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Characteristics of Internal Solitary Waves'
Garbis H. Keulegan

This is an application of the method of approximations initiated by Boussinesq to the
disturbances of the interface points for waves of permanent form and the internal solitary

wave.

liquids of the layers being initially at rest and of constant total depth.
The dependence of wave velocity on wave height, on density differences

wave is established.
and on layer thickness is determined.

1. Introduction

In investigations on the model laws of density
currents, a project now being carried out at the
National Hydraulics Laboratory, need arose for the
consideration of the genesis and the damping of
internal waves at the interface between layers of
fresh and saline waters. Among the many possible
modes of such disturbances, one may consider for
the sake of simplicity the behavior of a single
intumescence and of nearly sinusoidal progressive
waves.

It has been our purpose to deal with these two
types of internal wave motions experimentally.
The experimental studies of solitary waves have
been completed. As a natural guide in the study
of the data, resort has been made to a theoretical
analysis. The present paper gives the basis and
the result of this analysis. Relations are here
obtained giving the dependence of the velocity of
wave propagation on wave heights, the form of the
solitary wave, and the expressions for the velocity
vector on the upper and the lower layers. Con-
sideration of the experimental data, however, is
reserved for a future occasion.

After putting forth the basic conditions for the
analysis, the question of internal waves of infinitesi-
mal height and negligible interfacial surface curva-
ture is taken up in the first approximate solution.
In the second approximate solution the character-
istics of solitary waves are revealed. In general,
there are seen to be some similarities between
ordinary surface solitary waves and internal solitary
waves. No attempt is made to extend the approxi-
mations to a third-order analysis as no special de-
mand is made by experimental evidence for this.

2. Mathematical Formulation

A layer of lighter liquid of thickness H’ and of
density p’ rests on a layer of a denser liquid of thick-
ness /1 and of density p. The upper liquid at its
free surface is exposed to air and the lower liquid
rests on a rigid horizontal bed. Both liquids are
initially at rest. The displacement of the interface
with respect to its initial undisturbed position is
denoted by h; the displacement of the free surface
with respect to the level of the undisturbed free
surface is denoted by A’ (see fig. 1). Taking the
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The system considered is a layer of liquid on another layer of greater density, the

The form of the

origin, 0, of rectangular axes at the undisturbed
interface, the axis of z is drawn horizontally. The
axis of zis drawn vertically and the positive branch
points upwards. The velocity components along
these axes are denoted by u, w, and u’, w’, the
primed symbols referring to particle velocities in the
upper liquid.

It will be assumed that the disturbanees are pro-
duced in liquids initially at rest, so that the conse-
quent flow is irrotational and admits the velocity
potentials ¢ and ¢’. The vorticity that is naturally
present at the interface will be ignored. Since the
type of disturbance visualized is translational, that
is, the particle velocities in vertical planes normal
to the direction of wave motion are nearly constant
for each layer, it is appropriate to introduce the
expressions of the velocity potentials
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for the upper layer. Here, ¢o, 6, ¢o, and 6, are
functions of z and ¢ alone.

Altogether there are six unknowns, h, h’, ¢, s,
6y, and 6;, which are determined on the basis of the
kinematic and dynamic conditions at the various
boundaries. The pressure is atmospheric at the
free surface. At the interface the pressure is con-
tinuous. A particle in the free surface remains in
this surface. The particles in the upper surface of
the lower liquid at the interface remain in this
surface. Finally, the mnormal particle velocities
vanish at the horizontal bottom.
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The mathematical formulation of the dynamic
boundary conditions requires that expressions be
given for the pressures at all points in the two

layers. Assuming that the atmoshperic pressure is
reduced to zero,
P_0¢_ . _Lis o p o

for the lower liquid, and
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for the upper liquid. Translating now the state-
ments of the boundary conditions above into
mathematical relations, neglecting w?® with respect
to u?%, and w’? with respect to %% they are
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3. Internal Waves of Infinitesimal Height

The functions 6, and 6" may be expressed in
terms of ¢, and ¢/, respectively, after noting the
kinematic boundary conditions at the bottom and
at the free surface. From eq 1, keeping only the
first three terms,
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The latter in view of eq 10 requires that
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Hence,
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and therefore
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Similarly, from eq 2,
e b O (16)
hence
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Taking the kinematic boundary condition of the
upper surface, eq 6, and neglecting the product
term which is a small quantity,
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And as &’ may be neglected in comparison with H’,
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For the points at the interface, that is z=#h, one
may write from eq 14 and 15, neglecting the terms
involving z and its square,

0p__ 0do
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and
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From eq 20 and 21
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These imply that wave height 4 is small in comparison
with H or H’ and also that the curvature of the wave
surface is small.

Taking next the boundary conditions, eq 5, 7, 8,
and 9, neglecting in them terms consisting of squares
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or of products, and using the relations from eq 22 to
25, inclusive,
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Rearranging the terms in eq 27 and then differ-
entiating twice with respect to ¢, we have
0%y p Oy p—p’ 0°h
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Differentiating eq 27 twice with respect to ,
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Multiplying eq 29 by ¢, introducing the value of A’
from eq 26, and differentiating the result with
respect to ¢
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This reduces, after eliminating ¢, by means of eq
30 and 31, to
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Differentiating the latter with respect to ¢, and then
eliminating & by means of eq 28, there results, finally,
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which is the differential equation of wave motion in
a liquid system consisting of two strata of different
densities for small disturbances.

Putting p—p'=Ap,

wloi— g'H'H 9/3—”; (33)
and
witwi=gH+H’), (34)
the wave equation, eq 32, may be rewritten
0? 0? )
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Two types of waves are possible. In one the waves
have the velocity of propagation +w;; in the other,
the velocity -+ w,. The plus sign refers to waves
moving in the direction of z negative and the minus
sign, in the opposite direction. Furthermore, these
waves, of infinitesimal wave height and eof negligible
surface curvature, travel without distortion of form.

The discrete values of the velocities may be shown
from eq 34, neglecting the higher powers of the
density differences, to be

H'H A
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and
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Of these, the second refers to disturbances of the
interface, that is, to internal waves. The first refers
to ordinary waves; in this expression one notices the
effect of the nonhomogeneity of fluid on the velocity
of propagation of the ordinary waves. Nonhomo-
geneity reduces the value of the velocity of propaga-
tion. FKFor a given relative density difference the
reduction is greatest when the layers are of equal
depth. For the purposes of the present work, the
secondary effects of the relative density differences
will be ignored. Accordingly the velocity of propa-
gation of internal waves of infinitesimal height,
replacing subscript 2 by 0, will be given as

gH'H Ap
(.00 7

The next question to be considered is in regard to
the particle velocities in the two layers. One com-
mences the analysis with the lower layer. As was
noted above, the internal waves of infinitesimal
height progress without change of form. This fact is
equivalent to the equality of the operators

0 b)

'St::Fw —a—x—' (39)

The negative sign is chosen for waves moving in the
direction of x positive and the positive sign for waves
moving in the direction of z negative. For the sub-
sequent analysis it will be assumed that the internal
waves move in the direction of z positive, and thus

0 0
T Ty (40)

One now naturally selects that kinematic condition
of the interface stating that a particle of the lower
liquid once on the interface remains on the interface.
This condition is given by eq 28, which now may be
written as

17 %y oh

-7 e T
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and, as in terms of the potential, the particle velocity
o 18

Oy

Ug= —-a; (41)
we have
ouy_ Ok
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Integrating the latter equation with respect to z and
observing that u, vanishes when £ vanishes, then

h
Up— w 'ﬁ' (4 2)

Accordingly, particle velocities in the lower layer are
proportional to the velocity of wave propagation and
vary with the wave-clement height of the internal
wave. When these heights are positive, that is when
the wave elements are elevated, particle motion in the
lower layer is in the direction of wave motion.

In terms of the velocity potential the particle
veloeity in the upper layer 1s

. Ogy
U=—"5 (43)
To obtain the values of %, one now considers the
other kinematic boundary condition of the interface.
The reference is to eq 29, which when treated in an
analogous manner yields

H'ug+Huy=wh'! (44)

Now, when in eq 26 the partial differentiation with
respect to ¢ is replaced by the partial differentiation
with respect to z, the result is
wio=gh’. (45)

Eliminating & between eq 44 and 45, and introduc-
ing the value of « from eq 38, one obtains the

relation
i (1o H
H'yg (1 S I IT

>+Hu0=0, (46)

and this connects the particle velocities in the two
layers. As the term containing the relative density
difference is small, it will be neglected, and therefore

o

uo’_ H/ (47)
Thus the motion of the particles in the upper layer
is oppositely directed to the motion of the particles
in the lower layer.

It will be instructive to show to what extent the
internal waves do affect the free surface. This will
be better understood if the ratio A’/h is investigated.
The combinations of the expressions in eq 42 and
45 gives

V_ o w
B gH u)
which, in view of eq 38 and 39, reduces to

h’ Ap H
b o HY+H' (48)
The interpretation is that the displacement of the
surface is directed oppositely to that of the interface.
Furthermore, the disturbances of the free surface
are very much reduced in comparison with the
displacements of the internal waves.

Finally, the question of the energy of internal
waves of infinitesimal heights may be considered.
The energy of waves is in one part potential and in
another part kinetic. Evaluating the potential
energy with respect to the undisturbed configuration
of the two layers, the appropriate expression is

A Z A
Ep=g A_;L A, %fo 1P,

where N is the effective wave length, that is the
length along which A? is measurable. Expressing
h’ in terms of & through eq 48,

Ep—=yg %”[H%‘i <H+LH>2]£ hedz. (49)

The kinetic part of the energy in terms of the
particle velocities in the two layers is

Lo [ e p
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Expressing u, in terms of u, with the use of eq 46,

expressing %, in terms of £ and » with the use of eq

42 and introducing the more exact values of w from

eq 37, the final value of kinetic energy is

~ Ap Ap H 2 X

Comparison of the expressions for the two energies
shows that, in internal waves of infinitesimal wave
height when the upper surface is free, the potential
and kinetic energies are of like value. When the
relative density-difference term is ignored the energy
of internal waves is simply

A
E:gApJ; i) 1)

The form of the internal waves together with the
difference of the density of the two layers is sufficient
for the evaluation of the energy.

Some of these properties of internal waves of large
wave length and of infinitesimal wave height are
well known. A short derivation of theseresults, for
example, by the method of Lord Rayleigh is given
by Thorade [1].

136



4. The Internal Solitary Wave

In general when the wave-element heights of the
internal waves are finite, a deformation of the wave
surface occurs during the travel of the waves even
when the two liquids are assumed to be perfect and
ideal. The extent of the deformation depends on
the height A and on the surface curvature 0%*h/dz”.
The corresponding mode of the deformation in the
ordinary translation waves, as first discussed by
Boussinesq, is well known [2, 3]. A similar theory
can be worked out also in the cases of internal waves,
and this theory could form a basis for the study of
internal waves which travel without déformation. A
second procedure is to assume the existence of internal
solitary waves, positive or negative, which travel
long distances without deformation in the absence
of viscosity. These intumescences will be referred
to as internal solitary waves, and the analysis to be
followed below will determine the form of the waves.

Ordinarily in establishing the character of the
progressive waves of the permanent type resort is
made to an artifice [4]. By superposing on the flow
a current of the magnitude equaling the velocity of
propagation of the wave and moving in the direction
opposite to that of the wave, the system is reduced
to a steady state. Another method, and this will be
used here, is that the time differentiations will be
changed into space differentiations for the wave
traveling in the direction of z positive using

o} o}
6—152 — a: (4 Oﬂ)
where o is the velocity of progression of the wave of
permanent type. In the present case wis the velocity
of progression of the solitary wave.

The expression for the vector potential in the
lower layer to the second approximation, is, from
eqely

2% 0%

6 oz®

0by_ 2" 0%y __

¢=¢ot2 ox 2 0z

(52)

Evaluating the last term on ghe right-hand side,
since it is the term of smallest value, from the first
approximative value,

6 Q%

the vector potential now is

600 2_ ey  H23 b4¢0
Pt 202" 6 ozt
and, therefore,
0¢_ 00, ¢ Hz* d'¢y
dz Ox oz T 2 ozt

In view of the bottom kinematic boundary condition,

eq 10,
b, 0% H' D'y
P

2 dzt’ (53)

which than is the second approximative value of

06p/0x. Thus, the resulting form of the vector
potential is
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This is the expression for the velocity potential
in the lower layer to the second approximation
involving the smwle unknown function . When
the height of the internal solitary wave is smaller
than the depth I of the lower layer, the expression
for the vertical component of the pm‘ticlc velocities
at the interface may be simplified by neglecting
22 in eq 55. Mathematically the basis of the ap-
proximation is

}l D(bn
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0¢ % ¢y H? 0! 7
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Now, the last two terms on the right-hand side being
the smallest in value, substitutions may be made
for them from the first approximative values,

Oy N h
Y Y 7 &
Oy _wo Oh
oz* M oa’
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Introducing these in eq 55 and putting z=#h, the

vertical component of the particle velocity at the
interface, sign reversed, is

woll* 0°h

0 o’ oh .
_¢_ _H ¢0+w0 2 ax3’

0z oz "H oz z=h.

(59)

Similarly the expression for the vector potential
in the upper liquid, from eq 1, is

g 0 Bl ol O,
P=dot2 dr 2 0z 0 oz*

(60)
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The last term on the rlght-hand side being the smallest
term, the value of 6, may be taken from the first
approxunatlon

g@',
ox

’ 2
_ai_l_H/ 0 ¢o.

(19a)

It is permissible at this time to affect a small modi-
fication in the analysis, and this consists of neglecting
the term 0A’/0t. The assumption implies that

and may be verified as follows.

_ok bh
T2t %oz

In view of eq 40a,

Also, in view of eq 43, 45, and 38,
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Thus, since
ApH<(H+H')p.

it is permissible to neglect 0h’/0t and write for the
first approximative value of 06”/0x

o’ 0%,
S =H' 35 (19b)
Introducing this is eq 55,
00 o%¢, z°H’ ot
s=oits -5 SH-ZLCR 6
and, therefore,
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Since 0h’/ot may be neglected and also u’0h’/ot
which is still smaller, the kinematic boundary condi-
tion for the upper surface, eq 6 reduces to

0¢’
2= — Ty ’
w——az——O, z=H'+1, (63)
and this requires that
o0 1, ¢ H” 2%,
Ll o (64)

which-is the second approximative value of d6,/0x.
Substituting in eq 61,
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When the latter expression is applied to the reglon

close to the interface, h? being smaller than H”, the
term involving 2z* may be neglected. Thus,

d¢" ., Oy Oy H" 0'g,

B0 im0 (67)

Now the last two terms on the right-hand side being
the smallest in value, substitution may be made for
them from the first approximate values

e , h
oy ==
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T H or
(68)
0%, _wo O
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Consider next the two kinematic boundary con-

ditions for the interface given by eq 8 and 9. These
may be written, in view of the rule of eq 40a,
9 Oh oh -
W=—s—"= w +u 55 2% (70)
09" oh
2oa e u _
e =—e gt s ==k (D)

The last terms on the right-hand sides of these two
equations being the.smallest, the values of % and u’
in them may be taken from the first approximate
values

Bt
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Thus,
06__ Oh, whoh B
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Substituting in eq 72 the value of w from eq 59,
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and in eq 73 the value of w’ from eq 69, the kine-
matic boundary conditions reduce to

0? h ok | w,H? O*h
a;bzo —w “"‘2 80— S‘x' 802* Oxﬂ (74)
and
D OGS Bk ahiOR el O h
At fean e TR - vt AL

Multiplying eq 74 by p/H, integrating with respect
to 2, and putting the constant of integration equal
to zero since there is no disturbance at infinity, one
obtains

0
p 5@=-—pw H+pwo <H> A

Multiplying eq 75 by p’/H’, integrating with respect
to z, and again putting the constant of integration
equal to zero,

onbh

2 dz? (76)

, 0% h , ol O%h
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Adding eq 76 and 77,
;066 , O¢o_ [p' , p N Y
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The dynamic condition for the interface given
by eq 7 may be written in the form

;00" 09

p Wt pu?
LY

2

= =p"gh (79)

The last two terms on the right-hand side are
small quantities and these may be evaluated by the
first approximative values of the particle veloci-
ties w' = —woh/H' and 4= woh/H.

Hence,
0 o)
S s =n it [ ()~ (1) ]
(80)
In view of the rule given by eq 40a,
¢’ o} p
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Expressing the value of the density difference
p—p'=Ap in terms of wj, using eq 38, and dividing
by w,

, 04’
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Keeping only the first two terms of the right-hand
members of eq 54 and 65,

(82)
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In view of the approximative values from eq 58
and eq 68,
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Thus, if (weh) 0*h/02* is neglected, eq 82 reduces to
w1 1
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Equating the right-hand members of eq 78 and 82,
since the left-hand members are the same quantities,
and collecting the terms,
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+[;_w (P%‘?%)WO (HL—I{;)] %

A o%h
— 5 o' H' +pH] 55=0

a¢0 + a¢ﬂ

(83)

(84)

If we divide by wp and ignore the terms containing
Ap/p, the final result is

[Tl

— 2 [+ H] Sh—g

This simplifies, after dividing by (H'+H)/HH’, to

[

N p—
H,H W—5 [H'H) S 5=0. (85)
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Multiplying by 0h/0z, integrating once with respect
to , and putting the constant of integration equal
to zero since all disturbances vanish at infinity, we
obtain

—I
Bt L 2
( 1) (g

Let the crest height of the wave be A,.

h3——~ i1 (ah> —0. (86)

As this is a

maximum, bh/bx vanishes at this point. Hence
2 —
> m=("ar ) =0,
or , i
" -
or

This is the law of velocity of propagation of an inter-
nal solitary wave. The magnitude of w,, the velocity
of propagation when the wave is exceedingly small,
is given in eq 38. Substituting in eq 86 from eq 88

1 H”?H* [0oh\*

n_ a2 1 on
LU 2 H—H\ox

=0,

and the solution of the equation is

wt

h=h, sec* ha 1)

“"\/2 I >

(89)
where

(90)

This gives the form of internal solitary waves.

Examination of eq 86 reveals that the relation of
the thickness of the two layers has an important
bearing on the formation of internal solitary waves.
When the depth of the upper layer is greater than
the depth of the lower layer, H’>>H, the internal
solitary wave is of positive type, that is, & is positive.
When the depth of the lower layer is greater than
the depth of the upper layer, the internal solitary
wave is of negative height, that is, 4 is negative
everywhere. When the two layers are of the same
depth and the difference of the densities is very small,
the formation of a solitary wave is excluded by this
analysis.

The consideration of a fairly large number of
experiments tending to verify the above theoretical
results, first in regard to the dependence of velocity
of propagation on wave height, and second in regard
to the form of internal solitary waves, will be reserved
for another occasion.
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