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Penetration of X- and Gamma Rays to Extremely 
Great Depths 1 

U . Fano 2 

Earlicr work 0 11 t he asy mptotic trend of t he X-ray intens ity at great di stances from a 
source is reviewed and co mpleted in various aspects. The asymptot ic law is shown to be t he 
sam e as in t he "straight-ahead " approximation (which disregards deflections) whether t hc 
pr'imary energy is higher or lo\\"c r t han t he e nergy of minimum absorption, provided a cons tan t 
is replaced by t he eigenvaluc of a suitable Wick equation. The penetration in directions 
oblique to the source direc tion hardly ever attains its asymptotic t rend when t he source 
energy is ]o\\'er t han t he ene rgy of minimum absorption . This situation raises a diffi cult 
problem regarding th e penctration law in t he range of g reat depths where th e asymptoti c 
t rend is bein g approached ver y slowly. 

1. Introduction 

The deep penetration of X-rays, 01' gamma rays, in an infinite, homogeneou s medium 
arc discussed . Much fundamental understanding of this phenomenon derives from the work 
of Wick [1] 3 on the analogous phenomenon of neutron penetration . Vice versa, the presellt 
work might contl'iLmte additional clariti.cation to neutron problem s as well as some background 
for still unsolved problems of charged-particle penetration. 

This paper constitutes a final report of developments sin ce 1948. It includ es a r eview of 
preliminary reports [2, 3,4] and new material that was req uired to complete the initial program. 
Some concepts and techniques developed in the co urse of the study but not utilized i.n the even
tual solution are nevertheless reported briefly. 

The assumption of an infinite , homogeneous m ed ium d isregards the effect of boundaries 
and inhomogeneities, which constitutes a separate, stilllargrly unsolved , problem. 

The very deep penetration of X -rays depends primarily 011 the CO Ul' e of multiple Compton 
scattering under condi.tions where photoelectric absorption and pair production are compara
tively unimportant. At the low-en ergy end of the spectrum , for example, below 50 kev, where 
the energy shift of the scattered photons can be disregarded or treated as a small correction , 
the diffusion of photons has been studied by Chanclrasrkhar l5], but without specific reference 
to very deep penetrations. (N otice that photons below 50 kev disappear rapidly by photo
electric effect, in most materials. )4 At the high-energy end, where large amounts of X-rays arc 
regenerated by electrons, a complete study of X-ray penetration would require a treatment of 
the whole cascade shower process. The X-ray regeneration remains moderate for secondary 
electrons up to 10 ).t[ev in lead, aod up to 100 Mev in light materials, and may be treated, if 
necessary, in this energy range as a secondary so urce. The present paper di sregards the re
gen eration of X-rays by electrons and treats pail' production as a mechanism of outright absorp
tion. Nevertheless, its r esults apply to the penetration of the tail end of showcrs that is con
trolled by photons below 10 YIev in lead and below 100 )'Iev in light elements. 

W e shall deal primarily with photons from 50 kev to 50 Mev which experience concurrent 
processes of energy degradation and "multiple scattering terminating in outright absorption. 
R epeated Compton scattering of the "primary" radiation emitted by a source gives rise to 
"secondary" X-rays of lower energy traveling in all directions. In a m edium of low atomic 
weight, a photon may be scattered 5 or 10 times, on the average, before eventual absorption 
by photoelectric effect. The main complication in our study arises from the generation of 
this complex radiation. 

I Work sup ported by tbe Office of Naval Research and by the Atomic Energy Commission Reactor Di vision . 
, Appendix C is by L . V . Spenccr. 
3 Figures in brackets indicate the li terature references at the end of t his paper. 
• This consideration a pplies also to the furt her development of Chandrasekhar's method that was carried out by 0 ' Rourke 121J in connection 

with the X·ray penetration problem. 
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This complication and the complicated dependence of the cross sections on the photon 
energy preclude a fully analytical treatment of the problem. Therefore, the analytical treat
ment that is developed in this paper does not lend itself readily to direct numerical applications. 
However, its results provide one of the footings for a practical method of numerical calcula
tion [6] whose range of application extends to very large distances from the source. The 
analytical laws of intensity variation versus depth also serve to extrapolate the results of num
erical calculations to still greater distances from the source. 

Throughout th e present investigation, much reliance has been placed on gaining an 
initial qualitative understanding of the factors that control the process of degradation, scat
tering, and penetration of X-rays. Such an understanding enables one to adapt the mathe
matical procedure to the conditions affecting each specific problem. In this respect our work 
departs from other work in the same field that has been characterized by the initial adoption 
of less flexible procedures. For example, the X-ray distribution has been resolved into "orders 
of scattering" (that is, into once-, twice-, thrice-, ... , scattered photons) [7, 8, 9]. The ex
pansion converges poorly whe1'e the photons experience protracted scattering and its applica
tion becomes cumbersome. However, at least in some instances, adequate calculations of 
penetration have been made [8]. Semiempirical improvements to th e procedure have also 
been introduced [9]. Alternatively one may schematize the scattering and degradation 
process in such a way that th e corresponding basic equations are sufficiently simplified to 
allow analytic solution [7, 9, 10, 11]. These simplifications, however, seem generally to in
volve considerable limitations in the applications of the theory and may delete some char
acteristic features of the phenomenon. Finally, calculations by the "110ntecarlo" sampling 
methods are possible [12] but do not yet appear convincingly successful, at least in th eir appli
cation to very deep penetrations, which requires the use of "biased sampling". 

Our treatment will be limited to X-ray distributions having a plane symmetry, that is, 
which vary in one direction of space only and are generated by sources having the same sym
metry. The study of spherically symmetrical distributions is essentially equivalent to that of 
plane-symmetrical ones. The relationship between these types of distributions is well known 
[1] and will be indicated in Appendix A. \iV e shall also assume that th e source is concentrated 
on a single plane, which implies no additional restriction owing to th e linearity of the problem. 
Notice that plane symmetry may always be attained by considering, instead of the X-ray 
flux at each point and in each direction, only the integral or the average flux over all points 
of a plane and over all directions forming the same angle with the plane. The reason is that 
this plane integral flux generated by a localized source is equal to the localized flux generated 
by a plane distribution of sources. 

The most general type of source may be regarded as an aggregate of point monodirectional 
sources. The study of X-ray penetration under conditions of plane symmetry may serve as a 
first step for the treatment of point monodirectional sources. This approach has been ex
ploited in th e study of X-ray penetration to small or moderate distances from a source [13] . 

2 . Survey of the Problem 

This section contains a qualitative analysis of the deep penetration of X-rays, with the 
purpose of pointing out the specific problems that require a detailed mathematical treatment. 

2. 1. Transient Processes and Equilibrium States 

The layers of material near an X-ray source are traversed almost exclusively by primary 
radiation because it takes a certain thickness of material to generate a substantial amount of 
secondary radiation. Therefore, one expects the intensity of secondary radiation to build 
up rapidly from one layer to the next near the source in a sort of transient process. Vice versa, 
at greater depth within a material one may hope to find some sort of steady state in which the 
secondary radiation is present in substantial amounts. The nature of this steady state is the 
main object of this investigation. 
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A typical steady tate in which a softer radiation continually ari es from a hardc/' OIle is 
commonly called a state of radiative" equilibrium." The X-ray penetration problem does not 
lead to a typical state of equilibrium, but it i helpful to review fir t the properties of such a 
state. Equilibrium involves, in general, tlu-ee different features, namely: (1 ) The ratio of the 
intensity of the secondary to the intensity of the primary l'ftdiation approaches a ymptoticaUy 
a maximum value, as the depth of penetration increases. (2) The quality of Llle secolldar.\~ 

Tadiation also beco mes independent of the depth of penetration, because the intensitie of its 
various spectral component bear a constant asymptotic ratio to the primary inten ity. (3) 
Therefore, the intensity of the whole radiation is controlled by the progressive attenuation of 
the primary radiation, which follows an exponential law in the case of X-rays. If Lhese 
circumstances applied, they would greatly simplify the stud:y of penetration. The maximum 
values of intensity ratios mentioned in (1) and (2) are determined by the ratios between the 
attenuation coefficients 5 J1. of the X-rays of various energies. The depth of penetration at 
which the intensit~~ ratio between any two X-ray components attains a value within , say 10 
percent of the maximum, turns out to be inversely related to the difference between the attenu
ation coeffi cien ts of those components. 

2.2. State of Limited Equilibrium 

The approach to a steady state under the conditions of hard X-ray penetration presen ls 
the following characteristic departure from the more familiar equilibrium conditions. In the 
Compton effect, some of the X-rays have very nearly the same energy, the same direcLion, and 
the same atten1wtion coefficient after as before the scattering. In fact, the attenuation coeffI
cient of some among the secondary X-ray components differs only infinitesimally from the 
attenuation coefficient of the most penetrating X-ray that are present. This circumstance 
does not merely slow down the approach to equilibrium, it actually suppresses the features (1) 
and (3) in that the intensity ratio of secondary X-ray components to a monochromatic primary 
may grow beyond any limit. 

At the sftme time one may expect that, within a finite thiclmess of shield, some sort of 
equilibrium should be attained among those components of the secondary X-ray spectrum, 
whose attenuation coefficient differs from that of the most penetrating component by a suffi
ciently large amount. In fact, the relative intensity of mo t secondary components and, 
therefore, the average" quality" of most of the secondary radiaLion turn out to approach a 
limiting value within the thickness of a finite shield, as indicated in feature (2). On the other 
hand, features (1) and (3) do not obtain. The intensity ratio of this secondary radiation to 
the primary X-rays does not ftpproach a maximum value, but it keeps increasing; the attenua
tion of the primary radiation alone does not control the attenuation of the econdary radiation. 

In a hypothetical state of true equilibrium, the flow of radiation at great depths within a 
shield is described as the product of an exponential function of the depth and of a function of 
the energy and direction of each secondary radiation component. In the sort of steady state 
that is actually achieved, the flow of most of the secondary radiation at great depths is described 
as a product of a nonexponential function of the depth and of a function of the energy and 
direction of each component. Calling x the depth of penetration, measured from the source, 
E the energy of a photon, and 0 the angle that its direction of travel forms with the x axis, 
Eo the energy of the primary photons, the flux of photons of various energies and directions 
iJ>(x,E,O) takes then the form 

iJ>(x, E, 0) "'f(x)g(E, 0) (1) 

when x is sufficiently large and E sufficiently smaller than Eo. 
At large depths most of the energy is carried by the softer secondary components. One 

can, therefore, use the approximate form of the flux to evaluate the quantities of practical 
interest. These quantities vary, as a function of depth, in proportion to j(x). 

, Tlle term "attenuation cocffi cient" is used instead of "absorpt ion coetncient" to make it clearly understood that p. includes the etIect of 
removal of X-rays from a narro,,· beam by Compton effect in addition to tbeir true absorption by photoelectric etIect or pair production. 
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2.3 . Intensity Varia tion at Great Depth 

The over-all attenuation of the radiation does not follow an exponential law because the 
most penetrating secondary components never approach an equilibrium. The determination 
of the over-all course of attenuation, which is described by the functionj(x), requires, therefore, 
a study of the ever developing transient process of formation and destruction of the hardest 
secondaries. Thi3 study constitutes the main topic of the present paper. 

By centering one's attention on the formation and absorption of the most penetrating 
secondaries, one attains a substantial simplification of the problem. The secondaries that 
need be considered covel' only a narrow spectral range. Therefore, the variations of the 
scattering and absorption cross sections within this spectral range can be treated as small 
quantities. Furthermore, the greatest contribution to the deep penetration arises from 
secondaries directed in a very nalTOW beam perpendicular to the source plane. 6 

However, the small differences of attenuation coefficient and of direction among the most 
penetrating components cannot be disregarded, even in the first approximation. On the 
contrary, it is just these differences that control the relative intensity of the various components 
and thereby the over-all course oj attenuation at great depths . The following argument indicates 
that small changes of attenuation coefficient and of direction have comparable importance. 
Radiation of wavelength A, which travels in a direction forming an angle iJ with the axis of 
penetration, x, travels a distance t::.!cos iJ as its distance from the source plane increases from 
x to x+ t::.. Therefore, its intensity decays along x with an effective attenuation coefficient 
P.(A)!COS iJ . Compton scattering of a photon, with a wavelength shift of OA Compton units, 
results in a change of both P. (A) and cos iJ. If a photon starts with a wavelength AO in a direction 
with 00= 0, cos 00 = 1, after one scattering its directioll changes, according to the Compton 
law, to iJ = arccos [1 - 8A] and its effective absorption coefficient from P.(AO) !COSiJO = P.(AO) to 
IL(Ao + 8A) ![1 - 8A] "'IL(AO) + (dJl.!dA)08A + IL(Ao)8A. The corrective term (dp. /d'l\)08'1\ arises from the 
change of p., the term JI.('I\o) 8'1\ from the change of cos iJ. The ratio of the two corrective terms 
is d log JI.!dA , with A in Compton units, which is a number of the order of 1 for most materials 
and wavelengths of interest. 

The importance of the small deflections was not appreciated in the early stages of the 
investigation, which disregarded altogether the changes of direction experienced by the most 
penetrating radiation components, that is, relied on the "straight-ahead approximation." 
The results obtained in this manner, which are reported in [2 , 3] and reviewed in section 5, 
proved useful , nevertheless, because the effect of small deflections does not change the analytical 
form of the intensity variation but only the value of certain numerical constants. This simple 
mode of action of the deflections emerges as a result of the analytical treatment of section 7 
and may be visualized as follows . Photons that travel in directions oblique to the direction 
of maximum penetration are selected-against in the course of deep penetration, much as if 
they had, in effect, a larger attenuation coefficient P.(A) (see above) . The selection operates 
simultaneously in favor of photons with near-minimum p. and near-minimum, that is, near-zero , 
obliquity iJ. As a result, photons of each wavelength are concentrated in a cone of directions 
whose aperture is the narrower the nearer to the minimum is JI.. This is to say that the effect 
of small obliquity merely parallels and amplifies the effect of small variations of the attenuation 
coefficient. Indeed, the two effects result in a fixed ratio to one another (see sections 6 and 
7), so that the study of the effect of variations of p. alone, in the straight-ahead approximation, 
gives the correct analytical form for the trend of the total intensity at great depths. 

Two different analytical forms for this trend result under different circumstances, depending 
on the type of variation of the attenuation coefficient among the most penetrating components. 
As long as the energy of the primary X-rays is not too large, none of the secondary X-rays 
is more penetrating than the primary X -rays. The hardest secondaries are then simply those 
whose energy is just a little lower than the energy of the primaries. The progressive accumula-

• When the whole primary radiation travels in directions oblique to the source plane, there occurs a more complicated situation tbat will be 
discussed in section 2.6 and in section 8. 
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tion of secondary components under these conditions has been studied in [2] under the 
straight-ahead approximation and in 1[4], taking into account the defl ection effects. The 
intensity distribution law.f(x) is shown there, and in section 9, to be of the form 

(2) 

Here J1.o is the attenuation coefficient of the primary X-rays and J( is a number, usually of the 
order of 1; J( depends on the cross section for Compton scattering and on the first derivative 
of the attenuation coefficient with respect to energy, evaluated at the energy of the primary 
X-rays. (For numerical values of J( and the parameters on which it depends, see appendLx 
C, tables 1 and 2.) The exponential factor represents the usual effect of attenuation of tbe 
primaries, whet'eas the factor xK represents the effect of accumulation of hard secondaries and 
i., called the " buildup factor". Numerical values of J( are given in appendix C. 

At very high energies, absorption by pair production increases so rapidly tha t higher 
energy X-rays are actually less penetrating than lower energy ones. Therefore, in the case of 
high-energy primaries, some of the secondary X-rays arc more penetrating than the primaries. 
The attenuation of the total radiation depends upon the forma tion and deca~T of the most 
penetrating secondary components, whose pho ton energies may be much lower than that of 
the primari es (in lead the hardest pho tons have about 3-Mev energy). This phenomenon has 
been treated in [3] in the straigh t-ahead approximation, but the effect of small defl ections 
has no t been taken into account in previous papers. Bo th treatments arc given in sections 5, 
7, and 9 and show the intensity distribution law f(x) to be of the form 

f (x)= X- 5/ B exp [H (J1. mx)l]exp( - J1. mx). (3) 

Here J1.m indicates the minimum value of the attenuation coefficient, that is, the attenuation 
coefficient of the most penetrating X-rays in the material under consideration. The factor 
exp( - !l1nx) represents the attenuation of these X-rays . The factor X- 5/6 exp[H (J1.mxt] is the 
buildup factor, corresponding to xl{ in (2), and l-1 is a constan t that depend on the cross aec tion 
for Compton scattering and on the values of the attenuation coefficien t and of its second 
derivative, evaluated at the energy of the most penetrating X-rays. (For values of J1.m and H , 
see appendix C, table 3.) 

2.4. Numerical Methods Combined With Analytical Results 

The analytical results , (2) and (3), represent limiting forms of the intensity distribution, 
valid at extremely great depths , where the distribution depends on the generation and attenua
tion of an extremely narrow range o.f secondary spectral components. Those results must be 
supplemented in two directions. In the fu'st place, one must find not only the relative X-ray 
intensity at different positions but the absolute intensity, particularly of lower energy compo
nents traveling in various directions, that is , the function g(E,t?) of eq (1 ) . In the second place, 
one must be able to carry out calculations without excessively stringent limitations on the 
important range of secondary spectral components. 

Various partially successful attempts were made to develop methods of successive approxi
mation to take into account successively higher derivatives of the cross sections in the important 
spectral range, However, much greater success was even tually achieved by the semiasymptotic 
numerical method of Spencer [6], which fulfills both of the requirements indicated above. 
Additional numerical resul ts for the X-ray distribution at moderate depths are provided by 
polynomial method of calculation [1 3]. 

R eliance on numerical methods to the extent of solving the transport equation numerically 
was dictated by the complicated dependence of the cross sections upon the X-ray energy. At 
the same time, since the transport equation involves three independent variables (namely 
distances from the source, photon energy, and direction of propagation), the reduction of the 
numerical burden to manageable proportion requires much guidance from qualitative analysis . 
and as much help from analy tical development as~conveniently possible. Spencer has stressed 
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the rapid gain in computational efficiency that can be derived from general information on the 
desired solution [6, 14] . Economy also arises from suitable substitutions of the variables of 
the problem (see, for example [13]) . 

The space variable, depth of penetration from the source, can be separated from the other 
variables by a Fourier-Laplace transform. This transformation has the additional advantage 
of replacing the depth of penetration, which varies over a wide range, with a transform variable 
whose important range is narrow. As will be seen in section 4, the analytical treatment that 
determines the intensity distribution laws (2) and (3) deals specifically with the behavior 
of the distribution function at a singuhL point of the transform variable. The numerical 
method holds only for values of the transform variable at a finite distance from the singular 
point. The analytical treatment serves as an essential complement to determine the critical 
behavior at infinitesimal distances from the singulari ty. Furthermore, the knowledge of this 
analytical behavior and of the resulting behavior of the corresponding inverse transform, 
(the functionj(x) of eq (1), (2), and (3)), serves as a guide for the inverse transform procedure 
that is also required in the numerical work. 

The two remaining variables, photon energy and direction of propagation, can be separated 
only within the limits of application of the analytical treatment, that i'S, for extremely deep 
penetration and narrow range of photon energies (section 7). Otherwise, the interlinkage of 
energy and direction offers the most serious difficulty to the solution of the problem. The 
difficulty has been overcome in the numerical work by learning how to take into account tbis 
interlinkage without excessive complication [6]. This is done by describing the directional 
distribu tion adequately by means of a few parameters; namely, moments when the distribution 
is peaked , and coefficients of a Legendre expansion when it is flat. The interlinkage of energy 
and direction is reviewed briefly in section 6. Numerical methods have to complement the 
analytical treatment even when the separation of variables succeeds in order to work out the 
directional distribution (section 7 and appendix B). 

2.5. Verification of the Qualdative Analysis 

The introductory qualitative picture of th e X-ray penetration, which has led to the results 
indicated by eq (1), (2) and (3), has been verified to a considerable extent by experimentation 
and by independent numerical calculations. 

Two experiments dealt with a point source of C06°-y-rays surrounded by a mass of water. 
In the first experiment [15] ionization-chamber and Geiger-counter measurements of total 
intensity were made at various distances from the source. The results of these measurements 

should be represented, in terms of the approximate eq (1), by j(x) So" 27r sin JJdt'J 50 '" g(E,t'J)r(E)dE, 

where r(E) indicates the response of the p'easuring instrument. In the absence of information 
on g(E,t'J) , the plot of the measurement vel:'susth e depth of penetration x should follow the trend of 
the functionj(x). The plot does, in fact, take up the trend of (2) at great distance from the 
source (1.5 to 2.5 m of water), with a value of K equal to that predicted by the detailed theory of 
[4] and of section 7. 

In the second experiment [16], the spectrum of the secondary electrons in the water was 
measured at various distances from the source. The plot of the number of electrons of various 

energies e, should be represented according to eq (1) by j(x) So" 27r sin t'Jdt'J So'" g(E,t'J)R (E,e)dE, 

whereR(E,e) indicates the probability of production of an electron of energy e by a photon of 
energy E. Qualitatively, the shape of the plot becomes independent of the penetration depth 
x at great depths as predicted by (1). 

Equation (1) gives no information about the shape or the absolute magnitude of g(E,t'J). 
However, rather detailed calculations of the complete distribution function if>(x,E,t'J), for all 
depths of penetration covered by the experiments can be made by the independent method of 

·polynomial expansion [13]. These calculations have successfully predicted the quantitative 
results of the two experiments. 
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In addition, the results of these calculations for moderately grea t depths provide a semi
quantitative check of the predictions of the theory of penetra tion to very great depths. These 
predictions find good verification. In particular, the trend toward an equilibrium distribution 
for the lower-energy secondary X -rays is clearly displayed both with respect to the spectral [1 3] 
and to the d ir ectional [17] distribu tions (see fig . 1) . The emergence of an equilibrium state a t 
lower energies, while the higher energy componen ts persist in a sta te of nonequilibrium IS 

most clearly displayed in the resul ts of semiasymp totic calculations [6] (see fig. 2). 

2 .6. Influence of the Source Direction on the Penetration Law 

Previous theoretical work on the penetration of radia tion from plane sources has deal t 
only with isotropic sources and with sources concentrated in a direction perpendicular to the 
source plane. In general, one may want to deal with source radia tion a imed in directions 
that form a fixed skew angle wi th the source plane. However , this new problem raises questions 
tha t are largely unsolved and tha t will b e indicated briefly here and discussed somewhat further 
in section 8. 

At the outset one must dis tinguish between the condi tions where the energy of the primary 
X-rays lies below and above th e energy of minimum a ttenuation (corresponding to eq (2) and 
(3), respectively). In the first event the pene tration law is controlled by secondary X-rays of 
energies just below the source energy. The overwhelming majority of these secondary X-rays 
travel in directions very nearly as oblique as those of the primary X-rays. Ther efore, the 
obliqui ty of the source has a very major influence on the in tensity distribution a t very great 
dep ths. 

In the second case, when the source energy exceeds the energy of the most penetrating 
secondaries by a substan tial amount, the obliquity of these secondaries is less immedia tely 
related to the obliquity of the primaries. I t will be shown in section 8 that the penetration is 
controlled by th e accumulation of secondaries that have been degraded by steps to the en ergy 
of minimum attenuation and simul taneously deflec ted to directions nearly perpendicular to 
the source plane. The absolute in tensity of these secondaries depends, of course, on the 
obliquity of the source but their ra te of accumulation and , hence, the law of deep p enetration 
are independent thereof. 

Therefore, the main difficulties arising from source obliquity. occur only when the energy 
of the primaries lies below the energy of minimum attenua tion. If f}o indicates the angle 
formed by the source direction with the x direction, perpendicular to the source plane, the 
"effective attenu a tion coeffi cien t" of the primary X-rays of wave length Ao is J.1. (AO) Icos {}o (see 
section 2.3) . After one Comp ton scattering wi th a wavelength shift oil. , the obliquity {} is 
given by cos f} = cos f}o[ l - oil.] + sin f}o[20il. -oil.2] 1/2 COS 'P, where 'P may have any value. Minimum 
effective a t tenu ation after one scattering is obtained when 'P = O, bu t this minimum value 
J.1. (il.o+ OA) 1< cos f} > max may be larger or smaller than the initial value J.1. (il.o) Icos f}o, depending on 
the values of dJ.1.l dil. and of f}o. The most favorable reduction of the effective at tenuation co
efficient is brought about by a succession of scatterings with infinitesimal oil. 's, all directed so 
as to reduce f} . An infinite sequ ence of such scatterings would even tually bring abou t a detlcc
tion all the way to f}= O without. any finite increase of J.1. , bu t the probability of such an event 
is, of course, infinitesimal of a high order . Nevertheless, an unlikely process of this kind must 
determine the penetration at extremely grea t depths. That is the penetration will be eventually 
controlled by the scanty accumula tion of secondary X-rays with energies very near the pri
maries and direction nearly perpendicular to the source plane, tha t is, with effective a t tenuation 
coefficien ts near J.1.o. Th e course of accumula,tion of secondary X-rays that are effec tively more 
penetrating than th e primaries because of reduced obliquit.y has not yet b een studied . Knowl
edge of the limiting trend at extremely great depths may not be very important because it may 
no t even become recognizable excep t under unrealistic conditions. Nevertheless, lack of 
understanding of this process may undermine the effec tiveness of the semiasymptotic and 
polynomial methods of calcula tion, whose application is now being planned. 
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If the source emits X -rays of various obliquities, some of which travel ini tially in t he 
direction perpendicular to the source plane, it will be just the X-rays in this direcLion and 
their secondaries that achieve great penetra t ion. D eeper and deeper penetrations arise from 
narrower and narrower bundles of p rimary X -rays. Therefore , a source with a broad d istribu
tion of directions contribu tes less and less toward deep penetra tion, as compared to a source 
aimed exactly in the direction perpendicular to the so urce (~o= O). This argument will be 
confirmed by the analytical trea tmen t of section 8. In part icular an isotropic source, or any 
so urce with practically uniform distribution in directions nearly perpenducilar to the source 
plane, yields an intensity distribution law in accordance with eq (2) but \v ith a value of J( 

lower by 1 than the value for a source concentrated at ~o= O [6]. 

3. Transport Equation 

The following symbols will be used: 

r= (x,y,z) = coordinates of a point of a medium. 
A= wavelength of a photon in Comp ton units (hlme) . 
U = (ux,uv,u z) = (~,r,o)=uni t vecto r indicat ing a photon direel ion. 

/L (A) = total (narrow-beam) aLLenuation coeffi cient of thc medium for photons of wave
length A. 

IlTh= Thomson scat Lering coeffi cicn t (probability per uni t path) of t he medium = 
low energy limi t of the integral Klein-Nishina coefficient . 

k (}..' , A) = (3 /8) /LTh[A' IA + A'3 IA3 + ( }.. I IA)2(A - A' - 2) (}.. - A' )] = Klein-Nishina differential 

scattering coefficient of the medium for Comp to n scat tering wiLh a wavelength 
change from }..' to A, per unit A, for A' :::; }.. :::; A' + 2. 

Y(r,u,A)= numbcr of photons per lll1it volume, pel' unit solid angle and per unit }.. . 
Ilm = Dirac's delta fun cLion. 

AO= wavelength of the source phoLons (if monochromati c) . 
/Lo = Il (AO) ' 
As= wavelength of the phoLons whose attenuat ion coe ffici ent has the lowest value 

in the range of integration from }..o to A. 
Il s = /L (As) . 

Arn= wavclength of the photons whose attenu at ion coe ffi cient is the absolu te mini
mum in the medium under consideration . 

/Lrn = /L (Am) . • 

The d egrada tion, penetration, and diffusion of X -rays is governed by a transport equation. 
This equation represents the rate of change of the density of pho tons wi th a specified direction 
and wavelength, from one point to the next in the direction of propagation, as th e sum of three 
terms nam ely: (a) the attenuation of the pho ton densi ty as a result of absorption and scattering, 
(b) the addition of pho tons that take up the specified direction and wavelength as a resul t of 
Compton scattering, (c) the addition of pho tons with the specified direction and wavelength 
from the source. The equation is: 

u'gradY(r ,u, A) = - /L (A) Y(r ,u , A) 

+ L~2 dAlk ( A/A) I..dUI (2?r)- 16(1- u ' UI - A+ " /) Y (r ,u'Y)+ S(r ,u , }..), (4 ) 

where S(r ,u , A) represents the source, that is, the density of photons produced at r with the 
direction U and the wavelength A. The o-function represents the Compton law whi ch requires 
A to equal A' + (1 - U · u ' ). 

Following the plan indicated in the introduction, we assume tha t the source distribution 
has a 'plan e symmetry, that is, that it does not depend on y and z, nor on the component r,o of u , 
(but only on ~= al'CCOS u x). As a result, Ywill be similarly independen t of y ,z and r,o. We also 
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assume that the source is concentrated on the plane x= o and at a wavelength X= Xo, but this 
constitutes no real restriction owing to the linearity of the equation. Accordingly, we have 
S (r,u ,X)=o(x)o(x - xo)f(u.J and the equation reduces to 

uxoY(x,ux,X)/ox= - J.L (X) Y(x,ux,X) 

+ f>' dX'k (x' , X) r du'(27r) - lo ( 1 - u· u' - X+ X' ) Y(x,u~ , X')-H(x)o( X- Xo)f(ux) . (5) 
) )\-2 J4" 

Notice that the kernel k(x',X) of this equation may be multiplied by any ratio g(X' )/g("A) , 
provided Y is suitably renormalized. 

4 . Fourier-Laplace Transform 

The transform method involves a separation of variables. It represents the X-ray distri
bution as a superposition of components, each of which has a certain angular and spectral dis
tribu tion uniform over all the space. The intensity of each componen t varies exponentially or 
sinusoidally from point to point according to exp( - px) , where p may be complex. 7 

The transform and its inverse are: 

(6) 

. r+i oo 
Y (x,ux,X)= (2 7rt)-l J_iOO exp (- px)y(p,ux,X)dp. (7) 

II The transform method of analysis consists of two steps: (a) A study of t he directional and 
spectral distribution y(p,ux, X) for various values of p, (b) an evaluation of th e inverse transform 
integral (7). 

The evaluation of the integral may proceed by the path of steepest descent. Whether this 
method is eventually followed or not, an analysis of the" topography" of the transform y(p,u x, X) , 
that is, of the distribution of its absolute values over the complex plane p proves very useful. 
This analysis indicates what region of the plane yields the largest contribu tion to the integral 
when the steepest descent method is followed. The determination of y (p,ux, X) in this region, 
which is often very limited, proves anyhow to be very efficien t for evaluating the inverse 
transform . 

The equation that governs the directional and spectral distribution y(p,ux , X) , for each 
val~e of p, derives from (5) by means of the transformation (6), that is, by multiplication by 
exp(px) followed by integration . This equation is: 

[J.L("A)-pux]Y (P,u" X)= e d x'k (x',X) r du'(27r) - lo(1 - u ·u - X+ X' )y(p,u:,X') + o(X-"Ao)f(ux)' (8) Jo J4" 
The source term in this equation does no t depend on p because the source term in (5) is con-
centrated on the plane x= O. 

B ecause the wavelength of a pho ton increases as a result of Compton scattering, the dis
tribu tion of photons of each wavelength X depends on the distribution of photons of shorter 
wavelengths x' but no t on that of longer wavelength pho tons. If one knows the photon dis
tribution (in spectrum and direction) at all wavelengths x' < X, one can evaluate the integral 
in (8) and thereby find the distribution y (p,ux , x) on the left side of the equation . Thus eq (8) 
may be solved in principle stepwise, proceeding from the source wavelength Xo to longer and 
longer wavelengths. This procedure, which reflects the course of the physical process of energy 
degradation, points to an important effect. If t.he intensity of X-rays of a cer tain wavelength 
builds up to a high value, Compton scattering of these X -rays builds up, in turn, the intensity 
of all longer wavelength radiation. 

7 Notice that p has here a sign opposite to that which is most common in the literature. The convention adopted here proves convenient in 
prohlems of penetration and straggling. 
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FIGURE 3. Elements of a relief map diagram of the trans
form distribution y on the plane of the complex variable p. FIGURE 4. Diagram of a plot of Iy (p) I along the Teal axis 

of fiuuTe 3. 
--, Lines over which yep) is singular ; ---, trend of the steepest 

descent line of yep) exp (-pr) for positi ve p; ) ( ,approximate position 
of t he saddle·point. 

Equation (8) shows that y(p,ux, A) becomes infinitely large when }.L (A) - PUx vanishes. Fur
thermore, 11 grows rapidly for those combina tions of p,Ux and A for which }.L (A) - PUx is paI'ticu
larly small . These combinations of variables are critical in variou respects. We just men
tioned that once y(p,ux , A) has become very large for certain values of Ux and A, it remains 
correspondingly large for all longer wavelengths. We also know that the di tribu tion of large 
values of y (p,ux, A) determines the path of steepest descent of the integral (7) . Finally, the 
process of numerical integration becomes increasingly difficult as the rate of rise of y (p,ux, A) 
increases, so that one may want to utilize, at least locally, analytical methods of solution. 

The coefficient }.L(A) -PUx of (8) vanishes only for positive real values of p larger than }.L (A) 
or for negative real values smaller than - }.L(A) . Therefore, eq (8) becomes singular only for 
values of the complex variable p which are confined to the sections of the real axis marked 
heavily in figure 3. The lines terminate at p= ± }.L SI where }.Ls indicates the smallest value of 
}.L (A' ) in the range of wavelengths from AO to A. There appears to be no other point in the plane 
p where y (p,ux, A) diverges. 

Figure 4 shows a schematic plot of Iyl against real values of p. Th e plot rises to infinity 
at p= ± }.L SI where the equation has beco me singular for Ux= 1 and for the wavelength As:::; A at 
which }.L takes its smallest value }.Ls. 

The integrand of (7) equals y (p,ux, A) times exp (- px) . The factor exp (- pX), regarded as 
a function of p, slopes down to the right for positive values of x and to the left for negative 
values. The slope increases in proportion to the distance from the source, Ixl. Therefore 
the integrand has a minimum, for real p, where 0 log y (p,UxA)/OP=X, that is, at a point that 
approaches p= }.Ls when x is large and positive, or p= - }.Ls when x is large and negative. 

This lowest point of exp ( - px)Y(P,UxA) against real values of p const itutes the one and only 
saddle point along the steepest descent path when exp( - px)y (p ,ux, A) is integrated with respect 
to the complex variable p (see fig. 3). 

The minimum and the saddle are sharp when Ixl is large. Under these conditions, a knowl
edge of y (p,ux, A) over a narrow range of real values of p suffices to evaluate the integral (7) 
and thus to calculate the total distribution of X-rays far from the source. The main object 
of this paper is just to study the trend of y for real values of p near J.1 s (or - J.1 s) . ection 9 
deals with the actual evaluation of the integral (7) . 

For smaller values of the depth of penetration x, the saddle point lies nearer to p= O. 
The direct calculation of Y(X,Ux, A) at moderate depths also provides convenient expansions 
of y in powers of p, or of related variables like p/ (}.Ls-p) and p2/ (}.L;_p2) [13]. This infor
mation may serve to interpolate y between the proximity of p= O and of p= ± }.Ls' 

5. SpeciaL. ,Analytical Solutions- Straight-ahead Approximation 

In order to study the trend of y for real values of p neal' J.1 s, we seek approximate analytical 
olutions of the ti'ansform equation (8) valid for values of A"-'As and of u x"-'l. This search 

will be conducted first in the straight-ahead approximation even though this approximation is 
inadequate. 
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The straight-ahead approximation consists of sett,ing u x = l on the left side of (5) or (8) . 
This procedure is equivalent to the replacement of the depth of penetration x in (5) with the 
path length traveled by the photons, irrespective of the obliquity of penetration [18] . The 
variables U x and u that still remain in the eq (8) can then be eliminated by integrating over u. 
Setting 

(9) 

we obtain the straight-ahead approximation equation 

(10) 

where 1= r f(ux)du. J4.-
B ecause we are interested in an approximate solution valid over a narrow range of variation 

of X, we disregard the variations of the differential scattering coefficient k over an interval 
X' '" X and take 

(11 ) 

in agreement with the definition of k (see section 3). 
B efore entering this approximation into (10), we must distinguish two different situations, as 

in section 2.3. (a) If the primary radiation is the most penetrating one, that is , if Ps= p(Xo )= fJ. O, 
the range of approximate integration over X is right next to the source wavelength Xo. 
(b) If the most penetrating radiation is that of wavelength Xm, for which fJ. has its absolute mini
mum value Pm = P (Xm), that is , if XO<Xm , the range of approximate integration cannot run all 
the way from Xo to Xm. In this event, we do not attempt to solve the inhomogeneous equa
tion (10), but only the corresponding homogeneous equation , in the range of X",Xm • 

Therefore , we seek the solution of 

for 

and of 

for 

[fJ. (X)-p]<I>(X,p )= C fA<I> (X',p )dX' + I o(X - Xo) Jxo 

(12a) 

(12b) 

These equations reduce to differential form, if a derivative is taken with respect to X, and 
their solutions are 

<I>(X,p)=I (/Jo-'p )-I C [/J (X)_p]- l exp {C J::dX1 / [/J (X/ )-P]} 

<I>(X,p)= C[fJ.(X)_p] - 1 exp {C IXdX' / [/J (X' )-P]}' 

(13a) 

(13b) 

These solutions are derived as special cases of a more general procedure in [18 section lIb] . 
W e are interested in the behavior of these solutions when p approaches the singular point 

Ps, that is, ,uoin (13a) and ,umin (13b). 
In case (a) the first derivative of ,u(X') at the singular point fJ.o, (d,u /dX' )o= /;'0, is different 

from zero. Therefore, the integral in the exponent of (13a) has a logarithmic singularity. 
In case (b) the first derivative of ,u(X' ) vanishes at ,u(X') = ,um, X' = Xm. Therefore the integral 
in the exponent of (13b) over an interval of X' "'Xm is of the arctangent type and its singularity 
has the form (,um-p) - 1/2. If fJ.(X' ) is regarded as linear in case (a) and parabolic in case (b), 
the solutions (12) take the characterif'tic singular forms [3]: 

106 



------ -- - ---

(14b) 

where ~m=(d2J.l. ldA2)~m' 
Even though the solution of the transform equation (10) for values of A> > As cannot be 

obtained in this simple manner , its dependence on p , as p approaches J.l. s, is described by (14) 
for the following reason. As soon as A is sufficiently larger than As so that J.l. (A)-p > > J.l. s-P, 
p may be replaced in the equation by J.l.m. This implies that the further variations of if>(A,p ), 
as A keeps increasing, are independent of p, that is, that a state of limited equilibrium, within 
the meaning of section 2.2, has been achieved. As p approaches Ps, A need depart from As less 
and less, before the condi tion p(A)-P> > Ps-pis adequately fulfilled. Therefore the approxi
mations made in the derivation become increasingly good. 

The inversion of Laplace transforms with the singulariti es (14a) and (14b) will be con
sidered in section 9. However, we anticipate here that the inverse transforms behave, respec
tively, as (2) and (3) for large depths of penetration x. 

For the sake of completeness, we men tion yet another situation , which combines the 
features of (a) and (b), namely, the case where AO< A< Am, As= A. H ere the pertinent form of 
the equation is (12b) and its solution (13b). However, the derivative (dpldA)s at A= As is 
different from zero. H ence, the integral in the exponent of (13b) has a logarithmic singularity 
and we find , instead of (14b), 

(14c) 

Various attempts were made in the past to develop methods of successive approximations, 
star ting from the approximate solutions (13) and (14), to solve the straight-ahead equation (9) 
for all values of A. Direct numeri cal integration even tually proved superior [6], even for values 
of p ra ther near Ps, despite the fact that the rapid ri se of y along A, for A near As, requires small 
s teps of numerical integration. 

6 . Possible Treatments of the Obliquity of Penetration 

As pointed out in section 2.3, the deep penetration of X-rays is influenced to a substantial 
extent by the small obliquity of the most penetrating components. In order to evaluate this 
effect , one must, in principle, work out the directional distribution of the X-rays of each wave
length, that is, solve the complete two-variable equation (8). In practice, one may want to 
learn a,bout the distribution-in-angle only the least amount necessary to evaluate the effect on 
the trend of penetration. 

In order to analyze this situation, one may expand the distribu tion-in-angle of y (p,U", A) 
into Legendre polynominals P z(u ,,) , 

(15) 

with 

(16) 

Equation (6) multiplied by each of the P I's and integrated , reduces to the system of equations 

(17) 

J.l. (A)y Z(P, A) - p[ Cl + I )YZ+l (p, A) + lYZ- l (p, A) JI (2l+ 1) 

= J>.: k (A',A)P z(l - A+ A' )Y z(p,A' )dA' + O(A- AO) I ,. P Z(Ux)J(ux)du. 
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The first equation of this system has the same form as the straight-ahead equation (10) , 
except for the fact that Yl appears in the second term on the left side instead of Yo. If there 
were a way of guessing the ratio 

(18) 

Yl could be replaced with ux(P,X)Yo(p,X) in the first eq. (17), which could then be solved as a, 

single-variable-straight-ahead equation. Thus a knowledge of u x(P,X), or of an equivalent 
parameter, embodies all the information about the directional distribution that is immediately 
relevant to the penetration problem. 

Instead of iix one may want to use the equivalent parameter [6] 

(19) 

which represents the first moment of the angular distribution . If we set Yl=(I- g1)yo in (17), 
the first equation becomes 

Thus, gl(P,X) is seen to measure the departure of the eq (20) from the straight-ahead eq (10). 
In the critical range of wavelengths, X",X"the solution of(20) may be expressed in a manner 

similar, for example, to (13b) , that is, 

Yo(p, X) ",C[/.L (X) -P+pgl (p, X)]- l exp { C f X dx' / [/.L (X' ) - P+ pgl (p, X')]} 

C[/.L (X)_p] - l {f X C dx' } 
1 + pg l(X,P)/ [/.L (X)- p] exp 1 + pg h,X')/ [/.L(X') _ p] /.L (X' )- p (21) 

The last expression differs from (13b) in that C is now divided by l + pgl(X,p) / [Jl (X)- pl. We 
shall see in the next section that this factor tends to a constant limit as p approaches the singular 
point /.L s. 

If the ratio UX= Yl /YO is assumed to be Imown, Yo can be calculated, and thereby Yl becomes 
also known. The second equation (17) yields then Y2 directly, the third yields Ya, and so on, 
that is, the whole system of equations unravels automatically. I t was pointed out by Wick [1] , 
an d also by Waller [19], that the set of values thus obtained for the Yl, diverges, in general, 
unless the correct value of ii", was chosen at the start. Thus the solution of the system (17) 
takes the character of an eigenvalue problem. (This property is common to all systems of 
which the first n equations contain n + 1 unlmowns) . 

A simple trial and error procedure on the choice of ux= ydyo in (17) is impractical in the 
critical range of X where the directional distribution is sharply peaked forward and the successive 
coefficients Yt,YI+l .. . are nearly equal , so that the trend of the sequences Yl evolves exceed
ingly slowly. In other words, the angular distribution cannot be characterized in this range 
by just a few Legendre coefficients. Therefore Wick [1] replaced the sequence of the yt's 
with a continuous function and the expression [(l + I )YI+l + lY I-d/ (2l+ 1) - Yl in (17) with the 
second derivative of the function. In this manner the problem of determining the value of 
UX = Yl/YO was reduced to a problem of differential equations. An approximate determination 
of the eigenvalue by variational methods offers little difficulty and was carried out by Wick for 
a constant Jl (X) and for a linear /.L (X) [1]. 

Whereas variational methods are well suited for deriving rapidly an approximate eigen
value, they tend to yield poorer approximations to the eigenfunctions and generally do not 
appear convenient as a basis for higher approximations. In fact , Wick effectively characterizes 
t.he angular distribution of radiation by a single adjustable parameter , in the_first approxima-
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tion. A substantially better approximation is required to take into account more general 
'variations of J.L (X) as well as variations of the kernel k (X' , X). Extensions of Wick 's procedure 
in this direction have been developed but they appear cumbersome. 

When the directional distribution is sharply peaked, as it is in the critical range, X",X" it 
can be characterized conveni ently by its set of moments, which in this case tend to converge 
far more quicldy than the set of Legendre coeffcients Yl. The moments, mo= yo, ml = g[yo= 

y[ - Yo, ... m n= r (l - ux)ny(p,ux,X)du are linear combinations of the Legendre coefficient . J4r 
D eterminations of g[ by trial and error procedures based on calculations of the 1nn 'S should be 
more practical than procedures based on the YI'S. 

Spencer eventually developed an efficient iteration procedure that permits to determine 
fj[ by trial and error, utilizing only a very few- as few as two- of the equations for the 
moments [6) . This method has superseded all previously attempted approaches. 

One point, whi ch emerged in the course of earlier attempts, might be worth mentioning 
because of its possible more general interest. The testing of trial values of gl (p, X) becomes 
particularly easy when the obliquity of penetration is less effective than the variations of 
J.L (X) in shaping the X-ray spectrum, that is, according to section 2.3, when d log J.L /dX< 1. 
In this event, an incorrect initial assumption regarding gl , not only cause the equen ce of 
moments ml,1n2 . .. m n . . . eventually to diverge, but quicldy to a sume a grossly erratic 
trend. This cri tical instability appears to be a general property of systems that may be 
called "strongly non seH-adjoint." It is discussed in appendix B . 

7 . Effects of Small Deflections on Specia l Ana lytical Solutions 

As mentioned in ection 6, Wick did the basic work on the effect of small deflections on 
penetration [1], for two typical situations, namely, constant J.L (X) and linear J.L (X). Either of 
these as umptions about J.L, together with the assumption (11) of a constant kernel k(X',X) , 
makes it possible to eparate the direction variable U x from the energy variable X in the transform 
equation (8) . 

Specifically, the homogeneous pa rt of the equation thus simplified has solutions that arc 
products of a function of X and of a function of (l - u x )p/ lJ.L(X) - pl . This to say that the direc
tional distribution maintains a constant shape as X var ies, but it contracts in width, as J.L (X)- p 
grows smaller , in propor tion to [J.L(X)- p)/p. As a result, the factor l + pgl (X,p)/ [J.L (X)- p) 
in (21 ) remains independent of X and p. Therefore, th e dependence of th e photon 
number on X and p, irrespective of direction, which is given by (21) , has the ame analytical 
jorm as the straight-ahead approximation (13b), except that 0 is replaced with th e con tant 
O/{I + pgl / (J.L - p)}. There is a whole set of solutions of the homogeneous equation, with 
different values of pgt/( J.L - p). 

Wick superposes solutions of this set so as to constru ct a solution of the inhomogeneous 
equation with the o(X- Xo) source. The component solution with the smallest value of 
pg[/ (J.L-p ) predominates over the other components as p approaches J.L s and as X increases 
through th e critical range X", Xs. Therefore, the singulari ty of the Laplace transform is char
acterized by the variation of J.L (X)- p in (21) (or in (13b)) as p approaches J.L s and by the smallest 
value of pgt/ (J.L - p) . 

The application of this procedure to the X-ray problem is straightforward when the pri
mary radiation is the most penetrating one (Xo> Xm, J.L s= J.Lo) [4], since in the very proximity of 
Xo the variations of J.L(X) may well be regarded as linear , J.L(X) "'J.Lo + iLo(X- Xo), and those of 
k (X' ,X) may be disregarded. 

The applicability is less clear when the primary radiation is not the most penetrating one 
(XO< Xm) , that is, when J.L ~X) goes through a minimum in the critical range. However , one 
may surmise that the problem at the minimum (X"'Xm) can be treated by assuming the same 
value of pgt/ (J.L - p) as though J.L (X) were constant. This assumption, which has not been dis
cussed previously, implies that the singularity of the transform is given by the straight-ahead 
formula (14b) with o replaced with the vallie of O/{l + pgt/ (J.L -p)} corresponding to a constant J.L. 
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We present here first a qualitative argument and then a more detailed treatment which 
confirm the correctness of the surmise . 

The trend of the solution of the transform equation in the critical range depends on the 
variations of the attenuation coefficient fJ.(A) and on the effect of small deflections. We want 
to show that the deflection effects predominate over the variations of fJ. (A) , in the limit as p 
approahces fJ. m, so that the deflection effects may be treated as though fJ. C'A ) had the constant 
value fJ.m. 

Obliquity of penetration effectively impedes the build-up of photons if the value of 
fJ. - PUx in (7) becomes substantially larger than the corresponding "straight-ahead" value 
fJ. - p . Therefore, the main build-up is confined to photons for which 1- u x :S; (fJ. - p)/p . 
Compton scattering of photons within this range of directions corresponds to wavelength 
shifts OA:S; 1- u x :S; (fJ. - p) /p. 

On the other hand, variations of the absorption coefficient that affect the asymptotic 
behavior must be of the order t1fJ.'" fJ.m-p. These variations may be described, in the neighbor
hood in the minimum, as t1fJ."'!'umt1A2 (where ,U m= (d2fJ. /dA2)m). Therefore, the wavelength 
change t1A required to bring about a substantial change of fJ. is of the order of magnitude 
[2 (fJ.",-p ) / 'u mjl /2. 

Hence, in the limit for fJ.m-P----'70' this shift t1A becomes proportionately much larger than 
the shift OA required to bring about substantial effects of obliquity. 

Proceeding beyond this qualitative argument, a complete treatment of the problem would 
consist of solving the transform equation (8) by a procedure of successive approximations, 
whose first step should yield the Wick-type results. Efforts in this direction have yielded 
rather cumbersome developments. In practice such a complete treatment has been made 
unnecessary by the development of the semiasymptotic numerical method [6] (see section 2.4), 
which requires, as an analytical complement, only a knowledge of the singularity at P= JI. ., 
U x = 1. One possible approach to the remaining problem would be to seek a special solution of 
the eq (8) for the case when the primary radiation is not the most penetrating one, that is, 
when 'Ao< Am , fJ.s= fJ."" since Wick has already solved the problem for Ao> A"" Jl.s= fJ.o . Whereas 
Wick assumed a linear variation of fJ. , near A = Ao, we should assume here a parabolic variation 
near A= Am, that is, fJ.(A) "'fJ.m+ !,U",(A- Am)2 . Instead of following this approach, we shall take 
a somewhat more general one, namely, to seek special solutions of the equation valid " in the 
asymptotic limit" 

(22) 

that is, for A'" As, U x '" 1. This will be done without utilizing any initial approximation about 
JI. (A) or k (A',A) but the approximations considered above will result automatically from the 
consistent application of the limit process. 

The first step of our treatment consists in choosing instead of U x a new direction variable 
that measures the effect of obliquity on penetration. Equation 21 shows that this effect is 
proportional to the mean value of p(l - u x)/[fJ.(A)-p]. Accordingly, we replace the unit space 
vector u =(iJ,cp) with a homolographic projection variable that is represented in plane polar 
coordinates by the vect,or 

(23) 

(The approximate equality corresponds to the small angle approximation iJ < < 1, which we 
need not utilize at this point.) The inverse transformation of (23) is 

u (v, A) = (areos ux,cp). (24) 

It is also convenient, though not essential, to renormalize the dependent variable y (p ,Ux, A) 
by multiplication with fJ.(A)-p, that is, to take 

w (v, A) = [fJ. (A) - p]y(p,ux, A) . 

no 
(25) 



The dependence of W on p will not be indicated explicitly. 
The transform equation (8) tak es now the form 

(l + tv2)w(v, A) = (2 71"p) -I!oX dA' k(A', A) I dv'o( l - u,u - A+ A' )W(V' ,A' ) + I O(A- AO)j(lLx) 

= (2 71"p )- 1 I dv'k(A - A[A,V,V'], A)W(V', A- A[A,V,V']) + I O(A- Ao)f(1- tv2 (!J.o - p )/p), (26) 

where A stands for 1- U· u' . Since u is given by (24) as a function of v and A, and similarly 
u ' as a fun ction of v' and A' = A- A, A(A,V,V' ) is defined as the root of the equation 

A= 1- U(V,A)'U' (v' ,A- A). (27) 

,i'i~e are now interested in the solu tions of (26) in the criti cal region A ~As , !J. (A) ~ !J. s and in 
the asymptotic limit [!J. ( A) -pJ /p~O. Following Wi ck:, we seek here solutions of the homo
geneous equation corresponding to (26), that is, of 

(1 + h 2) w(v, A) = (271"p )- 1 f dv'k (A- A, A)W(V', A- A) , (28) 

and leave it for the next section to superpose solu t ions of (28) in such a manner as to fulfil 
the inhomogeneous equation (26) at the source where A= AO' 

Our knowledge of the straight-ahead solution and the discussion of section 6 on the effeet 

of small deflection suggest that we spli t off from w(v, A) a factor exp {o IX dA'/ [!J. (A') - PJ}, 

where (j remains to be determined, with the inten tion of showing that this factor contains the 
~vhole singularity of W in the asymptotic limit. Thus we set 

W(V,A)= X(l', A) exp {o f X dA' / [!J. (A')-P l} 

y(P,U. ,A)= [!J.(A) - -p ]- IX (V ,A) exp {C f X d A' / [!J. (A' ) - p J} ' 

Equation (28) becomes 

(29) 

(29') 

(1 + t v2)x (v , A) = (271"P)- l f dv'k (A- A, A) exp {-o fx~A dA' / [!J. (A' )-p ] }X(V', A), (30) 

and we shall show that in the asymptotic limit A vanishes, so that k (A- A,A) equals 0 , and the 
exponential becomes independent of A. As a result X becomes, in this limi t, a nonsingular 
function of v only, so that the exponential in (29) does indeed represent the singular behavior 
of w. The values of C will be fixed by the condition that X (v) converge for large v. 

To carry out this program, we begin by studying the equation (27) which determines A. 
If we substitu te U and u' from (24), (27) becomes 

Terms of higher order in [!J. (A) - p] /p will be disregarded henceforth in the asymptotic limit. 
Such terms should be treated by a power expansion in case one intended to proceed to higheJ 
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approximations. This procedure has the same effect upon (3 1) as the "small angle approxima
tion" indicated in (23). Equation (3 1) reduces then to 

(32) 

Since this equation indicates that A tends to vanish in proportion to [J.! (X) - p] /p, in the 
asymptotic limit, we replace A with the variable 

(33) 

which we surmise to remain finite in the asymptotic limit. The dependence of J1.(X - A) on A 
will also be indicated through a parameter which tends to a finite limit, namely 

'1] = [M (X) - M(X- A)]/pA = [M(X) - M(X- HM(X) -p]/p )]IHM (X) -p] 

J1.(X - A)= J1. (X)-'I]pA. 

With these substitutions, (32) reduces to the quadratic form 

(34) 

(35) 

(2 +V,2 'I] )2e - 2[2 (V~+V, 2) + (V ,4 +V2V,2 - 2v. vf2)'1]]~+ [(v2+V,Z)2_ 4v. V, 2] = O. (36) 

This equation depends on ~ not only explicitly but also tln·ough'l]. However, if the right side 
of (34) is expanded into powers of [J1.(X) - p] /p and only the first term is retained, one finds that 

'I] = (dJ1. /dX) /p = j;. (X) /p (37) 

independently of~. Therefore, ~ is given by (36) as an algebraic expression Hv,v',p. /p ) which is 
finite and independent of [J1.(X )-p] /p in the asymptotic limit. Owing to (33), A vanishes then 
m the asymptotic limit, as we had surmised. 

Therefore , in this limit , k (X- A,'A) = k (X,X) =C, the exponent of (3 0) becomes 

and the equation (30) reduces to 

(39) 

The k ernel of this integral equation depends on X tln'ough j;. . Within the narrow critical 
range of photon energies, X", Xs, in which we seek an analytical solution, M ('A) can be expressed 
as a power senes 

(40) 

Accordingly, one may seek the solution of (39) by expanding both the kernel [l - Hv,v', j;. / p) jJ, /p]C/ j;. 
and the unknown function x(v,X) into powers of (X- Xs). Since the critical range around Xs 
becomes infinitely narrow in the asymptotic limit , the singularity of y(p,ux, X) (at p= Ms,Ux= 1) 
depends only on the zero-order term of the expansion into ('A - Xs)n. Therefore, for the purpose 
of studying this singularity, we may set 

xCV, A) '" xCv, As) = Xo (V) , (41) 

where xo(v) fulfils the eq (39) at X= 'A s , and with P= J1. s, that is, 

(42) 
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In this manner we have reduced the problem to the solution of an equation in the single vari
able v, that is, we have achieved the same separation of the energy and direction variables 
(A and v) as was achieved by Wick. The only difference lies in having achieved the separatio ll 
by a limiting procedure rather than by initial assumptions regarding the variation of IL\ A) and 
the constancy of k(A,A). Notice that (42) holds whether As coincides with the primary wave
length AO (that is, for AO> Am), with the longest wavelength A (that is for AO< A< A",) 01' with the 
wavelength of minimum absorption Am(that is for Ao< Am< A). In the last event ILs= jJm= O and, 
according to (36) and (37) , the kernel of (42) reduces to 

{ [1 - Hv,v' ,jJ silLs) jJ ,,/ ILs]CI:. } ~. ~ o =exp [- (O! IL m) Hv,v' ,0)] = exp { - HOi IL m) i v- v' 12} (43) 

Equation (42) is equivalent to the Wick eigenvalue equations and has finite solu tions xo (v) 
only for special values of O. As in the standard eigenvalue problems with a singJe independent 

. bl h . . . f t' (0) () (I) ( ) (n) ( ) hOI vana e, t e successive elgen unc IOns XO v ,Xo v , .. . Xo v . .. ave , .. . n ... 
nodes. The corresponding eigenvalues 0(0), C(l) , . .. o (n ) .•. depend monotonically on n. 
The eigenvalue 0 (0) is the largest one, algebraically. Each of the eigenvalues o (n ) characterizes a 
type of singularity of y(p,Ux,A). As m entioned before, these singularities coincide with those of 
the straight-ahead solutions (14) in section 5 except for the replacement of the constant 0 with 
O. The solu tion of the inhomogenous equation (8) or (26) will be constructed, in the next 
section, as a superpo ition of components, each of which is a solu tion of the homogeneo us equa
tion, with different values of O. We anticipate here that the component with the largest value 
of 0 in (29' ) is clearly the one with the sharpest singulari ty and therefore the one which predom
inates and which alone matters in the asymptotic limit. 

The equivalence of (42) with the Wick equations is immediately apparent, when As= Am' 
IL s= lLm, ILs= O, that is, when the k:el'llel of (42) takes the form (43), so that 

[ 1 +~V2] Xo(v) = [O/27rIL ",lf dv' exp [ -~ (O/lL m) Iv - v' 12] X(V') ' (44) 

This equation coincides with (W53) [1], as hown by substituting 

1 -
v= "2 (M /k)1/2 S, O/lL m=2k/M, O/lL m= (M + 1)2/2M2. (45) 

When ~ s ,t. ° no better procedure is seen, to show the eigenvalence with the vVick eq uations, than 
to backtrack: from (42) to an equivalent homogeneo us equation in the variables A and U x and to 
handle this problem by Laplace and Fourier transforms in the manner of Wiele One may then 
identify xo(v) with a transform of solu tions of Wick equations according to the formulae 

xo(v) = (/J. s/27r i lL s) J~~", dt expW -c/;;. j([2tj;, .. i lL sF/2 v) 

= (/J. s/87r2i) f~~., dt f dq exp (t_itl /2q·V) tl -C I';'cf> ( [lL s/2~sJl /2q) 

= (/J.s/8rr2i) f~~., dt fdq exp (t - itl /2q .V+ q2/U)tl - CIP. U([ lL s/2 ~sF/ 2q). (46) 

The functionsj, <I> and U obey the equations 

[0 - Jis- ~ it su(d/du) +i-lLsU2] j(u) = (O/h )J du' exp ( i- I u -- U' 12)j(U 1 ) , (47) 

H ILs[ (d/do-)2+ a- I (d/da)] -~ ~sa (d/da) + C exp (- ( 2) } cf>(a) = Gcf> (a) , (48) 

H ILs[ (d/da) 2+ a-I (d jda)] +~ /J.s + C exp (- ( 2) -i- Msa2/ IL S} U(a) = CU (a). (49 ) 
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All of these equations obtain when J.L s= O as well as when J.L s ~O , and for J.L s<O (tha t is, for Ao< 
As< Am) as well as for J.L s> O. In particular, (47) coincides with (44), for J.L s= O, if u is replaced 
with (20/ J.Lm) 1/ 2V . 

The self-adjoint differential equation (49) has the form of the Schroedinger equa tion for 
the motion of a particle oscillating radially in a cylindrically symmetrical potent ial. It is 
identical with (WI05 ) [1] as shown by performing the substitutions 

(50) 

It is also identical with eq (V4) [4] as shown by replacing (J 2 with (J2/ 2 and C wi th - Q/jJ, s. 
Wick has estimated the larges t eigenvalue of his Schroedinger-type equations by a vari

ational method. When i;. s= O he finds 

(5 1) 

This eigenvalue reduces to 0 as J.L m/O approaches zero. The ra tio O/J.Lm represents the differ
ential cross section for Compton scattering, for A' = A, e}.pressed in units of the minimum valu e 
of t he to tal cross section. 'iVhen i;. s ~ O the largest approximate eigenvalue is 

(52) 

where the parameter T indicates the solution of the algebra ic equa tion 

(53) 

When the logarithmi c derivat ive li;. s/J.L sl is large, one may solve (49) by a per t urba tion 
method starting from the solutions of the quan tum mechanical harmonic oscillator problem 
and treating e= J.L s/i;. s as a small quantity. The r esult, g iven in (V6 ) [4], is 

. . " (54) 

wit h 

(55) 

In practice J.L sl i;. s is seldom very small , and the range of application of the simple pert urba tion 
method is limi ted . The investigat ion of eigenvalues proceeds more effectively by the simple 
variat ional method of vVick or by the methods that were developed by Spencer [6] for the numer
ical solution of th e semiasymptotic problem. Appendix C contains a description of th ese lat ter 
methods and tables of eigenvalues. 

8. Effect of Obliquity of the Primary Radiation 

vVe resume h ere the discussion of section 2.6 regarding the influence of th e source direction 
on the penetrat ion law. 

In th e last sec tion, we have studied the singularity of special solut ions of the transform 
equation at p = J.L s. These special solutions obey a homogeneous transform equation shorn of 
any source term. It was understood that the solut ion y (p,ux,X) of the complete, inhomogeneous, 
transpor t equation (8), in the critical range X'" Xs and in the asymptotic limit , should be con
stru cted as a superposition of special solutions (29' ) 

y (p,Ux, X) =~nan [J.L ( X) _ p] - lx(n ) (v, A) exp { Q (n) I \ ZA' / [J.L (X') - P]} 

'" 1:nan[J.L (X) _ p] -l xJn ) (v) exp { Q (n) J >-dA' / [J.L (X' ) -P1}. (5 6) 
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Here x~n) (v) and c ( n) represen t, respectively, the n-th eigenfunction and eigenvalue of (42 ). 
The function x (n) ('V ,~) in the middle part of (56) represents the complete expansion 
x (n)= }; rXr(n) ('V )(~- AsY which begins with x~ .. ) and can be canied to higher order of approxima
tion if necessary. 

As p approach es /l s, the factors exp { C (n) f A dA' / [/l (A')-P]} become infinitely large , provided 

O(n» o. Wick pointed out that only one of the eigenvalues 0 ( 11) , namely 0 (0), may bappen to 
be positive. At any rate the t erm n = O of the sum (56), with the algebraically larges t eigen
value 0 (0), will increase fas test as p approaches /l s and will predominate over all others in the 
asymptotic limit. Therefore, the singularity of y (p ,ux, ~ ) depend s primarily on the behavior of 

exp {o(O) fA d~' / [/l (A') - p] }, as anticipated in section 7. The behavior of this factor is described 

by (14) in section 5. 
In add1tion, one must consider the factor [J.L (~) _ p] -l, if /l (~ ) '" Ms and especially the depend

ence, if any, of the coeffi cient ao on p . The coefficients an of the superposition (56 ) are deter
mined by the inhomogenity of th e transform eqn (8), that is by the characteristics of the radia
t ion source. Therefore, these charact eristics may influ ence the singularity of y (p ,1./'x, A), and 
h ence the penetrat,ion law at great depths, through the dependence of ao on p . 

It has been pointed out in section 2.6 that th e obliquity of the primary radia tion h n,s much 
less influence on the penelra tion for lligh source energies, ~o< <~'" than for AO>~ 'n ' This im
portant difference shows up clead? in the process of det ermining the coeffi cients an of the ex
pansion (56 ). 

If the source energ,\r is considerably larger than the energy of maximum penetration, one 
will probably have to resort to numerical integration of the transform eq (8) from the source 
wavelength ~o at least up to some wavelength ~I somewhat lower than ~m . If Ao< < Am, and one 
is interest ed in th e distribution of photons of energy higher than the energy of maximum pen e
tration, then A8 equals the wavelength of th ese photons and one must choose AI<~s . 'iiVh eth er 
~s<~m or ~s= ~m, we defm e AI so that ~o<AI;S As :::; ~m ' A superposition of analytical soluLions 
valid in the critical rn,ngc ~ "' ~s should then be fitted to the numerical solution at ~I' Under 
asymptotic conditions, (Ms-p )/p < < 1, Lhe fitting-wavelength ~f can be so chosen that M(Af)
Ms» Ms- P, that is so that /l (~)-p can be safely replaced with M (~ ) - /l s for ~ :::; Af' When this 
is so, the pho ton distribu tion at ~f varies no longer as p a.pproaches Ms still further . Similarly 

the analy tical solutions x (n)( V, A) exp{O(n) f AdA' / [M (A')- p]} , extended from A "' ~s to~" n~ 
longer depend on p in the proximity of A" where p may be effec tively replaced with M, . 

Under these conditions, the fitting of the superposit ion of analytical solutions to the actual 
photon dis tribuLion at ~" tha t is, the determination of the coefficients an of (56 ), gives a resul t 
independent of p. An~' change of obliquiLy of the source radiation causes a change of the 
directional di.stribution of the pho tons at ~f and, therefore, a change of the coefficients an. The 
photon distribution through th e critical range will vary with p in a manner which depends on 
th e intensity ratio of the component solut ions a nxn(v,~ ) ex]) { .. . } of (56 ) and, therefore, on 
th e obliquity of the source radi.ation . 

However, the intensity of the lower energy radiation depends only on the n = O term of (56), 
once p is sufficiently near to Mm, and therefore it will vary with p only through exp 

{C(o) r d~' / [/l(~' )-p]} , independ ently of the ratios among the an's. That is, the source obliq

uity influences the intensity of the lower energy radiation through the same factor ao independ
ently of depth of penetration, provided this depth is adequa te to insure fully asymptotic 
conditions. 

A quite different situation prevails when ~o>~m , since the coefficients of the analytical 
olutions in (56 ) must be fitted to the directional distribution of the source radiation right at 
~o= ~s, in the middle of the critical range. Here, the dependence of the an's on p has been worked 
nut by Wick for an isotropic source [1], and in reference [4] for a monodirectional source. 
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General formulae equivalent to a determination of the an's will be given here below, but they 
are of very limited usefulness because of their complication and, especially, because they imply 
a knowledge of the directional eigenfunctions xJnl(v). A practical solution of the effect of 
source obliquity under these conditions will probably require much additional work. 

An analytical solution for }.o> }.m, equivalent to (56) and fitted to the directional distri
bution of the X-ray source, can be obtained performing a Laplace transformation of the energy 
variable }., according to Wiele [1]. This is a solution of the transport equation (R) schematized 
in the following manner: 

(1) J.i. (}. ) is taken as J.i.o + Mo(}. - }.o), 
(2) k(}.' ,}.) is r eplaced with 0, 
(3) U = (tJ,ip) is replaced with a "small-angle approximation" vector 8= (s,ip), with o:::;s:::; ex:> ~ 

such that Ux may be replaced with 1-!s2, and u·u' with 1-! 18- 8' 12• For small angles, one 
sets s,,-,tJ. The solution of the equation is then written as 

Here Un and a (n) are the eigenfunctions and eigenvalues of (49) and 

(58) 

is, in essence, a coefficient of the expansion of the directional distribution of the source- in
dicated by}(ux) in (8)- in terms of the eigenfunctions of (47). Some simplification is attained 
by considering only the X-ray flux integrated over all directions, since in this case (57) yields. 

Much further simplification obtains for two special types of source, namely, (a) mono-· 
directional perpendicular to the source plane, }(1- !S2) = 0(8), and (b) isotropic, or practically 
isotropic, }(1 - !s2) "-'J = const., since (58) reduces, respectively, to 

Dn(a) =2: Sa"' kdke-(J.ok 2 /2P Un(k), (60a} 

and 
(60b). 

Whether Dn is constant or proportional to its argument, the two integrals in (59) may be., 
treated as a Laplace transform followed by its inverse, so that (59) reduces to 

and 

f dSy (p ,s,}.) =~n .!. [Un(O)]:f- 1- [1 +ito( }. - }.o) ]CCnl/(J.o_t, 
4 ~-p ~-p 

(61b) 

respectively, that is, to algebraic functions of J.i.o-p. (The p in the exponen tial of (61a) may be· 
safely replaced with J.i.o) . 

For other types of directional distribution, the dependence of (57) or (59) on J.Lo-p is quite 
complicated and even difficult to survey qualitatively, as had been anticipated. 
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9. Inversion of the Laplace Transform 

Following the discussion of the singularity of y (p,ux ,"' ) at P = J.ls in sections 5 and 7, we 
shall now translate each type of singularity of the Laplace transform into a corresponding 
distribution-in-depth of the X-rays for large values of the depth x within the medium. The 
translation is done by means of the inverse transform formula (7) 

Y(l"UX'''' ) = -21 .fi OO exp( - px) y (p ,Ux, "' )dp = exp (- J.lSx) -21 .fioo exp [(/ls-p)x]y(p,ux,,,,)dp . (62 ) 
71'~ -i '" 71'~ -ioo 

Having split off the factor exp( - J.l sx) in the last expression, the remaining integral represents 
the buildup factor B (x,u x ,"' ) (to within a constant factor equal to the source intensity ). H ence · 
forth , we shall b e interest ed in the dependence of B on x for any given obliquity U x and wave
length'" and, thereforc, we shall omit explicit reference to U x and "'. Similarly, it will be con
venient to indicate y (p,u x ,"' ) simply as Y(/ls-p), so that (62) takes the form 

1 f i'" B (x)=271'i - i'" dp exp [(J.ls- p )x1y (J.l.,-p ). (60) 

The preceding sections have called attention to two types of sin gulari ties of Y (J.l.-p), 
namely: (a) an inverse power law, which we indicate as 

(64a) 

and (b) an exponential function of th e inverse quare root , which we indicate as 

(64b) 

Equation (64a) describes the singulari ty when "'0>"' 11£ and the directional di stribution of the 
source is eith er perpendicular to the source plane or effectively isotropic, as shown, respectively , 
by (6 1a) and (6 1b). In addition, the same type of singularity arises for "'0<"'''' in the calcula
tion of the buildup factor for "'<"'"" that is, when "'o<"'.<"'m, in which case the traigh t-ah ead 
result (14c) applies, except for the r eplacement of 0 with 0(0) . H enceforth 0 (0) will be in
dicated briefl y as O. The value of Kin (64a) is given by 

(65) 

for "" <"''''' according to (14c), and for "'.>"'", with an isotropic somce, according to (6 1b), 
whereas 

(66) 

for "'.>"'m with a mono directional source, owing to the derivative in (6 1a). Equation (64b ) 
describes the singularity when "" ="'11£ and "'>"'m, which implies "'0<"'11£, in which case (14b) 
applies, except for the replacement of 0 with 0, and 

(67) 

It may be added that the build-up of the radiation of maximum penetration "'="'m, for 
whi ch "'.="'m also,-involves an integration of the arctangent type of integral in (13b) over a 
range of 71'/2 of the~'arctangent , instead of 71'. Moreover, in this case, the factor [/l ("')_pj-l in 
(J4b ) represents (/ls-p )- l. As a result , (64b ) must be replaced with 

(64c) 
where 

(68) 
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Notice that both K and D have been defined as numerical coefficients whose value has to 
be calculated for each m edium and for the appropriate wavelength but is always of the order 
of 1. To emphasize the dimensional structure of K and D, we rewrite (65) and (67) in the 
following manner: 

K = Q k(X,X)[(dX) I o el/l s 
(65') 

(67 ') 

The power-law singularity (64a), entered in to the integral (63) yields the build-up factor 
proportional to jJK, which was anticipated in (2). This result can be easily derived by replacing 
(/ls-p);; with - t in the integral (63): * 

(See appendix C, tables 1, 2 for values of K , P- sf/l s, Of /ls.) 
If desirable , one can also carry out the build-up facto r integrat ion by entering into (63) 

not merely the singularity of y as given by (64a), but the expression of f dsy(p ,s, X) as given by 

(6 1a) or (61b). We may write 

(70) 

and proceed, for example, by expanding the binomial 

(71 ) 

and integrating term by term, which yields 

Here IF! indicates, as usual, th e confluent hypergeometric function whose power expansion is 
represented by the ~p, and L -K indicates th e Laguerre function , to which the IFI reduces 
when its second parameter equals 1. The binomial expansion (71 ) is actually unnecessary 
since (70) is directly recognizable as an integral representation of IFI or L_K . Equation (72) 
was derived from a schematized treatmen t of the straight-ahead problem in (14) l2]. 

The sing-ularity (14b) for As= Am, en tered into the integral (63), yields a build-up factor 
represented by a transcendental function of unusual type, namely 

B(x)ct:. 2~if~~oo elp exp { (/l m- P)X+ [D/l m/(/l m-plF/2 } 

= D/l m(D/l mx) -2/3 ,, 1 .f dt exp { (t + t - I / 2) (D /l mx)I /3} = D/lm(D/l mx)-2/3G([D/l mx ]! /3). (73) 
L7r ~ A 

Here t= (/lm-P) (D/l m)- 2/3xl/3, th e contour A loops around th e origin in the positive direction 
and 

G(Z)= 21 . r elt exp [(t+ t - 1/ 2)Z]. 7rd A 
• The expression of th e integral as a r·function is found, lor example, in relerence [20], last formn la on p. 245. 
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For large values of z, the fun ction G can be evaluated by steepest descen t method in the 
proximity of the saddle poin t, which lies at t= 2- 2/ 3 • The result is 

(75) 

This formula , entered into (73), y ields 

(76) 

This build-up factor is proportional to X - 5/6 exp [H(,umx)lJ3j, as anticipated in (3), wi th 

(77) 

This resul t was derived in (II 13c) [3] for t he straight-ahead approximation, that is with 0 in 
the place of C. (See appendix 0, table 3 for values of ,um, H , D , and C). 

The case ).., = )..,s= ).., ,,, with the singularity (64c), may be treated by taking the second deriv
ative of B(x) wi th l'epsect to Dl /2, since this operation generates (64c) from (64a), and then 
replacing D with the appropriate value (68) of F, nam ely D/4, and H wit h H /22/ 3= 0.63 H. 

The function G(z) has been t,ab ulated throughout the range z > 0 by carry ing ou t the 
integration (74) num erically along the steepest descent path Im (t + t- 1/ 2)= 0. However no 
application of this tabulation has been required because Spencer [6] found i t con venient to 
evalua te integrals of the type 

(78) 

by expansion into powers of [D)J. rn / ()J..,- p)]1 /2 followed by term-by-term integrat ion in the 
manner of (70 ) and (72). The method proved practical because the co nvergence of the expan
sion was moderately rap id despite t he large value of the argument. (The number of terms in 
the expansion corresponds to t he multiplicity of scattering [6]). 

I t hank L. V. Spencer for many helpful discussions and for con tribu ting the appendix C . 
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11. Appendix A. Connection Between the 
X-Ray Distributions From a Plane Iso
tropic and From a Point Isotropic 
Source 

The X -ray distr ibution from a plane isotropi c source is 
re presen ted by t he solution of eq (5) , with J(1!,) == 1'. The 
equat ion for a poin t isotropic monoenergetic source is a part ic
u lar case of (4) in which one ta kes t he sOlll'ce te rm S(r , u ,X) = 
O( r )O(X - Xo). The so lu t ion of t his equation will be indi cated· 
as F (I',1I" X), whe re 11,= u ·r /1· is t he radial componen t of u . 

Following up the discussion of pla ne-symmetrical geo m
etries in sectio n I , we notice t hat the plane isotropi c so urce 
o(x)o(X - Xo) may be regarded as a plane integral over a 
distribu t ion of point isotropic so urces located at r o= (O,yo,zo) 

o(x)o(X - Xo) = f-"'", J~"'", dYodzolJ(r - r o)li(X - Xo) . (AI) 
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Owing to the linearity of the transport eq (4), the di stribution 
Y (x,ux, X) will be similarly expressed as an integral over tlui 
distribution F (1· ,1tr,X) . Consider an isotropic poin t source at 
(0, Yo, zo) and a point Pat (x, O,O). The distan ce from t he source 
to Pis r= [x2+ y02 + z02J1/2 and 1tr is equal to (u,x - u.yo - u, zo) / 
[x2+ yoZ +Z02]1 /2. vVe have 

y ( . ' ) - J "' J "' d d F([ 2+ 2+ 2]1 /2 U,x- U. YO - u, ZO,) X,1tx " - Yo Zo x Yo Zo , [ ' + 2+ 2]1/2'''' -'" -'" x- Yo Zo 
(A2) 

If we take cy lindrical coordi nates (p,y"x ), with p2= y02+Z0Z 
and y, = arcos [- (u.Yo + u, zo) / p(1 - 1I;)1/21, (A2) becomes 

The distribution F (r,ur,X) may be represente d by the 
Legendre polynomial expansion 

and similarly 

Y (X ,ux, X) = 1: 1(21 + 1) (411')- 1 Y 1(X, X) 1"1(Ux ). (A5) 

Sin ce the fo27r d y,1" 1([u,x + (l - 11;) ~ p cos y,] / [XZ + p2 ] ~) eq uals 

s impl y 211'1" /(ux) P 1(x/ [XZ+ p2]) , (A3) reduces to 

Y l(X, X) = fD pdpFl( [X2 + p2 ] ~ , X)P/(X/ [X2+ p2 ] ~) 

= !x"' RdRFl(R ,X) P l(X/R ). (A6) 

The LegendJ'e coefficients with 1= 0 represent the total 
intensity distribution at each point, irrespective of direction 
of propagation. Since 1"0= 1, the relationship (A6) simplifies 
for l= O to 

Yo (x, X) = Ix <D RdR Fo(R , X) 

Fo(x, X) = x- loyo(x,X) / ox. 

(A7) 

(A8) 

12. Appendix B. Note on the Treatment of 
Strongly Nonself-adjoint Systems 

Consider the system of equat ions. 

(Bl) 

In the limit p = O this system has a trivially simple solution 
since the first equation contains the variable Xl alone and all 
other equations can be solved chainwise. If p is sufficiently 
small, the terms PXn+l may be regarded as small perturbations 
with respect to the trival case p = O. 

Our method of proceeding is this: If one assumes a trial 
value of the ratio X2/X~ , the first equation determines the 
absolute value of Xl and X2. Thereafter the n-th equation 
determines the n+ l-th variable, chainwise. Owing to the 
smallness of p, any error in the initial estimate of X2/X1 which 

causes a wrong estimate of t anmxm , causes a much larger 
m - l 

error in t he estimate of Xn+l, and so on. A trial and error 
method with successive estimates of xz/x, may t hus proceed 
quite rapidly, because the amplification of the error in 
successive equations soon causes the trial solution to become 
grossly unrealistic, as judged by some suitable criterion. 

Experimental calcu lations were made with the homoge
neous system 

(B2) 

assuming Xn = ° for negative n. This system may be regarded 
as representing a game of chance of the parchesee type, in 
which case X must be posit ive. Successive variables are 
linear functions of the trial value of x t/xo wit h alternate and 
rapidly increasing s lope. Calculation up to n = 8 suffices to 
show that the solu tion becomes unacceptable unless Xl / XO 

"'0.325. 
As a physical mod el for the considerations presented here, 

one may think of a chain of pendulums with asymmetrical, 
or "coaster", couplings, such that the motion of each pen
dulum influences the next pendulum on its right strongly, 
bu t the one on its left only weakly. If the right-to-left cou
pling were nil, then the motion of the whole set would be fully 
determined proceeding from the left to the right. Because 
the right-to-left coupling is weak, one can st ill determine t he 
whole motion ea sily by approximation methods proceeding 
in the same way from left to right. Any error in the initial 
estimate of the motion of one pendulum implies a large error 
in t h e corresponding estimate for t he pendulums further to 
t he right. 

We call this situation "strongly nonseH-adjoint" because it 
is a typical feature of the self-adjoint problem with sym
metric coupling that one must consider the whole set of pen
dulums s imultaneously . Similarly, we would characterize 
the trivial case of a completely one-way coupling as "extreme 
non self-adjoint" . 

In general terms one might state the s it uation as follows. 
Self-adjoint systems are represented by symmetrical mat
rices. Extremely nonsclf-adjoin t systems are represen ted by 
matrices all of whose elements vanish on one side of the 
di agonal ; these systerns have simple solu tions. Systems with 
matrices having small-valu ed elements on one s ide of t he 
diagonal should generall y be amenable to easy approximate 
treatment, especially if these elements are confined to a stri p 
near the diagonal. 

13. Appendix C.* Determination of Wick's 
Eigenvalue by Semiasymptotic Itera
tion Procedures 

This method for determining eigenvalues can perhaps best 
be illustrated by proceeding step by step through the solution 
of a specific example. Thu s, suppose we want to determine 
the eigenvalue of eq (44) for the case of Pb, t hat is, for 
C/iJ.m= 2.90. To begin with, we backtrack a li t tle and define 
a variable 1t= (C/iJ.m)1/2V• In terms of th is variable, eq (44) 
becomes 

[C/iJ.m+ ~ U2J XO(u) = (C/iJ.m) fdU I 217r e- l/2ju - u' j2XO(UI). (C I) 

Next, we multiply this equation by powers of (u2/2), integrate 
over t he u space, and thus write down formally moment 
equations of which the first two are 

(C/iJ.,n)K o+ IC = (C/lL m) Ko } 
(C2) 

(C/iJ.m) Kl + K 2= (C/lLm)(K l+ K o) , 

wh ere K n= (1/ 211') f du (u2/2)nxo(u). If we write ~ = C/iJ.m and 
in sert numbers, these two equations become 

~Ko+ Kl= 2 .90Ko } 

UC + K z= 2.90 (K l + K o) 
(C3) 

Now the right sides of these equations are the moments of 
a smooth , positive, monotonically decreasing (as u-> 00) 
function , which we shall call R(u). We shall assume that a 
reasonable represen tation for this function is R (u) = be- P(u2 f2). 

F rom (C I ) we then have xo(u) = [~ + u2/2]- lbe--P(u2 /2). 
If we take moments of this quantity, we readily obtain the 
relation 

(C4) 

' By L . V. Spencer. 
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where J(x) = xe" [ - Ei( - x)). We Jl OW es tablish an i teration 
proced ure usin g eq (C3) and (C4), na mel), 

g (n + l ) = ~ ( n) { - _I __ _ l} 
. JUJu, ) ~ ( ,,») 

~ ( " ' 1 ) = 2.90 g(n+ l) 

(n+l)- 1 __ 
f3 - g(n+ 1) + 1 

g(I) = 1.3407 

~(J) = 1. 5593 

f3(J )= 0.42722 

g (2) = 1.4556 

~ (2 ) = 1.4444 

{J (2) = 0.40723 

(C5) 

The d ifference between successive e s is converging by a 
factor~3-4 at each step. Conseqll ent l.v, ~(O:» should be, 
within a small fra ction of a pcrcent, equal to 1.404. Thi s 
y ie ld s 0 = 0.484 C. This co mpares wi th vVick 's variat ional 
va lli e of 0 = 0.499 C. (Sec eq (5 1).) 

This type of calculat ion can be extend ed eas il y by taking 
in to accou nt more of t he momen t eq uat ions (C 2). A calcu lation 
makin g use of four moment equ at ions yields a n approximate 
eigenvalu e in agree ment with t hat of t he variat ional method 
to better t han 1 percent . 

The i te ratioll procedure for t he case of a monoton ically 
in creasin g atten uation coefficient can be set up in the same 
way. QUI' original in te ntion was to calculate t he eigenvalues 

where n refers to .n'th approx imation. The middle equation 
in (C5) is simply a rewri te of t he first o r eq (C3), while the 
last equation in (C5) is obtained b y fi tt in g moments of the 
assumed R (u) ' to the right sides of eq (C3). 

The fun ction f(x) can be eas il y calculated from s tandard 
tables. For in t,erpolation between tabulated valu es \\'e li se 
the relat ion f(x + o) ""/(x) [l + o( 1 + l /x) )- o. 

To begin the calculat ion we make a guess t ha t g(O) = I. 
This yields HO) = 1.90, f3(O) = 0.5, and f3o~o = 0.95 . Continuin g, 
1(0.95) = 0.5863. Thus 

g (3) = 1. 4864 

~ (3) = 1.4136 

f3 (3) = 0.40219 

g(4)= 1.493 1 g(5) = 1.495 1 

~(4) = 1.4069 ~(5)= 1.405 

f3(4) = 0.40111 

of tables 2 and 3 by this method usin g foul' mom ent equa tions 
and s tartin g from a variational method valu e. It t urn ed ou t, 
however, tha t the se miasy mptotie ca lclll a Lion s agreed to 
within abou t a pe rcent or betLe l' with t he varia Lional calcu
lations in a ll pa r ts of t he tab les 2 a nd 3 a nd Lhu s we decided 
to present the numeri cal valu es of t he variationa l calcula t ion 
results obta ined from eq (5 1) and (52). 

The agree men t between var iational a nd semiasy mpJ'otic 
calculations a rgues stron gly for an accuracy of 1 percent 0 1' 
so in t he eigenvalu e determina tions . H oweve r, in pracLical 
siuations, J( and l{ depend a lso upon first a nd second deriva
tives, respectively, of p. . These a re difficulL to determin c 
accurately. There may thu s be qu ite sizeable errol's in the 
tabu lated valu es of H and D (table 3) and of ;' ./p. . (tab le 1). 

T A BL E: 1. l "alues of i< ./p. . and C/I-' . lor various materials and 
energ£es 

Source 
energy 

Alev 
JO 
8 
(j 

-1 
:l 
2 

1 
.8 
, 6 
. i 

.3 

.2 

. 15 

Source 
energy 

10 
8 
6 
4 
3 

2 
I 
.8 
.6 
.4 

. a 

.2 

. 15 

H20 

C/~. 

7.5 7.54 
6.6 6.87 
5.5 5.96 
4.0 4.9 1 
3.1 4.22 
2. 1 3.38 

.96 2.37 

. 73 2.12 

. 52 I. 86 

.32 1. 58 

. 22 I. 41 

. 13 1. 23 

.086 I. 12 

Sn 

0. 40 3.61 
. 86 3.49 

1.4 3. 13 
1.1 2. 22 
. 92 I. 95 
.83 I. 63 
.77 I. 17 

. 74 . 798 

. 72 .417 

. 70 .223 

AI F e 

CII" 

4. I 6.21 
4.0 5.91 0.48 4.64 
3.8 5.43 1. 2 4.56 
3.3 4. f,s 2.0 4.25 
2.7 4. 10 2. I 3.89 
2.0 3.33 1.8 3.30 

. 96 2.37 .89 2.36 

. 73 2. 12 .72 2. II 

.. 02 1. 86 . 54 1.81 

.32 I. 57 .37 1. 52 

.22 1. 40 . 32 1.32 

. 155 I. 21 . 31 1.01 

. 145 1. 09 .33 0.767 

Pb U 

0.33 2.88 0.22 2.72 

1.7 2. 65 2. 0 2.48 
1. 7 1. 75 1.9 1.53 
1.6 1. 43 1. 8 1. 21 
1. 5 I. 033 1.6 .852 
1.35 .579 1.4 . 449 

1.2 .333 1.2 . 2130 
.95 . 133 .97 . 100 
. 77 . 0647 .82 .0485 
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TABLE 2. Values oj the ex ponent K = C/ /I. , of the build-up factor for vario~!s combinations 
of the parametel's /1. ,/ Il . and C/ Il. 

[Values of ;,../" . and C/" . for various materials and energies are given in table 1J 

,;../". Cf". ~0.02 0.05 0.1 0.25 0.5 6 
----------------------

0.02 0.0200 
.05 . 01939 
. 1 .01846 
.25 .01617 
.5 .01341 

1 . 01003 
2 
4 
6 
8 

0.0516 O. 1095 0.374 2. 63 13.00 42.3 !l3.0 
. 0494 . 1052 .332 1. 328 5.49 17.21 45.5 
.0473 . 0988 .293 .871 2.98 8.84 23.0 
. 0411 .0844 .23 1 .547 1. 439 3.81 9.48 
.0338 .0687 . 1798 . 388 .887 2.11 4.96 

.0252 .0506 .1289 . 265 .559 1. 211 2.67 
. 0335 .0841 . 1696 .345 . 709 1. 477 

.821 

.577 

.447 I 

TABLE 3.- Values of Il m, H = 3[7r2C2/2Ilm(d21l/dX2)nP /3, 
]) = 4H3/ 27 and C fOT various mateTials 

C 
Material "m II 

(cm'/g per 
D Compton 

wavelength 
unit) 

cm'/Y 
I-f20 0.0167 2.0 1.3 0. 118 
Al .0216 2. I 1.1 .0942 
Fe .0300 2. 8 3. 4 . 0826 
Sn .0351 2.6 2.7 .0689 
W .0391 2.5 2.4 .0619 
Pb . 04 10 2. 3 1.8 .0594 
U .0425 2.1 1.4 . 0565 

WASHINGTON, March 17, 1953. 
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189.5 
76.5 
38.5 
15.69 
8.16 

4.24 
2.28 
l.li3 

.870 

.671 I 

----
272 
108.9 
54.7 
22.2 
11.32 

5.87 
3. 11 
1. 674 
1. 165 
.897 
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