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On Small Disturbances of Plane Couette Flow! 
Wolfgang Wasow} 

The Orr-Sommerfeld equation for the function q,(y) , which appears in the component 
q,(y)explia(x-ct) I of the stream function, is analyzed in detail for the case of plane Couette 
flow . A set of solutions is found whose asymptotic behavior as aR--> '" can be calculated 
in the whole complex v-plane (R is the Reynolds number) . A disturbance with given a is 
proved stable, for any a, if aR is s uffi~iently lar~e. In ad9itio~, an inves.ti&ati~n is made 
of the asymptotic properties of an alhed equatIOn for WhICh, Jt1 contradlstll1ctlOll to the 
singular Couette case. an inner friction layer does exist. 

1. Introduction 

The purpose of this paper is to analyze mathemat­
ically some questions connected with the stability of 
plane Couette flow . 

If the space between tvvo infinite parallel planes 
at constant distance in time is filled with a viscous, 
incompressible fluid, and if one plane is at rest while 
the other moves with constant velocity, then the 
simplest flow ompatible with the N avier-Stokes 
equations and these boundary conditions is the sta­
tionary parall el motion with linear velocity proflie. 
This is plane Couette flow . Experiments indicate, 
[1, p. 185],3 that this fiow, just as most other viscous 
fiows, becomes unstable, that is , turbulent, for high 
Reynolds numbers. 

The oldest and best developed theory of hydro­
dynamic stability for plane parallel flows, not only 
for Couet.te flow, studies the stabili ty of disturbances 
so small that they can be regarded a& solutions of a 
linearized differential equation. It is further assumed 
that the stream functions of such disturbances can 
be obtained by superposition of functions of the form 

cp(y)eia(x-ct) , (1) 

jf the main flow is taken to be parallel to the x-axis. 
Here, a is positive, c and cp(y) are complex, and t is 
the time. The refercnces [1, 2] contain fuller ac­
counts of this theory. It. reduces the stability prob­
lem to eigenvalue problems for the differential 
equation 

q, (4) -2a2q/' + a4cp-iaR[ (w-c) (cpl! -a2cp) -wI! cp] = 0, 
(2) 

where w = w(y) is the velocity of the main flow and R 
dcnotes a Reynolds number of the fiow. 

A solution (eigenfunction) of (2) that satisfies the 
homogeneous boundary conditions of a particular 
flow problem under consideration yields a stable or 
unstable disturbance of that flow according as the 
corresponding eigenvalue c has a negative or positive 
imaginary part. For a given value of R the flow is 

1 The preparation of this paper was sponsored (in part) by the Office of Naval 
Research , USN. . 

2 National B meau of Standards, Los Angeles, CalIf. 
3 Figll1'es in brackets indicate the literature references at the end of this paper. 

stable, if one has 1m c:::; 0 for all possible eigenvalues. 
Otherwise the flow is unstable. 

This approach has been very successful for a 
number of velocity profiles. It has led to critical 
Reynolds numbers that are in good agreement with 
experimental evidence, [4 , 5, 6]. A mathematically 
difficult part of this method is the integration of the 
differential equa tion (2). For large values of aR 
asymptotic methods can be used whose validi ty 
has been established in [7, 8 and 10]. 

Couette flow, however, although it has the simplest 
velocity profile, plays an exceptional role in these 
theories. First, the proofs of [7, 8 and 10] do not 
cover this case. Second, all investigations seem to 
indicate that Couette flow is stable, in the sense 
specified above, at all Reynolds numbers, although 
no mathematically complete proof of this has been 
given (cf. r2], p. 256). Third, in contrast to other 
profiles, no so-called "inner friction layers" [3, 8] 
occur in the theory of Couette flow. 

This paper will consist of three parts, correspond­
ing to these three points. 

(a) The first part (section 2) is in the nature of a 
supplement to [9] and [10]. A fundamental system 
of the differential equation (2) for the case of Couette 
flow is constructed whose asymptotic behavior, 
as aR~ ex>, can be calculated in the whole complex 
y-plane. 

(b) In the second part (section 3) the eigenvalues 
c of (2), corresponding to possible disturbances of 
the flow, are studied as functions of a and exR. It is 
proved that Jar any given a a disturbance of t ype (1) 
of Couette flow is stable, if exR is sufficiently large. 
If the physically plausible conj ecture is accepted, 
that above a certain frequency a there is always 
stability (d. [3], part III, p. 284), the stronger 
statement can be made that, uniformly in ex, there 
is a lower bound for aR above which the fiow is 
stable. 

On the other hand there are the inequalities of 
Synge ([2], p. 258), which imply the stability of 
Couette flow for sufficiently small values of R. 
Even if t.aken together, these results do not, of course, 
constitute a complete mathematical proof of stability. 
But the author believes that they go farther towards 
this goal than previous efforts. 

C. Morawetz has shown [13] that the possible 
eigenvalues c of the stability problem fall asymp­
totically into three classes: (1) Eigenvalues that 
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approach -'those of the limiting inviscid problem as 
aR---"> ro. The corresponding eigenfunctions approxi­
mate those of the inviscid problem except possibly 
in certain "friction layers." (2) An im'inity of 
eigenvalues lying increasingly close to a certain 
curve in the c-plane as aR---"> ro . They are in no 
way related to the inviscid differential equation. 
The corresponding disturbances are always stable. 
(3) Eigenvalues that approach the points W(YI ) or 
W(Y2) , as aR---"> ro , where YI and Y2 are the ordinates 
of the flow boundaries. The actual existence or 
stability of eigenvalues of this third kind was not 
discussed in [13]. 

Since no eigenvalues of the first kind exist for 
plane Couette flow, its asymptotic stability, in the 
sense stated above, is proved if the disturbances 
of the third kind are shown to be stable for suffi­
ciently large values of R. This will be done in 
section 3. 

(c) In all cases examined so far, the actually pos­
sible disturbances of laminar flows are approxima­
tions to solutions of the inviscid differential equation, 
except, in general, in certain sectors of the complex 
v-plane, where they diverge exponentially, as aR---"> ro 

(cf. [8, 9, 10]). The results of section 2 show that 
no such sectors of divergence exist in the Couette 
case. 

In section 4, the mathematical reason for this 
absence is analyzed. Although not immediately 
applicable to physical problems, the results of that 
section may turn out to be of more than purely 
mathematical interest. 

2 . Solution of the Differential Equation 

In terms of the dimensionless quantities used in 
(2), the velocity profile of Couette flow is, for an 
appropriate definition of R, 

W(y) = y. 

The further substitutions 

z= y - c, 

A= (- aRi) !, 

cp(y)=u(z) 

change (2) into the simpler form 

U ( 4) - 2a2u" + a4u+ A2Z(U" -a2u) = 0 . 

(3) 

(4) 

(5) 

(6) 

(7) 

The theory of [10] does not apply to this differential 
equation, because condition (3.3) of that paper is 
not satisfied. But (7) can be treated directly by 
the method of Laplace transformation used in [9]. 

By a straightforward application of Laplace's 
method, it is seen that contour integrals of the form 

(8) 

are solutions of (7) , provided 0 is a path that is 
either closed or that extends to infinity in such a 
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way that Re(A- 2t3) <0. Five such paths are indi­
cated in the figure 1, where the sectors in which 
Re (A- 2t3»0 have been shaded. 'rhe paths O(Aj) 
0 = 1,2,3) arc the same as in [9 and 10]. The solu­
tions corresponding to these contours will be called 
Aj(Z,A), U(Z,A) and F (Z,A) . Clearly, 

(9) 

Let S denote any bounded neighborhood of the 
origin in the 2-plane. Then a short calculation 
shows that, in S, 

27ri 
U( z, A)=- cosh a Z (10) 

a 

F(z , A) = 27ri sinh, a Z . 
a 

(11) 

The asymptotic calculation of the solutions Aj (Z,A) 
proceeds exactly as in [9]. It is amply sufficient, 
therefore, to restate those results. 

Let ~ and 1/ be defined by 

2 
~=3 A(- Z)3/2, 1/ = A2/3Z, (12) 

and denote by Ok (k= 1,2,3) the tln'ee rays R e ~= O 
numbered so that 

4k 2 
arg z=T 7r-3 arg A, on Ok. (13) 

The closed sector of S bounded by 0" (j ~ lc) , and 
of central angle 27r/3 may be called Sk. If ~o is any 
arbitrary positive constant, one has then 

(a) For 1 ~ 1 2':~o, z inS-Ok' 
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Here, Lhe determinaLion of ~ for whieh Re ~::; 0 in S k 
and R e ~>O in S - Sk must be taken. 

(b) For 1 ~1::;~o , 

where O*(A k ) is obt,ained from C(Ak ) by a rotation 
through -2/3 arg A. 

(c) Jear Ok the asymptotic behavior of A k for 
1 ~ 1? ~o follows immediately from (9), (11) and (14). 

These asymptotie relations may be indefinitely 
formally differentiated. Without much additional 
effort it ean be shown that (14) and (15) are first 
approximations of infinite asymptotic ~eries progress­
ing in powers of ~- l and A- 2 /3, respectively. 

The angle of ~-5/6 in formula (14) is 7r/2 - 27rk/3 
(mod 27r) at the points of the angular bisector of S- Ok. 
At the other points of the domain 8 - 0 k , it is then 
obtained by analytic continuation. The angle ?f 
A -2/3 is - 2/3 arg A. The angle of A wlll be fixed m 
accordance with (5) by setting 

37T' 
arg A=-' 

4 

3. Stability Problem 

(16) 

The coordinate system and the definition of the 
Reynolds number can, and will, be cho en so that 
the boundaries of the flow are at 

(17) 

The boundary conditions for the disturbance are 
then ([31, p . 134) 

¢(O)=¢(l )= cf/(O)=¢'(l )= O. (18) 

In terms of the variables introduced in (4), (5) and 
(6) tIns becomes 

11 (- c) = u(l -c) = u' (-c) = u' (I-c) = 0. (19) 

The differential equation (7) with the boundary 
condition (19) constitutes the eigenvalue problem of 
plane Couette flow. In view of the results of [13] 
described in section 1 only those eigenvalues C= C(a,A) 
need to be studied, for which either 

lim c(a,A) = O, (20) 
>, .... '" 

or 
lim c(a,A) = 1. (21) 
>, .... '" 

(The notation differs from that of [13] in that there 
A= .JaR, and that the names of the sect~H's 8 1 and 
8 2 are interchanged.) The case (20) will be con­
sidered first. Using (13) and (16), the sectors Sk are 
seen to have the appearance indicated by the figure 2. 

x-plane 

FIGURE 2. 

A convenient fundamental system for the presen 
discussion is formed by the functions A I, A 2, U, V. 
Then the eigenvalues are the solutions of the equation 

A l ( - c) A 2 ( - c) U( - c) V( -c) 

A~ (- c) A~(- c) U'( - c) V'( - c) 
F(a,c,A) == 

Al (l - c) A 2 (1- c) U(1 -c) V (l -c) 

A~(1 -c) A~(1 - c) U'(1-c ) V'(l-c ) 

= 0. 

(22) 

Two ranges of c have to be distinguished according 
as rJ. = AZ/3C remains bounded or is unbounde~ as 
A-7O). If rJc is very large, the asymptotic expresslOns 
(14) can be used at both end poinLs, and arguments 
analogous ~o those e~Joyed in [13] show .t~at .tho 
correspondmg value of c cannot have positive im­
aginary part. 

If rJc remains bounded as A-7O) the expressions 
~ 15) are to be used at z= l - c and the expressi~ns 
(14) for Z= - c, that is, rJ = rJc. Setting, for abbrevia­
tion 

(23) 

one finds, after a short calculation, that F (a,c, A) = 0 
becomes, in this case, 

where E(a,A,c ,rJc) is bounded for fixed a, as A-7 0), 
provided rJc remains bounded. Using Rouche's 
theorem, as in [131. it can be proved that, if rJ = rJo is 
a root of the equation 

(25) 
then 

(2 6) 
that is, 

c(a,A) = - A -Z/3 rJO + O(A -4/3). (2 7) 
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If c(a,A)-71, the calculations are analogous. The 
roles of the two end points are interchanged, and A l 
is 'dominant at the left. end point. If 1/1 is a root of 
the equation 

(28) 

then there exist solutions of F = O of the form 

The preceding results reduce the question of the 
sign of 1m c for large Reynolds numbers to inequali­
ties concerning the position of the roots of eq (25) 
and (28). In order to study this question, it is con­
venient to introduce the variable 

where 

and the function 

ince the definition (23) implies that 

g~(1/ ) =g~(W1/) =g~(W21/) , 

(30) 

(3 1) 

(32) 

(33) 

all three functions g~ (1/) can be simply expresS€d in 
terms of >/; (s). 

The values c(a,A) given by (27) have, for suffi­
ciently large A, positive imaginary parts, if, and 
only if, R e 1/0> 0, that is if the zeros of >/;(S) lie in the 
half-plane 7r/6< arg s< 77r/6 . Similarly, the values 
c(a,A) given by (29) have, for large A positive imagi­
nary parts, if R e 1/1 > 0. From (33) it follows that 
the necessary and sufficient condition for this to 
happen is that the zeros of if; (s) lie in the half-plane 
- 77r/6< arg s < -7r/6. H ence all disturbances are 
stable, for sufficiently large R eynolds numbers, 1J all roots 
of-./;(s) lie in the sector largs l<7r/6. 

In order to prove that this is indeed the case, a 
few properties of the function >/; (s ) must first be 
collected. 

From (23), (30), (32) and (33 j, it is seen that the 
integral representation 

>/;(s) =~ g~(s) =~ j' t- let s+t3/3dt (34) 
27r~ 27r~ C*(A3) 

1S valid. By a calculation very similar to that of 
A 3(x,A) in [9) asymptotic expressions for >/; (s ) can be 
derived when lsi is large. The calculation results in 
the following formulas 

>/;(s) = 

( _ 1_ (-s)-3/4e -~ (-8) 3/2 [1 + O(S- I» ) 
2-f; 

1-~ S-3/4 cos (~ S3/2+~) 
-f; 3 4 

+0 (S-7/4expg I(Re s)3/21}} 

(35) 

(36) 

Here the first formula is valid outside any sector 
containin&, the positive real axis, and the second one 
for larg s t<27r/3. In the common part of these 
two sectors the two expressions are equivalent. 
In (35) the powers (_8) - 3/4 and 2 (-S)3 /2/3 are to be 
taken positive on the negative real axis and con­
tinued analytically into the whole sector of validity. 
In (36) the powers S-3/4 and s3/2 are positive on the 
positive real axis and must be continued analytically 
into larg s l<,h /3. The derivation of (3 5) and (36) 
is omitted excep t for the remark that actually only 
formula (35) need be proved directly, for from 
formula (33) one obtains analogous formulas for 
g~~1/) and g~(1/ ), md the identity 

g~(1/ ) + g~(1/) +g~(1/)=27ri, (37 ) 

which follows directly from (23), leads then to (3 6) . 

Differentiation of the relation (34) shows that 

>/;' (s) = Ai( -8), (38) 

where Ai(s) is Airy's integral (cf. [14) and [8)). By 
(35), the function >/; (s) tends to zero as S-7 ro in the 
sector 27r/3< arg s < 47r/3. Integrating (38) one finds, 
therefore, 

>/; (8) = j' Ai(-t)dt. (39) 
r. 

Where rs is any path starting at infinity in the sector 
27r/3< argt< 47r/3 and ending at t= s. Since the 
Airy integral is real for real s , it follows from (39) 
that >/; (s) is also real on the real axis. 

Equations (33) and (37) imply that >/;(0) = 1/3. 
H ence, (39) may be replaced by 

>/; (8 )= 1/3+ l SAi(- t)dt. (40 ) 

Since Airy's integral is related to Hankel's function 
by the identity 

A ;(s) = 2 W 3 -fSH m (~i S3/2} 

where the branch of the three-valued Hanl~el func­
tion is determined by the condition that Ai(s) must 
be real on the real axis, the integral in (39) can be 
transformed into 

>/;(s)= .w ~ J Hi~~ (T)dT. (41) 
2 ~ ,/ 3 Lr 

Here 

(42) 

and Lr is a path that begins at T = !: and goes to 
infinity in the upper half plane. As the function 
Hm ( T) has a branch point at T = 0, while if;(8) is single 
valued, the position of Lr with respect to the origin 
must be specified . If 

(43) 
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and the determination of r in (42) is taken for which 

(44) 

a shor t argument, omitted here, shows that Lr must 
be in - 7r < argr<7r/2. 

As to the zeros of 1/; (s), it follows from the asymp­
totic representation (35) that outside a sufficiently 
large circle they must all lie arbitrarily close to the 
positive real axis. 

On the other hand, 1/;(s) has no real zeros. To show 
this, one can use the fact that 1/; (s) is a solution of 
the differential equation 

1/;"' +s f ' = O. 

This can be verified, either by means of (34), or by 
using (3 9) and the differential equation for Airy's 
function. If (45) is multiplied by 2>/;, the relation 

(46) 

is obtained. Assume, now, that s= a is a zero of f (s). 
IntegraLing (46) from - ex> to a, it follows then that 

This is impossible for real a, because f (s) is real on 
the real axis. 

After these preparations, it will now be proved that 
the sector 7r/6 ::=; arg s::=; 1l/67r contains no zeros of 
1/; (s). Since f(s) assumes conjugate values at conj u­
gate points, only the sector 7r/6::=; arg s::=; 7r needs to 
be investigated. 

Consider first the portion of this sector for which 

(47) 

If ro is chosen so large that the remainder denoted 
by O(S-l) in formula (35) is numerically less than 
uni ty, for lsi 2::1'0, the absence of zeros of f (s) in the 
domain under consideration is a direct consequence 
of Rouche's th eorem. An appraisal of the remainder 
can be based on the following lemma, which is a 
special case of a more general result of Weber [16, 
17, p. 212]. 

LEMMA 1. I j R (s) is defined by 

H m (S) = (:s Y ei (3-5 r / 12) [1 + R (s) ], (48) 

then 

Substitution of (48) into (41) followed by an 
integration by parts leads to the expres ion 

From (42), (44) and (47) it follows that r lies in the 
sector - 57r/4::=;arg t::=;O of the r-plane at a distance 
from the origin not less than !rI= 2rg/ 2/3. The path 
Lr may be chosen as the ray 

Then 

where 
* 2 . 7r 

r = - r3/2 SIn -. 
3 0 8 

For 1'0 = 9, t he expression (51) turns out to b e les 
than (0.89) Ir-1/2eir l. 
Reinsertion into (50) shows that the quantity O(S-l) 
in (35) is indeed numerically less than one- even 
less than 0.89- for 7r/6::=;arg s::=;7r, lsl 2:: 9. There are 
therefore no zeros of 1/; (s) in this region. For Is l::=;ro 
the following extension of Rouche's theorem is 
needed. 

L EMMA 2. L et f ez) be regular analytic in the simply 
connected open region G. L et f(x) be defined and 
piecewise continuous on the rectifiable J ordan curve 
C in G. Assume that on C 

If (z) -fez) 1 <If(z) I· (52) 

Denote by D. arg J the total change of arg fez) as 0 is 
once described in positive direction . Then the number 
of zeros of f ez) inside C is the integer nearest 
D. arg f /27r. H ere arg fez) can- and must- be defined so 
that it changes continuously at points of continuity of 
fez) and that it jumps by less than 7r at the discon­
tinuities of f( z). 

PROO F: The inequality (52) excludes the possi­
bility of 1/; (z) having a zero on C. Let C be defined 
by the equation z=h(t), O::=; t< 1. Define aCt) as a 
continuous function such that 

a(t)= arg f (h(t)), O::=;t< 1. 

Without loss of generality f(h (t)) can be supposed 
(49) continuous at t= O. Because of (52), 
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Hence, 

for a certain uniquely defined determination of 
arg f(h(t)). Let this determination be called a (t). 
The last inequality implies that a(t) is continuous, 
except for possible jumps of less than 7r at the dis­
continuities of f(h(t)), and that 

\[a (t) - a (O) ] - [a (t) - a (O)] I < 7r. 

Since the exact number of roots of 1/; inside C is 
[a(t) - a (0)]/27r, the lemma is proved. 

This lemma will be applied to a contour T in the 
s-plane consisting of three arcs T I , T2 , Ta as follows: 
TI is the segment from s= o to Isl= 9 on the ray 
arg s= 7r/6; T2 is the circular arc defined by s= gei6 , 

7r/6 5, 85,7r, and Ta is the segment on the real s-axis 
between s=-9 and s= o. On T I , the function f(s) 
is to be an appropriate partial sum of the ascending 
power series for 1/; (s). On r 2, the leading term of the 
asymptotic series for 1/; (s) can be taken as f(s). On 
Ta, the function f(s) is identical with 1/; (s). 

The ascending series for 1/; (s) follows from (40) 
by term wise integration of the series for Ai( - t), see 
[15] p. B17) . Separation of the real and imaginary 
parts for arg s= 7r/6 produces then two series with 
real terms of alternating sign and decreasing moduli, 
at least from a certain term onward. This fact 
makes it easy to find the number of terms needed 
on this ray for f(s) to satisfy the inequality (52). 

The necessary calculations were first carried out 
at the National Physical Laboratory, Teddington 
(England) under the direction of F . W. Olver. In 
this calculation To was taken equal to 10, and 13 
terms of the series were needed to obtain arg f(s) to 
two decimals of a radian on TI • 

Equivalent computations were then performed, by 
a somewhat different method, at the Institute for 
Numerical Analysis of the National Bureau of 
Standards, under the direction of G. Blanch. For 
Isl5, 6 the values of f(s) on TI were ob tained by 
numerical integration from tables of the Harvard 
Computation Laboratory [18]. For 65, 1815, 9 the 
procedure was the same as Olver's. These computa­
show that the contribution LlI arg f of TI to the total 
change Ll arg f of the argument of f(s) is -3 .427r. 
On his longer ray Olver obtained the value of 
- 4 .1l7r radians. 

On r 2 the inequality (52) is satisfied by virtue of 
the appraisal of the remainder used for lsi 2:: 9. The 
contribution Ll2 arg f of T2 to Ll arg f is 

The corresponding value for Isl=10 is 4.127r. 
Finally, the contribution Lla arg f is zero, because 

1/;(8) is real on the real axis. The condition (52) is 
here satisfied, since 1/; (s) was proved to have no zeros 
on the real axis. 

Summarizing, it is seen that Llf= O.Ol7r on the 
contour formed with the arc Is l= 9 as well as on the 
contour with arc ls i = 10 used by Olver. R eference 
to lemma 2 then completes the proof that 1/;(s) has 
no zeros in the sector 7r/6 5, arg s 5, 1l /67r. 

The author expresses his thanks for the advice and 
help he received from Dr. Olver and from Dr. Blanch 
in this section of the paper. 

4 . The Differential Equation 
U (4)+ }.2Z (U" +u) = 0 

The occurrence of an inner friction layer is fre­
quently regarded as a mathematical consequence of 
the fact that the inviscid equation is singular a t. the 
point where w(y) - c= O. In the case of plane Couette 
flow the inviscid equation, q/' - a 2cf>= 0 is regular at 
that point, and it seems plausibl e that this fact is 
responsible for the absence of an inner friction layer 
implied by the unrestricted validity of formulas (10) 
and (11) . It will , however, be shown in this section 
that this view is no t quite correct. The total absence 
of an inner friction layer is actually a very special 
feature of the differential equation (7) . This will 
become apparent from the discussion below, of the 
differential equation 

(53) 

The reduced equation u" +u=O corresponding to 
that differential equa tion is also regular in the whole 
finite plane. But even a qualitative a priori argu­
ment shows that some form of an inner friction layer 
is to be expected. The solutions of (53) are all regu­
lar at 2= 0, and their fourth derivatives must there­
fore vanish there. The reduced equation u" +u=o 
has, however, only one linearly independent solution 
with this property. No solution U( Z, A) of the full 
equation can, therefore, have a fourth derivative that 
converges to the fourth derivative of, say, cos Z in 
a full neighborhood of z= O. But then U( Z, A) canno t 
even converge uniformly on any circle Izl=const, as 
A-7 <Xl, for U(Z, A) is an analytic fun ction of 2 inside 
the circle and it would follow that U (4) (Z, A) converges 
uniformly in a neighborhood of 2= 0, wl1ich is a con­
tradiction. This remark will now be confirmed and 
amplified by actually solving the differen tial equa­
tion (53) . 

The usual technique of integration by Laplace 
contour integrals leads here to solutions of (53) of 
the form 

U(Z, A) = J~ (i_t)<-I (1' + t) -<-Ie'IH -2(13 /3_1) dt, (54) 

where 
(55) 

Here C must be a contour such that the integral 
exists, and that the contributions from the boundary 
occurring in the calculations leading to (54) vanish. 

The discussion of these paths in this example is 
made complicated by the fact that the integrand has 
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t-plane 

FIGURE 3. 

branch points at t= ±i. In order to bring out the 
analogy with the investigations in [9] seven paths 
are introduced, which are illustrated in the figures 
3 and 4 under the assumption that A> O. 

As to the determination of the multivalued inte­
grand to be taken the following stipulations are made: 
(1) Two points of the Riemann surface of the inte­
grand are considered to be on the same sheet, if 
they can be Joined by an arc on the Riemann surface 
that does not cross the segmcnt connecting the 
points t= - i and t=i. (2) O(TT); O(Ak ), (k= 1,2,3), 
the lower edge of O( U3), the upper edge of O( U2), 

and the right edge of O(UI ) lie in the same sheet. 
As before, the functions defined by (54) will be 

called AI" Uk, V according as 0 is taken to be O(Ak ), 

O(Uk ) or G(V), respectively. 
From these definitions the following identities can 

be derived: 
(56) 

(57) 

(58) 

They result directly from an inspection of the paths 
concerned and the fact that the integrand in (54) 
is multiplied by er/)..2, if the point t= i is circled once 
in posit.ive direction. The further identity 

follows by a linear combination of the preceding ones. 
The asymptotic calculation of the A k(z,A) for 

large A differs only in trivial det.ails from these given 
in [9], and the results are exactly the same. 

C(U3' 
~====~,:¢¢~Al 

FIGURE 4. 

For V (X, A) one finds without difficulty the as~-mp­
totic expression 

(60) 

valid in any bounded domain. 
For the asymptotic calculation of Uk for z in S- Sk 

and I ~ I ~ ~o>O, one can proceed essentially a in 
[10], p. 12 . ince 

J t m tZdt- d m ( iZ) 
1+ t2e - d m 'Ire , 

C(Uk ) Z 

one has 

dm . 
d zm { Uk- 'lre" } 

= r [(t -i).-I (t+i)-·-leX-'(t3/3-t) - (l + t2) -I]t"'etzdt 
J C(Uk ) 

= r [eX-'(t3/3-t+arctant)_I] ~etzdt. J C (Uk ) l + t2 
(61 ) 

The expression in brackets in the last integral is 
numerically less t.han a constant mul~iple of 
IA -2 (t3/3 - t+ arctan,t) I max eRe [X-'(t3/3-t+arctan.tJ , hence 

t.C(U.) 
the integral is of the form 

where j(t,A) is uniformly bounded on O(Uk ). Split 
O(Uk ) into a circle 01 of radius r about t= i and two 
rays O2 and OJ going to, and coming from, infinity 
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at t.he same angle, in two different sheets of the 
Riemann surface. The contribution of 0 1 to the 
integral is OC;>\ -2). The contributions of O2 and 03 

differ only by the factor -eTIA' . Hence their sum is 

(e.- IA'- I ) r tm+1etZj(t, z) dt. 
J C2 

By means of the transformation r = tz, the value of 
this integral is found , similarly as in [10], p. 13, to be 
0 (>-.- 4 Z-m-2) = 0 (>-.2(m+2) 13-4 ~-2 (mH) 13) • Hence, 

U~m) (z,t..) = tx: (?reiZ) + 0 (>-.-2) + O(t..2(m+2) 13-4 ~-2(m+2) /3) , 

(62) 

for z in S-Sk and 1 ~ 1 2::~o>0,m2::0 . The remainder 
in (62) is O(}..-2) for all m, if z is bounded away from 
zero. Otherwise, the remainder tends to zero for 
m:::;4, but not necessarily for m> 4. 

In order to deal with the higher derivatives and 
also with the case I ~ I :::; ~o, observe that the contribu­
tion to (54) from the path 0 1 is in any case equal to 

lx: (?re i Z) + 0 (>.. -2). 

The contribution of the two rays O2 and 03 is, if (J is 
defined by >.. -2t3= (J3, 

(e" I,,2 _ 1)}..2(m-1)/3 r . exp { (J 3J3-
JC2. 

(J m 
>-. -4/3(J +}.. -2 arctan (J >..2/3+ 'YI (J } d(J ./ }.. 4/3+ (J2 , 

and a short argument, omitted here, shows tha t this 
is equal to 

}.. 2(m-1)/3-2 f Ci eh3+~.(J m-2d(J [1 + 0(>.. -2/3)], 

where 0; is a ray in the (J-plane along which Re (J3<0 
and whose initial point has at least the distance 
I}.. -2/:; I from the origin. 

In Sk, finally, the asymptotic behavior of Uk(z, }..) 
follows immediately from the identities (57) to (59), 
the asymptotic properties of the A k(z, >-'), and (62). 
It is then seen that Uk(z, t..) diverges for 1 ~ 1 2::~o in the 
whole interior of Sk in the same fashion as the 
corresponding functions in [9] and rlOf except for a 
factor e"I,,2 - 1 = 0(>..-2) . 

Thus, there is in this problem an "inner friction 
layer" of finite thickness jar I ~ 1 2:: ~o, and also a friction 
layer at z= O. The latter occurs only in the derivatives 
of order four or higher. 
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