? the solution of problem P, for
this domain.

Let P; be a point of Q. By virtue of (i) there
exists a point (z,y) of Q" such that

JU]'—I)(Z,'!O[SCO*(E), ]d’f_
Since ¢;™ 9=y,

man;‘ch(”""” — | <w(e) +w*(e).

(,y)| Swl(e).
o(x,y)=v(x,y), we have that
(37)

From Taylor’s formula and condition (ii) it follows
easily that for every point P; of @,

|Dh (.4 (d’z) l |Dh y ' "(¢ ‘ Smgz)h: (38)
so that
IF{ xilyi!¢i!Dh,I[¢i])Dh .1/[¢i] }
; o { F(x}y;¢;¢17¢ﬂ) } il SZA’m g2)h.
Also
|Auldi]— (Ad) <| <20 (R). (39)
Since L[¢]=
maxq, |L;[¢]| <2A4m P h+20f (h).
Inequality (31) now yields the estimate
maxg, |[¢* ¥ —¢| SQC[m(Z’h
+o? (h)]+w(e+w*(). (40)

T'his relation shows that ¢ can be approvimated by
o™« awith any desired degree of accuracy. In fact,
let n<<0 be given. We determine an <0 so that
w(e) +w*(e) <n/2 and choose a closed subdomain
Q* of Q such that every boundary point of Q* has a
distance not exceeding e from some point of @’. For
every _}_L>O let 2, consist of all points in the interior
Q% of ©* whose coordinates are integral multiples of
h and whose h-neighbors belong to @*. Let 6 be the

(positive) distance of 2* to @. We choose h so
small that 20[mPh+w? (h)] <n/2. Then

l¢(’l, € 0) _¢l S.n.

If the partial derivatives of ¢(z,5) of the third
order exist and are continuous in Q, we may replace
(38), (39) by

|Dh .

(¢z> | |Dh y[¢z] (38’)

[An[pd— (A¢)i| < FmDh,

(b0) o <5m R,
(39")
and instead of (40) we obtain the estimate
a6 ® +9 —¢| <EOM® (AR+21) +o(e) +*(0
(40")

If ¢(x,y) possesses continuous derivatives of order
four, (39”) may be replaced by

|Anlp]— (M) | <FMOR?, (39”)
so that instead of (40”) we obtain

6| <FOCMP +m® )W +w(e) +-w*(e).
(40")

maxg,|p®«d —

If the derivatives of ¢(z,y) (of order 2, 3, 4, respec-
tively) are continuous in 2, condition (i) is superflu-
ous. We may drop the superscript and subscript 6
in (40), (40"), (40"”") and obtain, for h—0, e—0,
uniform convergence of %9 to ¢. In fact if all
points of 2 are on Q' the terms with e disappear
and we have, say in the case m® <+ », that
[0 —¢|=0(h).

All preceding estimates involve (a), some a priori
estimates for the solution of P, (8) the exact solution
of P,. Without some a priori information on the
solution of the differential equation, however, its
approximation by the solution of the difference equa-
tion can never be estimated. On the other hand,
the difference between an exact and an approximate
solution of the difference equation (and only approxi-
mate solutions can be obtained in practice) can be
estimated at once by means of (31).

6. Solution of the Difference Equation
by Iterations

AR

In this section we describe an effective method for
solving problem P,, and at the same time obtain a
constructive existence proof.

Define (for 1=1,2, ., N)
h P it
el r2ies e 4 o
Bz, 058 ,§4)_2+4 F(Iu?/nza oh ' 9k
(41)
Then
Oft_ b
o s (42)
is nonnegative, so that there exists functions
2=gdZ;5 . - o, (43)

233



such that

SfilgdZ;sty - 00580 L =2. (44)

Also set

4
st =0 (FZ00 ) @8)

Let ¢ be a function defined on 2, and satisfying
the boundary condition ¢,=v,;, j=N+1, . . ., M.
It satisfies the equation L;[¢,]=0, i=1, ..., N
and is a solution of P, if, and only if,

et :
.,(ﬁ“):ZZl(ﬁw, 7/:1, oiiertey N,

fi(d)i;d’il, e
that is, if

¢1=81(¢in e '}¢i4)y ?'=17 Sty N (46)
Now let ¢® by any function in @, satisfying the
boundary condition and let the functions ¢®,
@, . . ., be defined by either of the two following
iteration schemes. (A), set
¢1’<n+1):8’i(¢i(¥)7 REAd LY t(z) ) 7:=1;

LN @n
FENEL

PP =g =,
(B), set

¢i("+1)=8i(<~bi(7ll)) bl ')&fz))l izl’ SR | N) (48)

where
A {qs}:“’ P =P iand s Sy
Pi=

& otherwise,
¢:¥”+1)=¢:§n) =0y, ]:N+1; L) M.
If the sequence {¢™} converges, then the limit
function is a solution of P,, for s; is a continuous
function of its arguments.

In the case of the Laplace difference equation, (A)
corresponds to the difference equation of heat con-
duction whose solution converges to that of the
Laplace equation for n—« (n being interpreted
as time), and (B) is the well-known Liebmann method.

We assume now that (3) is replaced by the stronger

condition
Fz 2")>0 (49)
and prove that procedure (B) converges. The proof
for (A) is practically the same.
By (48)
EHD — p® — Z 9s¢\* @ —35-0) (50)
£1 bg_,, )

where the asterisk indicates that the partial deriva-

tives are evaluated at a point (¢!, . . ., %),
=18 +(1—7)857",
By @1), (42), (45),

007 dz op" T o b

of:  Of: hF e 0 Fq,

OSTiSI.

gfb T cap s S Loy ToE R

bsi 1 agi_*_bgi
b;"' 4 DL 0T

Os; 4 <1 )

2
oF 1+ ' F,

. (1+ F)

o i

so that by (42)

ds; 4 (1 )

2 1+ ' F,
. (1+ F)
g 1+ " F,

Hence

08,
Ty

and setting

<1,
1+h_ (51)

it follows from (49) that

bsi
foYed

08; ¥

Z Zag-u—P

Setting
mn+1=math[¢("+U—d;("’l, (52)

we conclude from (50) that

Mpg1 < Py,
so that

My < p"Mmy,
and for p >1,

n
maxg,|¢®t? —p®| < Z m, e

vEntl 1 —=p
which implies the existence of

¢=lim ¢™.

n—o

Also, by (46), (48),

Pl = (as,

) (35 —du),
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where the double asterisk indicates that the partial

derivatives are evaluated at a point (¢*, )y
=108 +(1—1) ¢, 0<7;<1.
Hence, setting
Pni1=MaXg,|¢p "D —¢|, (53)

we have that up,.; <pu,, so that
tn < p"Ho. (54)

Since p, can be estimated by means of (31), we can

determine a priori how many steps are needed in

order to obtain ¢ with a desired degree of accuracy.
Now we drop assumption (49) and set (forn>0)

L;(zﬂ) [¢c’] = Lh[¢t] ‘f‘77¢°1-

Let Let ¢ be the solution of the boundary value
problem

D O = — ] SR\

¢j~_—7)/, J:N+1, o oe sy M.
This solution exists by virtue of the preceding result.
Applying (33) with L, replaced by L”, we conclude
that |¢@| <K, so that |L,[¢]|= W’ ")| <K17 By (31)

maxg,|¢p® —¢™" | <20K (' +1""),

so that
o=Ilim ¢®
n—®
exists. It is clear that ¢ is a solution of P,. Also,

by (31),
¢| < CKn. (55)

Since ¢ can be computed by procedures (A) or (B),
we have an effective method of solving P in all cases.

maxg,|¢p® —

7. Extension

Let a(a,y), b(xy), c(z,y) be continuous functions
defined in Q.

ac—b>>0. (56)

Set
A[d’] =Py aF 2b¢zy+ c¢1/1/} (57)
L{¢]=Alp]— F(@,y,6,%2,9y) . (58)

With this new operator L we can state problem P.

Motzkin and Wasow* showed that (¢ being a
sufficiently large positive integer depending on A)
A can be approximated by a difference operator

Ay(h>0) defined by

Anld]= h2 Z p"*(z, ) d(x4rh,y+sh),

*J. Math. Phys. 31 (1953).

and satisfying the following conditions:

ALl =Alo] if ¢(z,y) is a polynomial of second
degree, (59)
p"*(x,y)>0 for (r,s)#(0,0), (60)
O<K Z ”(95,?/) SKI- (61)
17 (1,$)720,0)
Applying (59) to ¢=1 we have that
p¥zy)=— >, p"(z,4)<0. (62)

(r,8)=(0,0)

If ¢(x,1) has continuous derivatives of the second
order whose moduli of continuity do not exceed
@@ (n), then

|A[8] — Alg]| <202K,0® (v2th), (63)

and if ¢(x,y) has partial derivatives of the third
order bounded in modulus by m @, then

[Anlp] —Al]| < < K m®h. (63")

Under the hypotheses that the fourth order deriva-
tives exist and are bounded by m® in modulus this
can be improved to

(63")

[Aulg] —ATg]| <3 1K m Ok,

provided A, satisfies the additional condition

Aulp] =0 if ¢(z,y) is a homogeneous
polynomial of degree 3. (64)

All this follows easily from Taylor’s theorem.

Once A, has been chosen, it is easy to find differ-
ence operators

Dudddl=1 >

r8=—1t

o"*(z,y)p(x+rh,y+sh),

t
Dudsl=5 33 7@y)é(+rh,y+sh)

satisfying the conditions

o®(x,y) =1"(z,y) =0, (65)
o7 @) [, 17" (2,y) | <Kol (,9) |, (66)
and approximating ¢,, ¢, in the sense that
Dy 26 =62, Di (9]

= ¢, foreverylinear function ¢(z,y).
67
We have that
D ol $]— b2l | Di o[6]— 6| 2K Ko™ (V2th)  (68)
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if ¢(z,y) has continuous partial derivatives with
moduli of continuity bounded by «® (),

th ,z[d)] et 4’:[ y !Dh ,y[¢] = ¢y] < 2t2[prz>77l(2) h (68’)

if the second derivatives exist and are bounded by
m® in absolute value.

If

D, [¢]=D, ,[6]=0 for every homogeneous quadratic

polynomial ¢(z,y), (69)
then, under the hypothesis of (637),
\Di 2l ¢]— 2|, | Dn o[ 8] — ¢ | S$EKKom @R, (68")
We approximate L by the difference operator
Ly[¢]=Milo]— F{2,y,0,Ds 20, D1 ,[8]}.  (70)

Let Py be the point (x0,7,). Weorder the T=4%(t+41)
points (2o+7rh,yo+sh), where r,s=0,41, . . . =+t
and (r,5) #(0,0) lexicographically with respect to
(r,s) and denote them by Py, . . ., Pir. These
points shall be called the h-neighbors of P;. The
new definition of neighbors leads to a new definition
of the boundary ©; of a lattice domain €, and having
this new definition, we can state the boundary value
problem P, for the operator L, defined by (70).

We make now two remarks concerning the linear
difference operator

lh[¢i]:Ah[¢i]+aiDh,z[¢i]+31Dh,y[¢i]_’)’i¢i (71>
subject to conditions (13), (14).

(1) Set
1
h1:2—K2' (72)
Then for 0<h<h;
(e Eori
hibl—gs {ZA 0= s N~y (73)
with
T
AP>0, SN0, (74)
r=1

In fact, applying (57) to ¢=1, we see that

Zg™ (95,?/) = 27’”(95;?/) = 07

so that [, can be written in the form (73) with

AP =p" N (14,1) —ho "> T,y ) —h7 "2 (B0, Y ir),
where P;,= (x;+7h,y;+sh), (r,s)=(r,s),. By virtue
of (61), (66), condition (72) implies (74).

(2) Let T, denote the operator (71) with v,=0.
There exists a continuous function ®(z,y) defined n

Q and positive constants hy, € such that for 0<h<h,

maxz® (z,y)

<C. (75)

ming I, [® (z,y)]

_ In fact, assume (without loss of generality) that

Q is contained in the domain 0<z<d, and set
d=¢" p>0. By (63), (68’) we have that

L@ (@,y)] > a(a,y) u*e— 48K e h
— Ape—2 A28 K, Kou*e*h .

If we first choose a fixed u such that
X ming a(z,y) —pA>1,

we can determine a ks such that for h<hy,[[®(,y)]< 3.
Then (75) holds with ('=2¢*.

Using these two remarks and assuming that
h<min (hy,hs), all considerations of sections 3 to 6
can be repeated with only minor and obvious modi-
fications. Inequality (16) holds with the € deter-
mined above, and so does (31). This inequality
implies the uniqueness and existence of a solution of
P,. This solution can be computed effectively by
the method of section 5, and its deviation from the
solution of P can be estimated as in section 5, using
inequalities (63), (68).

We note that the case in which eq (1) is approx-
imated not by (2) but by a more sophisticated
difference equation is included in the preceding
discussion.

Los AxgeLes, October 9, 1952,
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