Refractive Index of Cesium Bromide for Ultraviolet, Visible, and Infrared Wavelengths

William S. Rodney and Robert J. Spindler

The index of refraction of cesium bromide was measured at 37 wavelengths from 0.365 to 39.22 microns. The minimum deviation method was used, and the entire range was covered with a single instrument. The index changes approximately two units in the first decimal place over the wavelength range. The dispersion compares favorably with that of KRS-5 beyond 20 microns; and when the effects of inhomogeneity and reflection losses are considered, the resolving power of CsBr is probably better.

1. Introduction

Large crystals of cesium bromide of reasonably good optical quality have recently been successfully grown, providing a new material for infrared studies in the range beyond the 25-micron (μ) limit of KBr and out to about 40 μ , wherein lie many of the fundamental modes of vibrations of molecules. A mixed crystal of thallium bromide-iodide, known as KRS-5, was previously the only material available for use in this region.

In order to utilize fully any dispersive medium, spectroscopists must have a knowledge of the indices of refraction and dispersion for all wavelengths transmitted by the medium. Such data are also useful to physicists for evaluating theoretical dispersion equations and for studying the forces between the constituents of the crystal. The alkali-halides, having the cubic structure, are favorable subjects for such studies.

The authors are fortunate in having access to two samples of cesium bromide whose faces are about 4 sq in. One of these samples was grown by the Harshaw Chemical Co. of Cleveland, Ohio, and the other was grown at the National Bureau of Standards by Francis P. Phelps of the Mineral Products Division. The refractive indices of each of these samples were determined for 37 wavelengths ranging from 0.365 to 39.22 μ , the latter being near the infrared transmission limit of cesium bromide.

2. Instrument

The instrument (fig. 1) used in these experiments is a Gaertner precision spectrometer adapted for measuring indices of refraction for nonvisible radiation. The telescope and collimator objectives have been replaced by mirrors of the same focal length. The telescope eyepiece is replaced by a second, or exit, slit. The radiation is focussed on the exit slit by the telescope mirror, and the image of the slit or the prism face is formed on the detector by use of another mirror or a lens of KRS-5.

The infrared detectors employed are the lead sulfide photoconducting cell for the near ultraviolet, the visible, and the infrared to about 2.5 μ ; and the Golay pneumatic detector beyond 2.5 μ to the limit of transmission of the window employed with this cell, which in this case is about 40 μ . The signal, chopped at the rate of 10 times a second, is amplified by a gated amplifier controlled by a photocell in the chopper unit. The amplified signal is recorded on a recording potentiometer.

The spectrometer is equipped with a set of gears, also shown in figure 1, in such ratio that when engaged the prism table rotates at one-half the rotation rate of the telescope and microscope ring. The gears may be readily engaged at will, and they maintain a condition of minimum deviation once it has been established for any line. The method of minimum deviation provides desirable features of high accuracy and simplicity of calculation as compared, for example, with methods where a constant angle of incidence is employed.

FIGURE 1. Gaertner precision spectrometer.

A, Auxiliary telescope is used to level and center the prism; B, gear system is used to maintain minimum deviation; C, driving mechanism for scanning. Entrance slit is partially hidden by telescope mirror directly above driving mechanism. Collimator mirror is hidden by the auxiliary telescope. Exit slit is seen between prism and auxilary telescope.

3. Procedure

To begin a series of measurements the refracting angle of the prism and the deviation angles at minimum deviation for several visible lines are measured on a Watts precision spectrometer by the usual methods and described in a previous paper [1].¹ Index of refraction values accurate to $\pm 1 \times 10^{-5}$ are easily attainable by this method [2]. Then an auxiliary telescope, figure 1, is used to level and center the prism with respect to the optical axis of the mirror system on the Gaertner spectrometer. Another auxiliary telescope is used to set a given line, usually the 0.6438 μ line of cadmium, at its minimum deviation position. The table is now clamped in this position. The mirror, acting as the telescope objective, is brought into the beam so that an image of this line falls on the exit slit, causing a deflection of the potentiometer pen. The scale position corresponding to maximum deflection of the pen is observed with the microscopes. This is repeated several times, and the microscope is set at the average of these readings and clamped. The gears are now engaged and the telescope and prismtable clamps released. A condition of minimum deviation will then prevail for other spectral lines.

Unfortunately, with this mirror system, one cannot directly observe the position of an undeviated beam or measure twice the minimum deviation, as is feasible in visual measurements. It is therefore necessary to compute the average reading for an undeviated beam by applying a few deviations, as observed visually on the Watts instrument, to the scale readings on the Gaertner spectrometer for the corresponding lines of the visual spectrum as determined by the use of the detector.

The spectra are now scanned by using a driving mechanism consisting of a synchronous motor and a gear segment attached to the telescope assembly. The spectra used are the emission lines of mercury and cadmium for the ultraviolet, visible, and infrared to about 2.3 μ , the absorption bands of polystyrene from approximately 3 to 15 μ [3], 1,2,4trichlorobenzene from approximately 15 to 20 μ [3], and water-vapor bands for the rest of the range [4]. The bands of carbon dioxide at 4.2 and 14.9 μ are also used. The scanning serves to identify and locate the approximate scale position corresponding to these lines and bands. The actual measurements are made by the method used to determine precisely the scale position for the 0.6438 μ line. For some broad bands and for the region of low intensity, scale positions may be read from the graphs. This is done by using a relay to mark the graph at intervals varying from 1 min of arc to 15 sec of arc, depending on the speed at which the telescope is being driven.

4. Data

The refractive indices of the two crystals of cesium bromide were measured at room temperatures near 24° and 31° C. The temperature was determined

¹ Figures in brackets indicate the literature references at the end of this paper.

by placing a calibrated mercury thermometer directly over the sample and observing the temperature at 1-min intervals with a telescope and averaging. This procedure was repeated several times each day, and the variations between these averages did not exceed ± 0.2 deg C. Indices were determined for 37 wavelengths, ranging from 0.365 to $39.22 \ \mu$, at each temperature. Temperature coefficients of refractive index were determined, and the indices at 24° and 31° C were adjusted to 27° and averaged for each sample. These average values were again averaged, giving the average for both samples. The average temperature coefficient for both samples is $7.9 \times 10^{-5}/\text{deg C}$.

Table 1 lists the indices at this temperature as obtained from the observations and as computed by means of eq 1.

$$n^{2} = a^{2} - k\lambda^{2} + \frac{p}{\lambda^{2}} + \frac{M}{\lambda^{2} - L^{2}} + \frac{m}{\lambda^{2} - l^{2}}, \qquad (1)$$

where

$\lambda =$ wavelength, microns	$M \!=\! 41110.49$
$a^2 = 5.640752$	$L^2 = (119.96)^2 = 14390.4$
k = 0.000003338	m = 0.0290764
p = 0.0018612	$l^2 = (0.15800)^2 = 0.024964.$

Although this equation has 7 constants, only 5 of them were determined by means of a simultaneous solution. The constants appearing in the denom-

TABLE 1. Observed and computed data on index of refraction of CsBr $(27^{\circ} C)$

Wavelength (microns)	Observed index, n_0	$\begin{array}{c} \text{Computed} \\ \text{index,} \\ n_c \end{array}$	$(n_0 - n_c)$		
0.365015	1.75118	1.75113	$+5 \times 10^{4}$		
.366288	1.75050	1.75045	+5		
.404656	1. 73344	1. 73343	+1		
. 435835	1. 72333	1, 72335	-2		
. 546074	1. 70189	1.70193	-4		
.643847	1.69202	1.69204	-2		
1.01398	1.67766	1.67766	0		
1.12866	1.67584	1.67584	0 .		
1.52952	1.67237	1.67238	-1		
1.7011	1.67158	1.67157	+1		
3,3610	1.66866	1.66866	0		
4.258	1.66794	1.66793	+1		
6.465	1.66587	1.66620	-33		
9.724	1.66283	1.66285	-2		
11.035	1.66118	1.66115	+3		
14.29	1.65594	1.65599	-5		
14.98	1.65474	1.65472	+2		
15.48	1.65375	1.65375	0		
17.40	1.64967	1.64974	-7		
18.16	1.64795	1.64801	-6		
20. 57	1.64184	1.64197	-13		
21.80	1.63846	1.63856	-10		
22. 76	1.63565	1.63573	-8		
23, 86	1.63234	1.63231	+3		
25.16	1.62817	1. 62802	+15		
25.97	1.62521	1.62520	+1		
26.63	1.62284	1.62282	+2		
29.81	1.61034	1.61028	+6		
30. 54	1.60749	1.60713	+36		
30. 91	1.60591	1.60550	+41		
31.70	1.60198	1.60192	+6		
33.00	1.59584	1.59576	+8		
34.48	1.58835	1.58831	+4		
35.45	1.58284	1.58317	-33		
35.90	1.58069	1.58071	-2		
37. 52	1.57183	1.57147	+36		
39.22	1.55990	1.56106	-116		

inators of two terms represent the infrared and ultraviolet absorption bands. The ultraviolet term, l^2 , was determined by taking a weighted mean of several measured bands. The infrared term, L^2 , is an estimate based on the measured and computed values of the infrared absorption bands of cesium chloride and is probably low.

Some obvious anomalies occur in the residuals, for instance, at wavelengths 6.465 and 35.45 μ . It is known that the first of these bands consists of several unresolved bands, indicating that the anomalous residual may be due to an inaccurate value for the wavelength. A value of 6.695 μ arrived at by taking a differently weighted average gives a more consistent value of n. The bands at 35.45 and 39.22 μ are quite broad, causing considerable difficulty in locating their minima.

Index of refraction as a function of wavelength is plotted in figure 2. This graph is particularly interesting as it shows the smoothness that results from taking data over a large range on a single instrument for a single sample and under the same conditions. It is hoped that consistent data such as these will lend themselves more readily to theoretical analysis. The total change in index amounts to approximately 2 units in the first decimal place over the wavelength range considered. The values plotted are the indices at 27° C. Differences between samples are small.

FIGURE 2. Index of refraction of CsBr as a function of wavelength.

Wavelength scale is logarithmically graduated.

The index values of the Phelps crystal are lower by several units in the fifth decimal than corresponding values for the Harshaw crystal. The only prior data available are 3 values in the visible spectral region given by Sprockoff [5] to only 4 decimal places at an unspecified temperature.

The preliminary values published by the authors [6] for only one of the crystals are in substantial agreement with values published in this paper. There are some changes and additions beyond 30 μ , and in many cases another significant figure has been added.

Equation (1) has been used for computing values of n-1 for cesium bromide that are listed in table 2. They are considered as the best values obtainable from the measurements here described and are probably accurate to within ± 1 or 2×10^{-5} , except for wavelengths longer than about 30 μ .

The dispersion $\Delta n/\Delta \lambda$ of CsBr is shown in figure 3. Both abscissa and ordinate are logarithmically graduated. The dispersion in the far infrared increases but remains less than in the visible region by a factor of 10. The values of $\Delta n/\Delta \lambda$ are plotted at the midpoint of the $\Delta \lambda$ increment.

Values for the dispersion of KBr and KRS-5 [7, 8] were also computed at various wavelengths and plotted for comparison purposes. We see that KRS-5 has a higher dispersion than CsBr throughout the spectral range considered. KBr has a higher dispersion than either from 10 to 25 μ , where it becomes opaque. This result would lead to the conclusion that KRS-5 is better than CsBr as a dispersive material, if the effects of its optical inhomogeneity and larger index could be ignored.

TABLE 2. Refractivity, $(n-1) \times 10^5$, of CsBr at 27° C

Wave-		Refractivity at wavelength (microns)								
length	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
$\begin{array}{c}0\\1\\2\\3\\4\end{array}$	67,793 67,061 66,901 66,813	67, 624 67, 036 66, 890 66, 805	$ \begin{array}{r} \overline{67, 496} \\ $	67, 397 66, 996 66, 871 66, 790	$\begin{array}{c} 73,519\\ 67,318\\ 66,979\\ 66,862\\ 66,782 \end{array}$	$\begin{array}{c} 70,896\\ 67,254\\ 66,963\\ 66,853\\ 66,775 \end{array}$	$\begin{array}{c} 69,583\\ 67,201\\ 66,948\\ 66,845\\ 66,767\end{array}$	68, 825 67, 157 66, 935 66, 837 66, 760	$\begin{array}{c} 68,345\\ 67,120\\ 66,923\\ 66,829\\ 66,752 \end{array}$	$\begin{array}{c} 68,022\\ 67,088\\ 66,911\\ 66,821\\ 66,745 \end{array}$
5 6 7 8 9	$\begin{array}{c} 66,737\\ 66,659\\ 66,573\\ 66,477\\ 66,370 \end{array}$	$\begin{array}{c} 66,730\\ 66,651\\ 66,564\\ 66,467\\ 66,359 \end{array}$	$\begin{array}{c} 66,722\\ 66,643\\ 66,555\\ 66,457\\ 66,347 \end{array}$	$\begin{array}{c} 66,715\\ 66,634\\ 66,545\\ 66,446\\ 66,335 \end{array}$	$\begin{array}{c} 66,707\\ 66,626\\ 66,536\\ 66,436\\ 66,324 \end{array}$	$\begin{array}{c} 66,699\\ 66,617\\ 66,526\\ 66,425\\ 66,312 \end{array}$	$\begin{array}{c} 66,691\\ 66,609\\ 66,517\\ 66,414\\ 66,300 \end{array}$	$\begin{array}{c} 66,683\\ 66,600\\ 66,507\\ 66,403\\ 66,288 \end{array}$	$\begin{array}{c} 66,675\\ 66,591\\ 66,497\\ 66,392\\ 66,276 \end{array}$	$\begin{array}{c} 66,667\\ 66,582\\ 66,487\\ 66,381\\ 66,263 \end{array}$
$10 \\ 11 \\ 12 \\ 13 \\ 14$	$\begin{array}{c} 66,251\\ 66,120\\ 65,976\\ 65,820\\ 65,651 \end{array}$	$\begin{array}{c} 66,238\\ 66,106\\ 65,961\\ 65,804\\ 65,633 \end{array}$	$\begin{array}{c} 66,226\\ 66,092\\ 65,946\\ 65,787\\ 65,615 \end{array}$	$\begin{array}{c} 66,213\\ 66,078\\ 65,931\\ 65,770\\ 65,597 \end{array}$	$\begin{array}{c} 66,200\\ 66,064\\ 65,915\\ 65,754\\ 65,579 \end{array}$	$\begin{array}{c} 66,187\\ 66,050\\ 65,900\\ 65,737\\ 65,561 \end{array}$	$\begin{array}{c} 66,174\\ 66,035\\ 65,884\\ 65,720\\ 65,543 \end{array}$	$\begin{array}{c} 66,160\\ 66,021\\ 65,868\\ 65,703\\ 65,524 \end{array}$	$\begin{array}{c} 66,147\\ 66,006\\ 65,852\\ 65,685\\ 65,505 \end{array}$	$\begin{array}{c} 66,134\\ 65,991\\ 65,836\\ 65,668\\ 65,487 \end{array}$
$ \begin{array}{r} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ \end{array} $	$\begin{array}{c} 65,468\\ 65,272\\ 65,062\\ 64,838\\ 64,600 \end{array}$	$\begin{array}{c} 65,449\\ 65,251\\ 65,040\\ 64,815\\ 64,576\end{array}$	$\begin{array}{c} 65,430\\ 65,231\\ 65,018\\ 64,792\\ 64,551 \end{array}$	$\begin{array}{c} 65,411\\ 65,210\\ 64,996\\ 64,768\\ 64,526 \end{array}$	$\begin{array}{c} 65, 391 \\ 65, 190 \\ 64, 974 \\ 64, 745 \\ 64, 501 \end{array}$	$\begin{array}{c} 65,372\\ 65,169\\ 64,952\\ 64,721\\ 64,476 \end{array}$	$\begin{array}{c} 65,352\\ 65,148\\ 64,929\\ 64,697\\ 64,450 \end{array}$	$\begin{array}{c} 65, 332 \\ 65, 126 \\ 64, 907 \\ 64, 673 \\ 64, 425 \end{array}$	$\begin{array}{c} 65,312\\ 65,105\\ 64,884\\ 64,649\\ 64,399\end{array}$	$\begin{array}{c} 65,292\\ 65,084\\ 64,861\\ 64,625\\ 64,374 \end{array}$
$20 \\ 21 \\ 22 \\ 23 \\ 24$	$64, 348 \\ 64, 080 \\ 63, 798 \\ 63, 500 \\ 63, 186$	$\begin{array}{c} 64,322\\ 64,053\\ 63,769\\ 63,469\\ 63,154 \end{array}$	$\begin{array}{c} 64,295\\ 64,025\\ 63,739\\ 63,438\\ 63,121 \end{array}$	64,269 63,997 63,710 63,407 63,089	$\begin{array}{c} 64,243\\ 63,969\\ 63,681\\ 63,376\\ 63,056\end{array}$	$\begin{array}{c} 64,216\\ 63,941\\ 63,651\\ 63,345\\ 63,023 \end{array}$	$\begin{array}{c} 64,189\\ 63,913\\ 63,621\\ 63,313\\ 62,990 \end{array}$	$\begin{array}{c} 64,162\\ 63,884\\ 63,591\\ 63,282\\ 62,957 \end{array}$	$\begin{array}{c} 64,135\\ 63,856\\ 63,561\\ 63,250\\ 62,923 \end{array}$	$\begin{array}{c} 64,108\\ 63,827\\ 63,530\\ 63,218\\ 62,890 \end{array}$
$25 \\ 26 \\ 27 \\ 28 \\ 29$	$\begin{array}{c} 62,856\\ 62,509\\ 62,146\\ 61,764\\ 61,365 \end{array}$	$\begin{array}{c} 62,822\\ 62,474\\ 62,108\\ 61,725\\ 61,324 \end{array}$	$\begin{array}{c} 62,788\\ 62,438\\ 62,071\\ 61,686\\ 61,283 \end{array}$	$\begin{array}{c} 62,754\\ 62,402\\ 62,033\\ 61,646\\ 61,242 \end{array}$	$\begin{array}{c} 62,719\\ 62,366\\ 61,995\\ 61,607\\ 61,200 \end{array}$	$\begin{array}{c} 62,685\\ 62,330\\ 61,957\\ 61,567\\ 61,158 \end{array}$	$\begin{array}{c} 62,650\\ 62,293\\ 61,919\\ 61,527\\ 61,116 \end{array}$	$\begin{array}{c} 62,615\\ 62,256\\ 61,881\\ 61,487\\ 61,074 \end{array}$	$\begin{array}{c} 62,580\\ 62,220\\ 61,842\\ 61,446\\ 61,032 \end{array}$	$\begin{array}{c} 62,545\\ 62,183\\ 61,803\\ 61,406\\ 60,990 \end{array}$
$30 \\ 31 \\ 32 \\ 33 \\ 34$	60, 947 60, 510 60, 053 59, 576 59, 078	$\begin{array}{c} 60,904\\ 60,465\\ 60,007\\ 59,527\\ 59,027 \end{array}$	60, 861 60, 420 59, 960 59, 478 58, 976	$\begin{array}{c} 60,818\\ 60,375\\ 59,912\\ 59,429\\ 58,924 \end{array}$	$\begin{array}{c} 60,775\\ 60,330\\ 59,865\\ 59,380\\ 58,873 \end{array}$	$\begin{array}{c} 60,731\\ 60,284\\ 59,817\\ 59,330\\ 58,821 \end{array}$	60, 687 60, 238 59, 770 59, 280 58, 769	$\begin{array}{c} 60,643\\ 60,192\\ 59,722\\ 59,230\\ 58,717 \end{array}$	$\begin{array}{c} 60,599\\ 60,146\\ 59,673\\ 59,179\\ 58,664 \end{array}$	$\begin{array}{c} 60,555\\ 60,100\\ 59,625\\ 59,129\\ 58,611 \end{array}$
$35 \\ 36 \\ 37 \\ 38 \\ 39$	58, 558 58, 016 57, 450 56, 860 56, 245	$58, 505 \\ 57, 960 \\ 57, 392 \\ 56, 800 \\ 56, 182$	58, 452 57, 905 57, 334 56, 739 56, 119	58,398 57,849 57,276 56,678	58, 344 57, 792 57, 217 56, 617	58, 290 57, 736 57, 158 56, 556	58, 236 57, 679 57, 099 56, 494	58, 181 57, 622 57, 040 56, 432	58, 126 57, 565 56, 980 56, 370	58, 071 57, 508 56, 920 56, 308

This table gives the average refractivity of two samples of CsBr, one grown at the Harshaw Chemical Co. and one grown at the National Bureau of Standards.

The results of practical tests on these materials [9] indicate that CcBr prisms gives better resolving power. This better resolving power could, largely, be due to better optical homogeneity of CsBr. The effects of higher index of KRS-5 also deserve some consideration because there are practical limits to the size of the crystals grown.

5. References

- [1] R. J. Spindler and W. S. Rodney, J. Research NBS 49, [1] I. U. Spinlard H. D. Roberts, J. Research (195) 13, 253 (1952) RP2361.
 [2] L. W. Tilton, BS J. Research 2, 909 (1929) RP64.
 [3] E. K. Plyler and C. Wilbur Peters, J. Research NBS 45,
- 6 (1950) RP2159.

- [4] Randal, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937)
- [5] M. Sprockhoff, Neues Jahr Mineral Geol., Beilage Bd. 18, 117-154 (1904). [6] W. S. Rodney and R. J. Spindler, J. Opt. Soc. Am. 42,
- 431 (1952).
- [7] R. E. Stephens, Earle K. Plyler, W. S. Rodney, and R. J. Spindler, J. Opt. Soc. Am. 43, 110 (1953).
 [8] L. W. Tilton, E. K. Plyler, and R. E. Stephens, J. Research
- NBS 43, 81 (1949) RP2008. [9] E. K. Plyler and Nicola Acquista, J. Research NBS 49,
- 61 (1952) RP2343.

WASHINGTON, July 9, 1953.