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An Expansion Method for Parabolic Partial Differential 
Equations ! 

1. W. Green 2 

The aim of t hif! paper is t o adapt to certain parabolic partial differen tial equations an 
expanRion method of solution developed by S. Faedo 3 for hyperbolic equat ions. In order 
to make possible a moderately compact presentation , the equat ions t rea ted are not t he 
most general to which t he method is applicable, but are t he simplest nontl'ivial relatives of 
t he heat equation . Similarly, t he boundary values and initial conditions are not the most 
general, but are assu med to be in a canonical form to which others, if su fficiently smooth, 
can be red uced . The method of solution not only shows the existence of a solution , but 
describes a definite procedure for approximating it. Some remarks are made on t he possi
bility of estimatin g t he error. 

1. Statement of Problem 

In the region S, ° ~x ~ 71" , ° ~t< 00, we seek a 
solution of the equation 

L (u) ==uxx-ut-gu= f 

subj ect to the initial conditions 

u (x, O) = u(O,t) = u(7I",t) = 0. 

(1 ) 

(2) 

The functions f and g are continuous in S, together 
with their first two partial derivatives. As a com
patibility condition, we require that f(O,O) = f(7I",0) = 0. 
It is convenient to assume that g?:: 0. This is not 
at all essential, since a substitution of the form 
u =eXtv transforms (1) into 

(1 ' ) 

The new coefficient g+" can be made positive in 
as large a part of S as desired, and this is sufficient 
for our purposes. 

This method can be applied to more general equa
tions in which U t has a variable positive coefficient 
and the u'" term is present. However, the equation 
selected is of sufficient generality to illustrate the 
method and results and yet not make the computa
tions unpleasantly complicated. In case g == constant, 
the method reduces to the method of expanding in 
eigenfunctions. 

2 . The Moment Method 4 

We seek an approximation to U in the form 5,6 

Un(X,t) = ~ On.k(t) sin kx, (3) 
k 

I The preparation of this paper was sponsored (in part) by tbe Office of Naval 
Research. 

2 University ol California and National Bureau of Standards. 
3 S. Faedo, Un nuovo metodo per l'analisi esistenziale e quantitativa dei 

problemi di propagazioni. Annali della Scuola Normale SupeTiore di Pisa, [III], 
I , Fasc. I-IV (19471. 

• Or Galerkin's method . See, I. S. Sokolnikoff, Mathematical theory of 
elasticity (McGraw-Hill Book Co., Inc., New York, N. Y., 1946) . 

• As on p . 37 of the relerence given in footnote 3, after the existence of the solu
tion has been proved, one can show that the system {sin kx} can be replaced 
by other suitable orthonormal syst.ems. 

' 2: means f and f meansJ, r. 
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subject Lo 

f { L (un) - j } sin jxdx=O, j= 1,2, ... , n, (4) 

where 
(5) 

Equation (4) amounts to 

(6) 

where 

bk J (t)=~ f 9 (x,t) sin jx sin k xdx, 
, 71" 

aJ(t)=~ fj (x,t) sin jxdx. 
71" 

The functions On,J(t) are thus determined by a 
system of n simultaneous firs t-order linear differential 
equations. These equations are already in canonical 
form, that is, the derivatives are solved for in terms 
of the other quantities, and so they have a unique 
solution satisfying (5). Thus the functions un(x,t) 
are determined in unique fashion. 

We intend to show that the sequence un(x,t) 
converges to a solution of (1). The method proceeds 
by showing that the Un and certain of their deriva
tives are uniformly equicontinuous. Recall that the 
functions j of a family are uniformly equicontinu
ous in a region, provided that E is given greater 
than 0, there is a 0> 0 such that /j(p)-j(q)/<E 
for any j of the family and any two points p and q 
of the region whose distance does not exceed o. 
Now, Ascoli's theorem asserts tha t ou t of a Yni
formly bounded and equicontinuous sequence of 
functions a uniformly continuous subsequence can 
be selected. Therefore, by selecting subsequences 
of subsequences a sufficient number of times, we 
shall arrive at a subsequence of the Un which con
verges uniformly, together with sufficiently many 
of its derivatives to allow us to make the existence 
proof. This latter is effected by using a Green's 
function and showing that the U n, for n- '700, come 



successively closer to satisfying an integral equation 
corresponding to (1), and thus that the limit function 
does satisfy such an equation. 

To prove equicontinuity of our sequences, we make 
use of a criterion of Tonelli 7 as follows : A class of 
continuous functions v(x,t) in the region BT:O ::;x::;7r, 
0::; t::; T, is uniformly equicontinuous in this region 
if (a) for each x and t, v(x,t) and vex,£) are absolutely 
continuous functions of t and x, respectively, (b) the 
partial derivatives Vx and V t are summable in BT , 

(c) there exists a constant c such that f v;dx<c and 
f v;dx<c for all members of the family. Further
more any accumulation function of a class satisfying 
(a), (b), and (c) also satisfies (a) and (b) . 

N ow the functions Un and those partial derivatives 
in which we are interested are easily seen to be 
continuous and to satisfy (a) and (b), and the 
burden of the proof of equicontinuity falls on obtain
ing inequalities of the form in (c) . This is done by 
making use of devices similar to those frequently 
employed to show uniqueness, and to r ecall them, 
we shall first prove a uniqueness theorem. 

3 . Uniqueness 

Suppose that two solutions of the system (1) (2) 
exist, all derivatives appearing in (1) being con
tinuous in B. Their difference v will satisfy (1), (2) 
with j replaced by zero . Thus L (v) = 0 and so 

f L (v)vdx= f { vxx - v t - gv } vdx = O. (7) 

Now 

f d - f 1 d 2d - 1 d f 2 l 
Vt V x- 2 dt v x- 2 dt v G X, 

and 

If we put K (t)= f v2dx, (7) becomes 

!K'(t) = - f (v;+ gv 2) dx::; 0 , 

since g;:::O. Since by (2), K (O) = 0, we see that 
K (t) ::; o. But K is by its nature nonnegative and 
K = O, which implies that v= o and that the two 
solutions are identical. 

Theorem O. There is at most one junction, con
tinuous together with all derivatives appearing in (1) 
which satisfies the system (1), (2). 

4 . Certain Bounds 

This section is devoted to obtaining the inequali
ties required to carry out the program outlined in 
section 3. 

4.1. Lemma. Let K (x) be a nonnegative junction 
satisjying jor x;::: O the inequality K' (x) ::;a~K(x), 
where a;:::O . Thenjor x> O, ~K(x) ::;~K(0) +(a/2)x. 

1 Tonelli, L'estremo assoluto degli in tegrali doppi, Annali della Scuola Normale 
di Pisa (1933). 

Suppose that for some positive Xo, ~K(xo) > 
~K(O) + (a/2)xo. Then there exists Xl such that 
~K(XI) =~K(O) + (a/2)xl, but ~K(x) > ~K(O) + (a/2)x 
for XI<X ::;XO. In particular, K(x» O in XI<X<XO, 
and so in that interval 

Integrating from Xl to Xo, we have 

or 

a contradiction. The lemma is proved. 
Corollary. L et K (x) be a nonnegative junction 

satisjying jor x;::: 0 the inequality 

K' (x) ::; a(x) "I K (x) , (8) 

where a (x) is nonnegative and nondecl'easing. Then 
jor x;::: O, 

~K(x) ::; ~K(O) + ha(x). (9) 

Consider any xo> O. For x ::;xo, K' (x)::; a(xo)~K(x). 
By the preceeding lemma, ~K(x) ::;~K(O) + !a(xo)x. 
Setting X=Xo and noting that Xo is arbitrary, we get 
the stated result. 

4.2. The boundS jor fu!dx. Let each of the 
equations (4) be multiplied by Cn,j(t) and the results 
summed. There comes out the equation 

Since 

fuxxudx= - f u;dx and fu tudx= ! :t fu2dx, 

(1 0) may be written 

d ! dt f u2dx=- f (u;+ gu2)dx- fjudx::; f lfu ldx. 

(11) 

Set fu2 (x, t)dx=K(x). From (11) and Schwarz's 
inequality, 

(12) 

Set 
max~ fF (x,r )dx=F(t). (13) 

T::;t 

Then (12) gives K' (t) ::;2F(t)~K(t). From the corol
lary of 4.1 we deduce that ~K(t) ::;~K(O) + tF(t). 
Now K (0)= fu 2(x, 0)dx=0, and so ~K(t) ::;tF(t). 

8 In section 4 we shall frequently omit the subscript n from u.. Whenever 
u appears in section 4, it will mean Ujt . 
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Theorem 1. 

(14) 

where F is given by (13). 

I

. 4.3. The b,oundior fu!,dx. Let the equations (4) 
be differentiated with respect to t, multiplied by 
C:.; (t), and added. There results from this 

(15) 

Again, 

fUxxtutdx= - fu;,dx and fu"utdt=t :t fu;dx, 

so putting K(t) = fu;dx, we get 

tK' (t) = - f (u;, + gu;)dx- f (gtu +i,)u,dx (16) 

~ f (Igtul + If, [) lu,ldx 

~-v'f( l g,u l+lf, I )2dx · K(t). 

We define 
(17) 

and 
(18) 

Then 

~ Gi(t) f u2dx + 2GI (t)-v' fu2dx ff ;dx+ f ffdx 

~ Gi(t)t2F2(t) + 2G1 (t )tF(t)FI (t) + net) = H2(t), 

this last equation being a definition of H(t) . 
From (16) we have K'(t) ~2H(t) -v'K(t), and by 4.1, 

-v'K(t) ~-v'K(O) + tH(t). (19) 

Now 

K(O) = f u;(x,O) = fCEJC;,. k(O) sin kX)2dx 

=~2~C: k(0»2=~ ~(fi(x,O) sin kxdx)2 
, 7r 

~ f J2(x,O)dx 

by Bessel's inequality. Thus K(O) ~F2(0), and from 
(19) we conclude that -v'K(t) ~F(O) + tH(t). 

Theorem 2. 

fu! , (x,t)dx ~ (F(O) + tH(t»2= A2(t), (20) 

wheTe F is given by (13), 

4.4. The bound of fu! zdx. Equation 10 may be 
written 

or 

f u;dx= - f {gu2+ uu,+iu } dx~ f (luu, l+ Ifu[)dx 

~-v' fu2dx ·fu;dx+ -v' fu2dx·fJ2dx 

~ -v't2 F2(t)A2(t) + t2F2(t)F2(t) 

=tF(t) (A(t) + F(t». 

Theorem 3. 

fu~%(x,t)dx ~tF(t)(A(t) + F(t» = B(t), (22) 

where A is given by (20). 
4.5 The bound of fU~ tt (x,t)dx. We differentiate 

(4) twice with respect to t, multiply by C:'; (t) and 
sum, to get 

f {u xx"-ut/t- gu,, - 2g,u,-g,,u-i,, }ut/= 0. (23) 

As before, we write 

and (23) becomes, on setting K(t) = f u;,dx, 

tK'(t) = - f {u;,,+gu;, }dx - f {2g,u,+ g"u+i" }u,,dx 

~ f { 12g,u,1 + Igttu l+ If tt l } IUtt ldx. 

It is clear that by the use of Schwarz's inequality we 
can obtain an inequality of the form 

K'(t) ~J(t)-v'K(t), (24) 

where J (t) is an increasing and continuous function 
expressible in terms of GI , F, F I , and the similar 
functions G2 and F2 corresponding to g" f". 

We estimate K(O) as follows. Differentiate (4) 
with respect to t and put t=O, to obtain 

fU t/(x,O) sin jxdx= f { uxx,(x,O) - gu,(x,O) 

- i,(x,O) }sinjxdx. (25) 

for j=l, 2, ... , n. Now Utt(x,O) is a linear combi
nation of sin jx, j= 1, 2, . .. n, and by (25) its 
first n Fourier coefficients are the same as those of 
uxxt(x,O) -gu,(x,O) -ft(x,O) . Thus by Bessel's in
equality, 

H2(t) = Gi (t)t2F2 (t) + 2G1 (t)tF(t)FI (t) +Fi(t), (21) If in (4) one puts t=O, there results 

and GI and FI are given by (17) and (18). - fu, (x, O) sinjxdx=ff(x,O) sinjxdx. 
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Two integrations by parts gives 

- fU:m(x,O)sinjx dx= fjxx(x,O)sinjx dx, 

and since UUI(X,O) is a linear combination of sin jx, 
j=1,2, ... , n, we see as above, 

-l 
and its uniformly convergent Fourier expansion is 

For brevity, set 

fU!zl (x,O)dx:::; fj;~(x,O)dx. (27) then 

(32) I 

I 

(33) I 

(34) 
By using Schwarz's inequality, (27), and the bounds 
previously obtained, the right hand number of (25) 
can be dominated by a continuous function depend
ing only on j and g and their derivatives. That is, 
K(O) is bounded uniformly in n , and from (24) it 
follows that the same is true of K(t) . 

Theorem 4. There exists a continuous junction O(t) , 
determined by j,g and their derivatives , such that 

fU~tl (x,t)dx:::; OCt). (28) 

4.6. The bound jor fU~xt dx. From eq (15) we 
have on replacing fuxxtu tdx by - f u;,dx, 

Because of the bounds previously obtained, it is 
clear that we have the theorem: 

Theorem 5. There exists a continuous junction D (t), 
expressible in terms oj j and g and their derivatives 
such that 

fU;zt (x,t)dx:::;D(t). (29) 

4.7 . The bound jar J u;xzdx. If equations (4) be 
multiplied by l sin jx and summed, we have 

Ju;xdx= f {ut+gu+ j }uxxdx 

:::;-J f {u,+ gu+jPdx-J f u;xdx . 

uxr- <I>(u) = L(u) - j. 

Multiply (34) by G(x, ~) and integrate with respect 
to x to obtain 

-u(~,t) - f<I>(u)G(x,~)dx= f {L(u) - j } G(x,~)dx. 

(35) 
Now 

f {L(u) - j } G(x, ~)dx 

= -~ f: si~p f {L(u)-j }sinjxdx, 
7r 1 J 

= -~ f: sin./~ { L(u) -j} sinjxdx, 
7r n+l J 

because of (4). Now L(u) -j=uxx-<I>(u) , and 

n 
U xz=- 2:, On.i(t)P sinjx; hence 

1 

fu zz sinjxdx=O 

for j > n, giving 

f { L(u)-j } G(x, ~)dx=-~ f: sin./~ f<I> (u ) sinjxdx. 
7r n+l J 

By Schwarz's inequality, 

If {L(u)-j} G(x , ~)dx l 

:::;~ If: ~. If: ( f<I>(u ) sin jxdX)2. (36) 
7r -V n+l J -V n+l 

Now from the previous bounds we can find a con- Now 
t inuous function E(t) which depends only onj,g and 
their derivatives, such that 

(30) 

Thus we have the theorem: 
Theorem 6. There exists a continuous junction E(t) 

independent of n such that 

(3 1) 

4.8. An integral inequality. Consider the Green's 
function G(x, ~) relative to the equation y" + AY = O 
= y (O)= y(7r). Specifically 

J x(7r:~) 

G(X ' ~)=( H7r;x) 
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and 

f: ( f<I>(u) sin jxdX)2 
n+l 

:::; ~ ( f <I>(u) sin jxd X)2 ~ ~ f<I>2(U)dx. 

By (30) , f<I>2(u)dx~E(t), and so from (36) we can 
conclude 

If {L (u) - j }O(x ~)dx l < ~ I 1 . '1. /~ E (l). 
, - 7r V 3n3 \' 2 

Referring back to (35) we have a theorem: 
Theorem 7. 

I -un(~ , t)- J<I>(un)G(x,~)dx l ~ ~~:.~;. (37) 



5 Existence Theorem 

Recall now the discussion of equicontinuity and 
the criterion of Tonelli given at the end of section 2 . 
Because of the inequalities contained in theorems 1 
through 6, we see that the function Un, Un", and U nl 

are uniformly equicontinuous. Thus by Ascoli's 
theorem, we can pick out, by a suitable diagonal 
proce ,a subsequence {vm } of { un } such that 

vm (x,t)-7 u(x,t), 

vm,,(x,t)-7 v(x,t) , 

Vmt(x, t) -7 w(x,t) , 

the approach being uniform in each case. Because 
of this uniformity, one see that v= ou/ox and 
w=ou/at. The derivatives u"'" U,," Uti exist almo t 
everywhere and are ummable. We consider the 
expression 

Since vm= u nm' theorem (7) tells us that the expression 
(38) tends to zero a m -7cx>. Also if>(vm)-7cJ>(u) 
uniformly, and G i bounded, so we have 

lim{ -vm(~,t)- fif> (vm) G(x,~)d~} 
m .... ., 

= - ua,t) - fif> (u) G(x,~)dx= O . 

The integral fif> (u) G(x, ~)dx has a second deriva
tive with respect to x, namely, -if>(u) = -Ut-gu-f. 
H ence u"" exists, is continuous, and satisfies 

-U",,(~,t) + if> (u) = 0, (39) 

which i identical with (1). Since u obviou ly 
satisfies (2), it is a solu tion of the ystem (1), (2) 
in the region ST. But T is arbitrary, and a olution U 
of (1), (2) exists in all S. 

We have shown that a subsequence of Un converges 
to the solution u, together with first order derivatives. 
Actually the entire sequence Un so converge. If 
this were not the case, ther e would be a subse
quence u nj uch that, for in tance, lim u n, ,eu at 

nj-HD 

some point x,t. From the sequence unj we could pick 
another subsequence in the manner of this section, 
such that this subsequence has for limit a solution v 
of the problem. By the uniqueness theorem, U=V, 
and 0 lim un/x,t) = u(x,t), a contradiction. Thus 
we have 

Theorem 8. The sequence u n(x,t) has jor unijorm 
limit in any ST the unique junction u(x,t) satisjying 
(1) and (2) . Furthermore, Un"-7U,, and Unt-7Ut 
unijormly in ST. 

6. Convergence in Mean of U n xx 

The olution u(x,t) of the system (1), (2) has a 
Fourier eries 

U(X,t) =~Aj(t) sin jx, 
1 

267518-53-2 

which may be differentiated twice with respect to x, 
and the resulting serie converges in the mean to Un. 
Set 

n 
vn= 'L:AJ(t) sinjx. (40) 

1 

If (4) are multiplied by - j2(Gn ,j(t)-AJCt» and 
summed, we get 

02 

f {L (un)-j} ox2 (u ,,-vn)dx= O. (41) 

Since L (u) f, we may write (41 ) as 

_ 02 

f {L(un-vn)- L(u-vn) } ox2 (un-vn)dx= O. (42) 

R ecalling that 

L (u) = u",,-Ut-gu - j + f = un-if>(u) + j, 

we write (42) in the form 

{ 02 }2 
f OX2 (U n -V n) dx . 

02 
= f { - if>(Un-V n) + j - L (u-v n) } ox2(un-vn)dx, 

and Schwarz' inequality gives 

Now, - if> (un-vn) + f =- (un-vn) t- g(un-vn)-70uni
formly, and L (v-vn) t end to zero in the mean ; thu 
the right hand member of (43) tends to zero and 0 

From this and an appropriate triangular inequality 
it follows that 

Theorem 9. The second derivatives Un"" oj the 
approximating junctions tend in the mean to ~xx. 

It is too much to expect that Unxx-7U"" umformly, 
or even pointwise. For example, u n",,(O,t) =0, while 
u xx(O,t) f(O,t ), and this latter does not need to 
vanish identically. 

7. Estimating the Error 

From theorem 9 itis easy to prove thatL(un)-7L(u) 
in the mean. Set L(un)-f n. Then 

!.m. 
L(u,,-u) = L(u,,) - L(u) = jn - j -+0. 
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Using the method of 4.2, we prove that 

f (un-u)2dx::; t2F:2(t) , 
where 

F:(t) =max~ f U(x,r) - jn(x,r) pdx . 
T~t 

(44) 

Theorem 10. The mean square error satisfies the 
inequality 

(45) 

where F:(t) is given by (44), and F:(t)-':>O as n-':>o:>. 
Theorem 10 unfortunately gives information only 

about the mean square of the error instead of about 
the error at a point, which would be desirable. This 
latter will be mentioned below. Apart from this, 
however, theorem 10 gives a rather curious sort of 
information about the m.s.e. It does not give an 
a priori estimate of this error; that is, we cannot say 
that after n steps the error will have a certain bound, 
because we do not know how rapidly Fn tends to 
zero. On the other hand, we do seem to know more 
than the mere fact that the m.s.e. tends to zero . 
We Imow that if we take n sufficiently large, the 
m.s.e. will be small and we shall know it to be small. 
What we do not know is when we shall know it! 

In section 5 it was mentioned that U xt is a sum
mabIe function. Thus from L(u) = j , it follows that 
Uxxt is summable. From the equation L (un-u ) 
= j n-j, we obtain, using the methods of sections 4.3 
and 4.4, the inequality analogous to (22), 

wnere F: and A: are given by (13) and (20), except 
that j n-j is used ins ted of j in their definitions. 
Now we are unable to say much about the factor A: 
since it contains terms of the form f Unt - j t}2dx; 
that is, depends on Uxxt and Unxxt. However, it 
appears quite likely in many cases that A: will 
remain bounded as n-':>o:> . In any case the inequality 

is a valid one, and in a given computation G:(t) can 
actually be computed. Setting .6. n(x,t) = Un-U, we 
have from Schwarz's inequality 

l.6.n(x,t) I = fox .6.nx(S,t)dS ::;~XJx { .6.nx(S, t) PdS (46) 

::;~x f {.6. nis,t) Pds ::;~xG n(t). 

In an analogous fashion we obtain by integrating 
from 7r instead of from zero, 

.6.n(X,t) ::;~(7r -x) G:(t). (47) 

From (46) and (47) it follows that 

.6.n(x,t) ::;~~ x(7r-x)G:(t) . 

Theorem 11. 

lun(x,t)-U(X,t)I ::;~~ X( 7r -X) G: (t) , (48) 

where 

G:(l) = tF:(t) { A :(t) + F:(t) } , 

F:(t) = max ~ f {fn - j Pdx, 
r~t 

A :(t) - F:(O) - tH:(t) , 

{H:(l) p= G1(t)t2 { F: (t) P+ 2 G1(t)tF: (t) + Fin (t) 

+ {Fin (t) p, 

F in (t)= max ~ f {fnt(x, r) - j t(X, T) }2dx . 
r ~t 

For any stage n of the solution, the function G:(t) 
can be explicitly calculated. If the A: do remain 
bounded, then G:-':>O, and we will get a useful 
estimate of the error. 

Los ANGELES, April 24, 1952. 
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