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Penetration of X- and Gamma Rays to Extremely
Great Depths'’

U. Fano ?

Jarlier work on the asymptotic trend of the X-ray intensity at great distances from a
source is reviewed and completed in various aspects. The asymptotic law is shown to be the
same as in the “straight-ahead’” approximation (which disregards deflections) whether the
primary energy is higher or lower than the energy of minimum absorption, provided a constant
is replaced by the eigenvalue of a suitable Wick equation. The penetration in directions
oblique to the source direction hardly ever attains its asymptotic trend when the source
energy is lower than the energy of minimum absorption. This situation raises a difficult
problem regarding the penetration law in the range of great depths where the asymptotic
trend is being approached very slowly.

1. Introduction

The deep penetration of X-rays, or gamma rays, in an infinite, homogencous medium
are discussed. Much fundamental understanding of this phenomenon derives from the work
of Wick [1]° on the analogous phenomenon of neutron penetration. Vice versa, the present
work might contribute additional clarification to neutron problems as well as some background
for still unsolved problems of charged-particle penetration.

This paper constitutes a final report of developments since 1948. It includes a review of
preliminary reports [2, 3, 4] and new material that was required to complete the initial program.
Some concepts and techniques developed in the course of the study but not utilized in the even-
tual solution are nevertheless reported briefly.

The assumption of an infinite, homogeneous medium disregards the effect of boundaries
and inhomogeneities, which constitutes a separate, still largely unsolved, problem.

The very deep penetration of X-rays depends primarily on the course of multiple Compton
scattering under conditions where photoelectric absorption and pair production are compara-
tively unimportant. At the low-energy end of the spectrum, for example, below 50 kev, where
the energy shift of the scattered photons can be disregarded or treated as a small correction,
the diffusion of photons has been studied by Chandrasekhar |5], but without specific reference
to very deep penetrations. (Notice that photons below 50 kev disappear rapidly by photo-
electric effect, in most materials.)* At the high-energy end, where large amounts of X-rays are
regenerated by electrons, a complete study of X-ray penetration would require a treatment of
the whole cascade shower process. The X-ray regeneration remains moderate for secondary
electrons up to 10 Mev in lead, and up to 100 Mev in light materials, and may be treated, if
necessary, in this energy range as a secondary source. The present paper disregards the re-
generation of X-rays by electrons and treats pair production as a mechanism of outright absorp-
tion. Nevertheless, its results apply to the penetration of the tail end of showers that is con-
trolled by photons below 10 Mev in lead and below 100 Mev in light elements.

We shall deal primarily with photions from 50 kev to 50 Mev which experience concurrent
processes of energy degradation and multiple scattering terminating in outright absorption.
Repeated Compton scattering of the “primary’ radiation emitted by a source gives rise to
“secondary” X-rays of lower energy traveling in all directions. In a medium of low atomic
weight, a photon may be scattered 5 or 10 times, on the average, before eventual absorption
by photoelectric effect. The main complication in our study arises from the generation of
this complex radiation.

! Work supported by the Office of Naval Research and by the Atomic Energy Commission Reactor Division.

2 Appendix C is by L. V. Spencer.

i Figures in brackets indicate the literature references at the end of this paper.

4+ This consideration applies also to the further development of Chandrasekhar’s method that was carried out by O’Rourke [21] in connection
with the X-ray penetration problem.
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This complication and the complicated dependence of the cross sections on the photon
energy preclude a fully analytical treatment of the problem. Therefore, the analytical treat-
ment that is developed in this paper does not lend itself readily to direct numerical applications.
However, its results provide one of the footings for a practical method of numerical calcula-
tion [6] whose range of application extends to very large distances from the source. The
analytical laws of intensity variation versus depth also serve to extrapolate the results of num-
erical calculations to still greater distances from the source.

Throughout the present investigation, much reliance has been placed on gaining an
initial qualitative understanding of the factors that control the process of degradation, scat-
tering, and penetration of X-rays. Such an understanding enables one to adapt the mathe-
matical procedure to the conditions affecting each specific problem. In this respect our work
departs from other work in the same field that has been characterized by the initial adoption
of less flexible procedures. For example, the X-ray distribution has been resolved into “orders
of scattering’’ (that is, into once-, twice-, thrice-, . . ., scattered photons) [7, 8, 9]. The ex-
pansion converges poorly where the photons experience protracted scattering and its applica-
tion becomes cumbersome. However, at least in some instances, adequate calculations of
penetration have been made [8]. Semiempirical improvements to the procedure have also
been introduced [9]. Alternatively one may schematize the scattering and degradation
process in such a way that the corresponding basic equations are sufficiently simplified to
allow analytic solution [7, 9, 10, 11]. These simplifications, however, seem generally to in-
volve considerable limitations in the applications of the theory and may delete some char-
acteristic features of the phenomenon. Finally, calculations by the “Montecarlo” sampling
methods are possible [12] but do not yet appear convinecingly successful, at least in their appli-
cation to very deep penetrations, which requires the use of “biased sampling”’.

Our treatment will be limited to X-ray distributions having a plane symmetry, that is,
which vary in one direction of space only and are generated by sources having the same sym-
metry. The study of spherically symmetrical distributions is essentially equivalent to that of
plane-symmetrical ones. The relationship between these types of distributions is well known
[1] and will be indicated in Appendix A. We shall also assume that the source is concentrated
on a single plane, which implies no additional restriction owing to the linearity of the problem.
Notice that plane symmetry may always be attained by considering, instead of the X-ray
flux at each point and in each direction, only the integral or the average flux over all points
of a plane and over all directions forming the same angle with the plane. The reason is that
this plane integral flux generated by a localized source is equal to the localized flux generated
by a plane distribution of sources.

The most general type of source may be regarded as an aggregate of point monodirectional
sources. The study of X-ray penetration under conditions of plane symmetry may serve as a
first step for the treatment of point monodirectional sources. This approach has been ex-
ploited in the study of X-ray penetration to small or moderate distances from a source [13].

2. Survey of the Problem

This section contains a qualitative analysis of the deep penetration of X-rays, with the
purpose of pointing out the specific problems that require a detailed mathematical treatment.

2.1. Transient Processes and Equilibrium States

The layers of material near an X-ray source are traversed almost exclusively by primary
radiation because it takes a certain thickness of material to generate a substantial amount of
secondary radiation. Therefore, one expects the intensity of secondary radiation to build
up rapidly from one layer to the next near the source in a sort of transient process. Vice versa,
at greater depth within a material one may hope to find some sort of steady state in which the
secondary radiation is present in substantial amounts. The nature of this steady state is the
main object of this investigation.
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A typical steady state in which a softer radiation continually arises from a harder one is
commonly called a state of radiative “equilibrium.” The X-ray penetration problem does not
lead to a typical state of equilibrium, but it is helpful to review first the properties of such a
state. Equilibrium involves, in general, three different features, namely: (1) The ratio of the
imtensity of the secondary to the intensity of the primary radiation approaches asymptotically
a maximum value, as the depth of penetration increases. (2) The quality of the secondary
radiation also becomes independent of the depth of penetration, because the intensities of its
various spectral components bear a constant asymptotic ratio to the primary intensity. (3)
Therefore, the intensity of the whole radiation is controlled by the progressive attenuation of
the primary radiation, which follows an exponential law in the case of X-rays. If these
circumstances applied, they would greatly simplify the study of penetration. The maximum
values of intensity ratios mentioned in (1) and (2) are determined by the ratios between the
attenuation coeflicients ° u of the X-rays of various energies. The depth of penetration at
which the intensity ratio between any two X-ray components attains a value within, say 10
percent of the maximum, turns out to be inversely related to the difference between the attenu-
ation coefficients of those components.

2.2. State of Limited Equilibrium

The approach to a steady state under the conditions of hard X-ray penetration presents
the following characteristic departure from the more familiar equilibrium conditions. In the
Compton effect, some of the X-rays have very nearly the same energy, the same direction, and
the same attenuation coefficient after as before the scattering. In fact, the attenuation coeffi-
cient of some among the secondary X-ray components differs only infinitesimally from the
attenuation coefficient of the most penetrating X-rays that are present. This circumstance
does not merely slow down the approach to equilibrium, it actually suppresses the features (1)
and (3) in that the intensity ratio of secondary X-ray components to a monochromatic primary
may grow beyond any limit.

At the same time one may expect that, within a finite thickness of shield, some sort of
equilibrium should be attained among those components of the secondary X-ray spectrum,
whose attenuation coefficient differs from that of the most penetrating component by a suffi-
ciently large amount. In fact, the relative intensity of most secondary components and,
therefore, the average “quality’”” of most of the secondary radiation turn out to approach a
limiting value within the thickness of a finite shield, as indicated in feature (2). On the other
hand, features (1) and (3) do not obtain. The intensity ratio of this secondary radiation to
the primary X-rays does not approach a maximum value, but it keeps increasing; the attenua-
tion of the primary radiation alone does not control the attenuation of the secondary radiation.

In a hypothetical state of true equilibrium, the flow of radiation at great depths within a
shield 1s desecribed as the product of an exponential function of the depth and of a function of
the energy and direction of each secondary radiation component. In the sort of steady state
that is actually achieved, the flow of most of the secondary radiation at great depths is desecribed
as a product of a nonexponential function of the depth and of a function of the energy and
direction of each component. Calling x the depth of penetration, measured from the source,
I the energy of a photon, and 8 the angle that its direction of travel forms with the z axis,

7 the energy of the primary photons, the flux of photons of various energies and directions
®(r,/5,0) takes then the form
(z, E, )~ f(2)g(E, 0) (1)

when z 1s sufficiently large and £ sufficiently smaller than £;.

At large depths most of the energy is carried by the softer secondary components. One
can, therefore, use the approximate form of the flux to evaluate the quantities of practical
interest. These quantities vary, as a function of depth, in proportion to f(z).

5 The term “attenuation coeflicient” is used instead of ““absorption coefficient” to make it clearly understood that x includes the effect of
removal of X-rays from a narrow beam by Compton effect in addition to their true absorption by photoelectric effect or pair production.
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2.3. Intensity Variation at Great Depth

The over-all attenuation of the radiation does not follow an exponential law because the
most penetrating secondary components never approach an equilibrium. The determination
of the over-all course of attenuation, which is described by the function f(z), requires, therefore,
a study of the ever developing transient process of formation and destruction of the hardest
secondaries. This study constitutes the main topic of the present paper.

By centering one’s attention on the formation and absorption of the most penetrating
secondaries, one attains a substantial simplification of the problem. The secondaries that
need be considered cover only a narrow spectral range. Therefore, the variations of the
scattering and absorption cross sections within this spectral range can be treated as small
quantities. Furthermore, the greatest contribution to the deep penetration arises from
secondaries directed in a very narrow beam perpendicular to the source plane.®

However, the small differences of attenuation coefficient and of direction among the most
penetrating components cannot be disregarded, even in the first approximation. On the
contrary, it s just these differences that control the relative intensity of the various components
and thereby the over-all course of attenuation at great depths. The following argument indicates
that small changes of attenuation coefficient and of direction have comparable importance.
Radiation of wavelength X\, which travels in a direction forming an angle ¢ with the axis of
penetration, z, travels a distance A/cos ¢ as its distance from the source plane increases from
r to x+A. Therefore, its intensity decays along x with an effective attenuation coefficient
u(N)/cos ¥. Compton scattering of a photon, with a wavelength shift of 6A Compton units,
results in a change of both u(\) and cos ¢. If a photon starts with a wavelength A, in a direction
with 6,=0, cos 6,=1, after one scattering its direction changes, according to the Compton
law, to d9=arccos [1—0\] and its effective absorption coefficient from w(\y)/cosdy=pu(N) to
w(No+6N) /[1— 0N ~u(No) + (dp/dN)goN+n(Ng)dN. The corrective term (du/d\)dN arises from the
change of y, the term u(Ng)dX from the change of cos ¢. The ratio of the two corrective terms
is d log p/dX\, with X in Compton units, which is a number of the order of 1 for most materials
and wavelengths of interest.

The importance of the small deflections was not appreciated in the early stages of the
investigation, which disregarded altogether the changes of direction experienced by the most
penetrating radiation components, that is, relied on the ‘“straight-ahead approximation.”
The results obtained in this manner, which are reported in (2, 3] and reviewed in section 5,
proved useful, nevertheless, because the effect of small deflections does not change the analytical
form of the intensity variation but only the value of certain numerical constants. This simple
mode of action of the deflections emerges as a result of the analytical treatment of section 7
and may be visualized as follows. Photons that travel in directions oblique to the direction
of maximum penetration are selected-against in the course of deep penetration, much as if
they had, in effect, a larger attenuation coefficient u(\) (see above). The selection operates
simultaneously in favor of photons with near-minimum p and near-minimum, that is, near-zero,
obliquity ¢#. As a result, photons of each wavelength are concentrated in a cone of directions
whose aperture is the narrower the nearer to the minimum is . This is to say that the effect
of small obliquity merely parallels and amplifies the effect of small variations of the attenuation
coefficient. Indeed, the two effects result in a fixed ratio to one another (see sections 6 and
7), so that the study of the effect of variations of x alone, in the straight-ahead approximation,
gives the correct analytical form for the trend of the total intensity at great depths.

Two different analytical forms for this trend result under different circumstances, depending
on the type of variation of the attenuation coefficient among the most penetrating components.
As long as the energy of the primary X-rays is not too large, none of the secondary X-rays
is more penetrating than the primary X-rays. The hardest secondaries are then simply those
whose energy is just a little lower than the energy of the primaries. The progressive accumula-

8 When the whole primary radiation travels in directions oblique to the source plane, there occurs a more complicated situation that will be
discussed in section 2.6 and in section 8.



tion of secondary components under these conditions has been studied in [2] under the
straight-ahead approximation and in [[4], taking into account the deflection effects. The
intensity distribution law f(z) is shown there, and in section 9, to be of the form

f(x) =2% exp(— pex). )

Here g, is the attenuation coefficient of the primary X-rays and K is a number, usually of the
order of 1; K depends on the cross section for Compton scattering and on the first derivative
of the attenuation coefficient with respect to energy, evaluated at the energy of the primary
X-rays. (For numerical values of K and the parameters on which it depends, see appendix
(', tables 1 and 2.) The exponential factor represents the usual effect of attenuation of the
primaries, whereas the factor z* represents the effect of accumulation of hard secondaries and
1s called the “buildup factor”. Numerical values of K are given in appendix C.

At very high energies, absorption by pair production increases so rapidly that higher
energy X-rays are actually less penetrating than lower energy ones. Therefore, in the case of
high-energy primaries, some of the secondary X-rays are more penetrating than the primaries.
The attenuation of the total radiation depends upon the formation and decay of the most
penetrating secondary components, whose photon energies may be much lower than that of
the primaries (in lead the hardest photons have about 3-Mev energy). This phenomenon has
been treated in [3] in the straight-ahead approximation, but the effect of small deflections
has not been taken into account in previous papers. Both treatments are given in sections 5,
7, and 9 and show the intensity distribution law f(z) to be of the form

J (-r):-l‘_ﬁ/ﬁ exp [H(#ml)i]exp(_ﬂmf)- (3)

Here pu,, indicates the minimum value of the attenuation coefficient, that is, the attenuation
coefficient of the most penetrating X-rays in the material under consideration. The factor
exp(—unz) represents the attenuation of these X-rays. The factor 275 exp[H (u,z'] is the
buildup factor, corresponding to z¥ in (2), and H is a constant that depends on the cross section
for Compton scattering and on the values of the attenuation coefficient and of its second
derivative, evaluated at the energy of the most penetrating X-rays. (For values of y, and H,
see appendix C, table 3.)

2.4. Numerical Methods Combined With Analytical Results

The analytical results, (2) and (3), represent limiting forms of the intensity distribution,
valid at extremely great depths, where the distribution depends on the generation and attenua-
tion of an extremely narrow range of secondary spectral components. Those results must be
supplemented in two directions. In the first place, one must find not only the relative X-ray
intensity at different positions but the absolute intensity, particularly of lower energy compo-
nents traveling in various directions, that is, the function ¢(#,4) of eq (1). In the second place,
one must be able to carry out calculations without excessively stringent limitations on the
immportant range of secondary spectral components.

Various partially successful attempts were made to develop methods of successive approxi-
mation to take into account successively higher derivatives of the cross sections in the important
spectral range. However, much greater success was eventually achieved by the semiasymptotic
numerical method of Spencer [6], which fulfills both of the requirements indicated above.
Additional numerical results for the X-ray distribution at moderate depths are provided by
polynomial method of calculation [13].

Reliance on numerical methods to the extent of solving the transport equation numerically
was dictated by the complicated dependence of the cross sections upon the X-ray energy. At
the same time, since the transport equation involves three independent variables (namely
distances from the source, photon energy, and direction of propagation), the reduction of the
numerical burden to manageable proportion requires much guidance from qualitative analysis.
and as much help from analytical development as_conveniently possible. Spencer has stressed



the rapid gain in computational efficiency that can be derived from general information on the
desired solution [6, 14]. Economy also arises from suitable substitutions of the variables of
the problem (see, for example [13]).

The space variable, depth of penetration from the source, can be separated from the other
variables by a Fourier-Laplace transform. This transformation has the additional advantage
of replacing the depth of penetration, which varies over a wide range, with a transform variable
whose important range is narrow. As will be seen in section 4, the analytical treatment that
determines the intensity distribution laws (2) and (3) deals specifically with the behavior
of the distribution function at a singula. point of the transform variable. The numerical
method holds only for values of the transform variable at a finite distance from the singular
point. The analytical treatment serves as an essential complement to determine the critical
behavior at infinitesimal distances from the singularity. Furthermore, the knowledge of this
analytical behavior and of the resulting behavior of the corresponding inverse transform,
(the function f(x) of eq (1), (2), and (3)), serves as a guide for the inverse transform procedure
that is also required in the numerical work.

The two remaining variables, photon energy and direction of propagation, can be separated
only within the limits of application of the analytical treatment, that is, for extremely deep
penetration and narrow range of photon energies (section 7). Otherwise, the interlinkage of
energy and direction offers the most serious difficulty to the solution of the problem. The
difficulty has been overcome in the numerical work by learning how to take into account this
interlinkage without excessive complication [6]. This is done by describing the directional
distribution adequately by means of a few parameters; namely, moments when the distribution
is peaked, and coeflicients of a Legendre expansion when it is flat. The interlinkage of energy
and direction is reviewed briefly in section 6. Numerical methods have to complement the
analytical treatment even when the separation of variables succeeds in order to work out the
directional distribution (section 7 and appendix B).

2.5. Verification of the Qualitative Analysis

The introductory qualitative picture of the X-ray penetration, which has led to the results
indicated by eq (1), (2) and (3), has been verified to a considerable extent by experimentation
and by independent numerical calculations.

Two experiments dealt with a point source of Co®y-rays surrounded by a mass of water.
In the first experiment [15] ionization-chamber and Geiger-counter measurements of total
intensity were made at various distances from the source. The results of these measurements

should be represented, in terms of the approximate eq (1), by f(z) f”27r sin 0d0J mg(E,zS‘)r(E)dE,
Jo 0

where 7(#) indicates the response of the measuring instrument. In the absence of information
on g(#,9), the plot of the measurement versus the depth of penetration z should follow the trend of
the function f(z). The plot does, in fact, take up the trend of (2) at great distance from the
source (1.5 to 2.5 m of water), with a value of K equal to that predicted by the detailed theory of
[4] and of section 7.

In the second experiment [16], the spectrum of the secondary electrons in the water was
measured at various distances from the source. The plot of the number of electrons of various

energies ¢, should be represented according to eq (1) by f(z) fﬂ-Qﬂ' sin 0d0fwg(E,19)R (Ke)dE,
0 0

where R (E,e€) indicates the probability of production of an electron of energy e by a photon of
energy F£. Qualitatively, the shape of the plot becomes independent of the penetration depth
x at great depths as predicted by (1).

Equation (1) gives no information about the shape or the absolute magnitude of ¢g(£,9).
However, rather detailed calculations of the complete distribution function ®(z,/,9), for all
depths of penetration covered by the experiments can be made by the independent method of
‘polynomial expansion [13]. These calculations have successfully predicted the quantitative
results of the two experiments.
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In addition, the results of these calculations for moderately great depths provide a semi-
quantitative check of the predictions of the theory of penetration to very great depths. These
predictions find good verification. In particular, the trend toward an equilibrium distribution
for the lower-energy secondary X-rays is clearly displayed both with respect to the spectral [13]
and to the directional [17] distributions (see fig. 1). The emergence of an equilibrium state at
lower energies, while the higher energy components persist in a state of nonequilibrium is
most clearly displayed in the results of semiasymptotic calculations [6] (see fig. 2).

2.6. Influence of the Source Direction on the Penetration Law

Previous theoretical work on the penetration of radiation from plane sources has dealt
only with isotropic sources and with sources concentrated in a direction perpendicular to the
source plane. In general, one may want to deal with source radiation aimed in directions
that form a fixed skew angle with the source plane. However, this new problem raises questions
that are largely unsolved and that will be indicated briefly here and discussed somewhat further
in section 8.

At the outset one must distinguish between the conditions where the energy of the primary
X-rays lies below and above the energy of minimum attenuation (corresponding to eq (2) and
(3), respectively). In the first event the penetration law is controlled by secondary X-rays of
energies just below the source energy. The overwhelming majority of these secondary X-rays
travel in directions very nearly as oblique as those of the primary X-rays. Therefore, the
obliquity of the source has a very major influence on the intensity distribution at very great
depths.

In the second case, when the source energy exceeds the energy of the most penetrating
secondaries by a substantial amount, the obliquity of these secondaries is less immediately
related to the obliquity of the primaries. It will be shown in section 8 that the penctration is
controlled by the accumulation of secondaries that have been degraded by steps to the energy
of minimum attenuation and simultaneously deflected to directions nearly perpendicular to
the source plane. The absolute intensity of these secondaries depends, of course, on the
obliquity of the source but their rate of accumulation and, hence, the law of deep penetration
are independent thereof.

Therefore, the main difficulties arising from source obliquity occur only when the energy
of the primaries lies below the energy of minimum attepuation. If ¢, indicates the angle
formed by the source direction with the z direction, perpendicular to the source plane, the
“effective attenuation coefficient”” of the primary X-rays of wave length N\ is u(\y)/cos 9, (see
section 2.3). After one Compton scattering with a wavelength shift 6\, the obliquity ¢ is
given by cos d=cos J[1 — 6N +sin Jo[26A—N*]Zcos ¢, where ¢ may have any value. Minimum
effective attenuation after one scattering is obtained when ¢=0, but this minimum value
wNo+0N) /< cosd > may be larger or smaller than the initial value w(\y)/cos ¢, depending on
the values of du/d\ and of ¥,. The most favorable reduction of the effective attenuation co-
efficient is brought about by a succession of scatterings with infinitesimal 6X\’s, all directed so
as to reduce 9. An infinite sequence of such scatterings would eventually bring about a deflec-
tion all the way to 9=—=0 without any finite increase of u, but the probability of such an event
is, of course, infinitesimal of a high order. Nevertheless, an unlikely process of this kind must
determine the penetration at extremely great depths.  That is the penetration will be eventually
controlled by the scanty accumulation of secondary X-rays with energies very near the pri-
maries and direction nearly perpendicular to the source plane, that is, with effective attenuation
coefficients near u;. The course of accumulation of secondary X-rays that are effectively more
penetrating than the primaries because of reduced obliquity has not yet been studied. Knowl-
edge of the limiting trend at extremely great depths may not be very important because it may
not even become recognizable except under unrealistic conditions. Nevertheless, lack of
understanding of this process may undermine the effectiveness of the semiasymptotic and
polynomial methods of calculation, whose application is now being planned.
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If the source emits X-rays of various obliquities, some of which travel initially in the
direction perpendicular to the source plane, it will be just the X-rays in this direction and
their secondaries that achieve great penetration. Deeper and deeper penetrations arise from
narrower and narrower bundles of primary X-rays. Therefore, a source with a broad distribu-
tion of directions contributes less and less toward deep penetration, as compared to a source
aimed exactly in the direction perpendicular to the source (#,=0). This argument will be
confirmed by the analytical treatment of section 8. In particular an isotropic source, or any
source with practically uniform distribution in directions nearly perpenducilar to the source
plane, yields an intensity distribution law in accordance with eq (2) but with a value of K
lower by 1 than the value for a source concentrated at ¢,=0 [6].

3. Transport Equation

The following symbols will be used:

r=(x,y,z)=coordinates of a point of a medium.
N=wavelength of a photon in Compton units (h/me).
U= (Uzuy,u,) = (F,0)=unit vector indicating a photon direction.
u(N) =total (narrow-beam) attenuation coefficient of the medium for photons of wave-
length .
wrn=Thomson scattering coefficient, (probability per unit path) of the medium=
low energy limit of the integral Klein-Nishina coefficient.
kN N) = (3/8) wra[N /N N3N+ (N /N)2(A—N —2) (\—\)]=Klein-Nishina differential
scattering coefficient of the medium for Compton scattering with a wavelength
change from N to \, per unit X\, for " <N\ 2.
Y (r.u\) =number of photons per unit volume, per unit solid angle and per unit \.
5(£) = Dirac’s delta function.
M= wavelength of the source photons (if monochromatic).
#():#()\0>-
N=wavelength of the photons whose attenuation coeflicient has the lowest value
in the range of integration from N\, to \.
ps=(Ny).
M—=wavelength of the photons whose attenuation coefficient is the absolute mini-
mum in the medium under consideration.
/-"m:“(xm>- e

The degradation, penetration, and diffusion of X-rays is governed by a transport equation.
This equation represents the rate of change of the density of photons with a specified direction
and wavelength, from one point to the next in the direction of propagation, as the sum of three
terms namely: (a) the attenuation of the photon density as a result of absorption and scattering,
(b) the addition of photons that take up the specified direction and wavelength as a result of
Compton scattering, (¢) the addition of photons with the specified direction and wavelength
from the source. The equation is:

u-gradY (r,u,\) = —u(N\) Y (r,u,\)
+f;_od>\’k(>«,>\)f{ dw’ 27)%(1—u-w’' — A+ N) Y(r,w ,N)+S@r,u,N), 4)

where S(r,u, \) represents the source, that is, the density of photons produced at r with the
direction w and the wavelength X\. The é-function represents the Compton law which requires
N to equal N+ (1—uw-u’). ‘
Following the plan indicated in the introduction, we assume that the source distribution
has a plane symmetry, that is, that it does not depend on 7 and z, nor on the component ¢ of u,
(but only on ¢#=arccos u,). As a result, ¥ will be similarly independent of 7,z and ¢. We also
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assume that the source is concentrated on the plane =0 and at a wavelength N=2X\,, but this
constitutes no real restriction owing to the linearity of the equation. Accordingly, we have
S(r,u,\)=6(x)6(A—XNo)f(u,) and the equation reduces to

QY (2,1, N) [Ox=—u(N) Y (z,2%,,N\)
+J;)\_zal)\’lc()\’,)\)L1r dw 2m) (1 —u-w — N+ N) Y (xul,N)+6(x)d (\— No)f (uy). (5)

Notice that the kernel Z(\,)\) of this equation may be multiplied by any ratio g(\")/g(N),
provided Y is suitably renormalized.

4. Fourier-Laplace Transform

The transform method involves a separation of variables. It represents the X-ray distri-
bution as a superposition of components, each of which has a certain angular and spectral dis-
tribution uniform over all the space. The intensity of each component varies exponentially or
sinusoidally from point to point according to exp(—pz), where p may be complex.’

The transform and its inverse are:

YN = [ exp (pa) Y (aue, N, (6)

Y (e, N = @) [ exp (—pa)y(p,a, N dp. @)

& The transform method of analysis consists of two steps: (a) A study of the directional and
spectral distribution y(p,u,,\) for various values of p, (b) an evaluation of the inverse transform
integral (7).

The evaluation of the integral may proceed by the path of steepest descent. Whether this
method is eventually followed or not, an analysis of the “topography’’ of the transform y(p,u.,\),
that is, of the distribution of its absolute values over the complex plane p proves very useful.
This analysis indicates what region of the plane yields the largest contribution to the integral
when the steepest descent method is followed. The determination of ¥y (p,u.,\) in this region,
which is often very limited, proves anyhow to be very efficient for evaluating the inverse
transform.

The equation that governs the directional and spectral distribution y(p,u,, N), for each
value of p, derives from (5) by means of the transformation (6), that is, by multiplication by
exp(pz) followed by integration. This equation is:

[ (N) —pusly (p,uz,N) = fox ANEN,N) Lw du’2m)718(1 — w-u— N+ N)y(p,u,, N) +6(N—N) f(u).  (8)

The source term in this equation does not depend on p because the source term in (5) is con-
centrated on the plane x=0.

Because the wavelength of a photon increases as a result of Compton scattering, the dis-
tribution of photons of each wavelength N\ depends on the distribution of photons of shorter
wavelengths A" but not on that of longer wavelength photons. 1If one knows the photon dis-
tribution (in spectrum and direction) at all wavelengths N'<\, one can evaluate the integral
in (8) and thereby find the distribution y(p,u,, N) on the left side of the equation. Thus eq (8)
may be solved in principle stepwise, proceeding from the source wavelength \, to longer and
longer wavelengths. This procedure, which reflects the course of the physical process of energy
degradation, points to an important effect. If the intensity of X-rays of a certain wavelength
builds up to a high value, Compton scattering of these X-rays builds up, in turn, the intensity
of all longer wavelength radiation.

7 Notice that p has here a sign opposite to that which is most common in the literature. The convention adopted here proves convenient in
problems of penetration and straggling.
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descent line of y(p) exp (—pzr) for positive p; ) (, approximate position
of the saddle-point.

Equation (8) shows that 7(p,u,, \) becomes infinitely large when u(\) — pu, vanishes. Fur-
thermore, 7 grows rapidly for those combinations of p,u, and X for which w(X) —pu, is particu-
larly small. These combinations of variables are critical in various respects. We just men-
tioned that onice y(p,u,, N\) has become very large for certain values of u, and \, it remains
correspondingly large for all longer wavelengths. We also know that the distribution of large
values of y(p,u,, N) determines the path of steepest descent of the integral (7). Finally, the
process of numerical integration becomes increasingly difficult as the rate of rise of y(p,u,, N)
increases, so that one may want to utilize, at least locally, analytical methods of solution.

The coeflicient w(N)—pu, of (8) vanishes only for positive real values of p larger than p(X\)
or for negative real values smaller than —u(X\). Therefore, eq (8) becomes singular only for
values of the complex variable p which are confined to the sections of the real axis marked
heavily in figure 3. The lines terminate at p= -+ u,, where u, indicates the smallest value of
w(\) in the range of wavelengths from X\, to X.  There appears to be no other point in the plane
p where y(p,u,, N) diverges.

Figure 4 shows a schematic plot of |y| against real values of p. The plot rises to infinity
at p= 4 pu;, where the equation has become singular for v,=1 and for the wavelength X\, <\ at
which u takes its smallest value u,.

The integrand of (7) equals y(p,u,, N) times exp(—px). The factor exp(— pz), regarded as
a function of p, slopes down to the right for positive values of z and to the left for negative
values. The slope increases in proportion to the distance from the source, |z[. Therefore
the integrand has a minimum, for real p, where 0 log y(p,u,\)/dp==z, that is, at a point that
approaches p=pu, when z is large and positive, or p=—u, when z is large and negative.

This lowest point of exp(—pz)y(p,u.\) against real values of p constitutes the one and only
saddle point along the steepest descent path when exp(—pz)y(p,u,, N) is integrated with respect
to the complex variable p (see fig. 3).

The minimum and the saddle are sharp when |z| is large.  Under these conditions, a knowl-
edge of y(p,u,, N\) over a narrow range of real values of p suffices to evaluate the integral (7)
and thus to calculate the total distribution of X-rays far from the source. The main object
of this paper is just to study the trend of y for real values of p near u, (or —u;). Section 9
deals with the actual evaluation of the integral (7).

For smaller values of the depth of penetration z, the saddle point lies nearer to p=0.
The direct calculation of Y (z,u,,\) at moderate depths also provides convenient expansions
of 4 in powers of p, or of related variables like p/(u,—p) and p? (i—p? [13]. This infor-
mation may serve to interpolate y between the proximity of p=0 and of p= £ p,.

5. Special . Analytical Solutions—Straight-ahead Approximation

In order to study the trend of y for real values of p near u,, we seek approximate analytical
solutions of the transform equation (8) valid for values of N~X\; and of u,~1. This search
will be conducted first in the straight-ahead approximation even though this approximation is
inadequate.
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The straight-ahead approximation consists of setting u,=1 on the left side of (5) or (8).
This procedure is equivalent to the replacement of the depth of penetration z in (5) with the
path length traveled by the photons, irrespective of the obliquity of penetration [18]. The
variables u, and u that still remain in the eq (8) can then be eliminated by integrating over .
Setting

[ duype =), (©)
we obtain the straight-ahead approximation equation

[6(\) — ple(p, )= ﬁzk(k‘,k)‘b(p,%’)dk’ﬂLé()\—M)I, (10)
where I=f fluy)du.

Because we are interested in an approximate solution valid over a narrow range of variation
of A\, we disregard the variations of the differential scattering coefficient & over an interval
N ~X\ and take

k()\,,)\)’vk()\,)\):(3/4);177,:0, (11)

in agreement with the definition of k (see section 3).

Before entering this approximation into (10), we must distinguish two different situations, as
in section 2.3. (a) If the primary radiation is the most penetrating one, that is, if u;=p(Ne)=u,,
the range of approximate integration over X\ is right next to the source wavelength X\,
(b) If the most penetrating radiation is that of wavelength \,,, for which u has its absolute mini-
mum value p,,=pu(X\,), that is, if Ng<\,, the range of approximate integration cannot run all
the way from A, to \,,. In this event, we do not attempt to solve the inhomogeneous equa-
tion (10), but only the corresponding homogeneous equation, in the range of A ~X\,,.

Therefore, we seek the solution of

W)=l =C [ B0, p)aN +T (=N

for
A~ N> Ny (123)
A
and of [p(X)—p]@()x,p)sz (N ,p)dN\
for )
A~ K> Ao (12b)

These equations reduce to differential form, if a derivative is taken with respect to N, and
their solutions are

B(\p) =L (to—p)~'C [1(\) —p] " exp {0 f;dx'/w')—p]} (13a)

&(\p)=C [k()—p] exp {0 | xclx'/[m')—p]}- (13b)

These solutions are derived as special cases of a more general procedure in {18 section 11b].

We are interested in the behavior of these solutions when p approaches the singular point
us, that is, goin (13a) and g, in (13b).

In case (a) the first derivative of p(\’) at the singular point w,, (du/dN)e= po, is different
from zero. Therefore, the integral in the exponent of (13a) has a logarithmic singularity.
In case (b) the first derivative of u(\’) vanishes at u(\)=pu,, N=NX\,.. Therefore the integral
in the exponent of (13b) over an interval of N’ ~\,, is of the arctangent type and its singularity
has the form (u,—p)~"2. If u(\') is regarded as linear in case (a) and parabolic in case (b),
the solutions (12) take the characteristic singular forms [3]:
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B0,0) ~ L= ) L)~ exp {7 log “N L0000 — piehofu—pl-etht (140)
0 0

(b(kyl))wp [LL()\) __])]_1 exp {277'0/[2.‘:‘.'m(f-"nl_p)]”z}, (l4b)

where w,= (d*u/dN)\n.

Even though the solution of the transform equation (10) for values of A> ">\, cannot be
obtained in this simple manner, its dependence on p, as p approaches u,, is described by (14)
for the following reason. As soon as X is sufficiently larger than X\, so that u(N\)—p > >u—p,
p may be replaced in the equation by u,. This implies that the further variations of ®(\,p),
as N keeps increasing, are independent of p, that is, that a state of limited equilibrium, within
the meaning of section 2.2, has been achieved. As p approaches u,, X need depart from X\ less
and less, before the condition u(N)—p > >u,—pis adequately fulfilled. Therefore the approxi-
mations made in the derivation become increasingly good.

The inversion of Laplace transforms with the singularities (14a) and (14b) will be con-
sidered in section 9. However, we anticipate here that the inverse transforms behave, respec-
tively, as (2) and (3) for large depths of penetration .

For the sake of completeness, we mention yet another situation, which combines the
features of (a) and (b), namely, the case where N\;<A<\,,A;=\. Here the pertinent form of
the equation is (12b) and its solution (13b). However, the derivative (du/d\), at X=X\, is
different from zero. Hence, the integral in the exponent of (13b) has a logarithmic singularity
and we find, instead of (14b),

¢(\p) ~C [u(N) —p]©/is=1, (14c)

Various attempts were made in the past to develop methods of successive approximations,
starting from the approximate solutions (13) and (14), to solve the straight-ahead equation (9)
for all values of . Direct numerical integration eventually proved superior [6], even for values
of p rather near u,, despite the fact that the rapid rise of 3 along \, for X near \,, requires small
steps of numerical integration.

6. Possible Treatments of the Obliquity of Penetration

As pointed out in section 2.3, the deep penetration of X-rays is influenced to a substantial
extent by the small obliquity of the most penetrating components. In order to evaluate this
effect, one must, in principle, work out the directional distribution of the X-rays of each wave-
length, that is, solve the complete two-variable equation (8). In practice, one may want to
learn about the distribution-in-angle only the least amount necessary to evaluate the effect on
the trend of penetration.

In order to analyze this situation, one may expand the distribution-in-angle of y(p,u.,\)
into Legendre polynominals P;(u,),

Y(Pyaug,N) =2 3:21+1) (47) " y,(p,N) P (u,). (15)
with

yl(py)‘):J;r duPl(”.r)Z/(Pyun)‘)- (]6)

Equation (6) multiplied by each of the P;’s and integrated, reduces to the system of equations

s @V =P PN = [ Ny NN 50— [, f)du
...................................... 17)

k(N Y(p,N) =2+ Dy (p,N) +Hlyi i (p,N)]/ (214-1)

:.[xt EOV, N Pi(1— M+ N)yu(p,N)dN +-5(A— xO)LW P(u)f(u,)du.

.....................................



The first equation of this system has the same form as the straight-ahead equation (10),
except for the fact that 7, appears in the second term on the left side instead of ¥,. If there
were a way of guessing the ratio

N o N = [y e Ndu [ y(pu,Ndu=i.(p,N), (18)

9, could be replaced with %.(p,N)yo(p,N) in the first eq. (17), which could then be solved as a
single-variable-straight-ahead equation. Thus a knowledge of %.(p,N\), or of an equivalent
parameter, embodies all the information about the directional distribution that is immediately
relevant to the penetration problem.

Instead of u, one may want to use the equivalent parameter [6]

gl(p,k)zl—ﬁr(pw:ﬁ (1~uz>y(p,ur.>\)alu/f4 y(pous)du, (19)

which represents the first moment of the angular distribution. If we set y,=(1-g,)y, in (17),
the first equation becomes

W) =2+ 2N p N = [ RN NN +50=) [ fdu. (20)

Thus, ¢,(p,N) is seen to measure the departure of the eq (20) from the straight-ahead eq (10).
In the critical range of wavelengths, A~ \;,the solution of(20) may be expressed in a manner
similar, for example, to (13b), that is,

A
9o N) ~ CluN) == (p V] exp{C f dx'/w')——p+pgl<p,x'>1}

O —p > C v
=100l —7] CXPU T+ p9:@N) AN —7] m')—p} 1)

The last expression differs from (13b) in that € is now divided by 1+pg(\,p)/[u(N)—pl. We
shall see in the next section that this factor tends to a constant limit as p approaches the singular
point us.

If the ratio u,=1,/y, is assumed to be known, y, can be calculated, and thereby 7, becomes
also known. The second equation (17) yields then 7, directly, the third yields s, and so on,
that is, the whole system of equations unravels automatically. It was pointed out by Wick [1],
and also by Waller [19], that the set of values thus obtained for the 7, diverges, in general,
unless the correct value of u, was chosen at the start. Thus the solution of the system (17)
takes the character of an eigenvalue problem. (This property is common to all systems of
which the first n equations contain n-+1 unknowns).

A simple trial and error procedure on the choice of %,=1,/y, in (17) is impractical in the
critical range of X where the directional distribution is sharply peaked forward and the successive
coefficients y,,,.1 . . . are nearly equal, so that the trend of the sequences y; evolves exceed-
ingly slowly. In other words, the angular distribution cannot be characterized in this range
by just a few Legendre coefficients. Therefore Wick [1] replaced the sequence of the ;s
with a continuous function and the expression [({+1)y;.+1ly,1]/(214+1)—y; in (17) with the
second derivative of the function. In this manner the problem of determining the value of
U=, /1o was reduced to a problem of differential equations. An approximate determination
of the eigenvalue by variational methods offers little difficulty and was carried out by Wick for
a constant u (N\) and for a linear u(\) [1].

Whereas variational methods are well suited for deriving rapidly an approximate eigen-
value, they tend to yield poorer approximations to the eigenfunctions and generally do not
appear convenient as a basis for higher approximations. In fact, Wick effectively characterizes
the angular distribution of radiation by a single adjustable parameter, in the first approxima-
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tion. A substantially better approximation is required to take into account more general
variations of u (N) as well as variations of the kernel £ (A, ). Extensions of Wick’s procedure
in this direction have been developed but they appear cumbersome.

When the directional distribution is sharply peaked, as it is in the critical range, A~X\,, it
can be characterized conveniently by its set of moments, which in this case tend to converge
far more quickly than the set of Legendre coeffcients y,. The moments, mo=1,, m;=g11p=

Yi—Yo, - - - 'rn,,zj;’(l—u,)"y(p,u,,)\)du are linear combinations of the Legendre coeflicients.

Determinations of g, by trial and error procedures based on calculations of the m,’s should be
more practical than procedures based on the y,’s.

Spencer eventually developed an efficient iteration procedure that permits to determine
¢ by trial and error, utilizing only a very few—as few as two—of the equations for the
moments [6]. This method has superseded all previously attempted approaches.

One point, which emerged in the course of earlier attempts, might be worth mentioning
because of its possible more general interest. The testing of trial values of g,(p,\) becomes
particularly easy when the obliquity of penetration is less effective than the variations of
#(N) in shaping the X-ray spectrum, that is, according to section 2.3, when d log u/d\<1.
In this event, an incorrect initial assumption regarding ¢;, not only causes the sequence of
moments m;,m, . . . m, . . . eventually to diverge, but quickly to assume a grossly erratic
trend. This ecritical instability appears to be a general property of systems that may be
called “strongly nonself-adjoint.”” It is discussed in appendix B.

7. Effects of Small Deflections on Special Analytical Solutions

As mentioned in section 6, Wick did the basic work on the effect of small deflections on
penetration [1], for two typical situations, namely, constant u(N\) and linear w(\). Either of
these assumptions about w, together with the assumption (11) of a constant kernel k(N ,)N),
makes it possible to separate the direction variable u, from the energy variable X in the transform
equation (8).

Specifically, the homogenecous part of the equation thus simplified has solutions that are
products of a function of X and of a function of (1—u,)p/|[u(N\)—p]. This to say that the direc-
tional distribution maintains a constant shape as X varies, but it contracts in width, as u(N\) —p
grows smaller, in proportion to [u(N\)—p]/p. As a result, the factor 7-+pg(\p)/[x(N)—p]
in (21) remains independent of N and p. Therefore, the dependence of the photon
number on X and p, irrespective of direction, which is given by (21), has the same analytical
Jorm as the straight-ahead approximation (13b), except that ' is replaced with the constant
C/{l—{—pgl/(u«p)}. There is a whole set of solutions of the homogeneous equation, with
different values of pg,/(u—1p).

Wick superposes solutions of this set so as to construct a solution of the inhomogenecous
equation with the 6(N—NX\,) source. The component solution with the smallest value of
g,/ (u—p) predominates over the other components as p approaches u; and as N increases
through the critical range N~X;. Therefore, the singularity of the Laplace transform is char-
acterized by the variation of u(A\)—p in (21) (orin (13h)) as p approaches u, and by the smallest
value of pg,/(u—p).

The application of this procedure to the X-ray problem is straightforward when the pri-
mary radiation is the most penetrating one (A >\, us=uo) [4], since in the very proximity of
N\ the variations of w(\) may well be regarded as linear, u(N) ~uo+ po(A—NXy), and those of
k(N ,)N) may be disregarded.

The applicability is less clear when the primary radiation is not the most penetrating one
(No<\y), that is, when w(N\) goes through a minimum in the critical range. However, one
may surmise that the problem at the minimum (A~X,,) can be treated by assuming the same
value of pg,/(u—p) as though u(\) were constant. This assumption, which has not been dis-
cussed previously, implies that the singularity of the transform is given by the straight-ahead
formula (14b) with C'replaced with the value of C/{1+pg,/ (u—p)} corresponding to a constant .
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We present here first a qualitative argument and then a more detailed treatment which
confirm the correctness of the surmise.

The trend of the solution of the transform equation in the critical range depends on the
variations of the attenuation coefficient u(\) and on the effect of small deflections. We want
to show that the deflection effects predominate over the variations of w(X\), in the limit as p
approahces u,, so that the deflection effects may be treated as though wu(\) had the constant
value w,,.

Obliquity of penetration effectively impedes the build-up of photons if the value of
w—pu, in (7) becomes substantially larger than the corresponding “straight-ahead” value
w—p. Therefore, the main build-up is confined to photons for which 1—u,< (u—p)/p.
Compton scattering of photons within this range of directions corresponds to wavelength
shifts A1 —u, < (u—p)/p.

On the other hand, variations of the absorption coefficient that affect the asymptotic
behavior must be of the order Au~u,,—p. These variations may be described, in the neighbor-
hood in the minimum, as Au~34,AN (where w,= (d?u/dN?),). Therefore, the wavelength
change AX required to bring about a substantial change of u is of the order of magnitude
[Q(ﬂm_'p)/l:‘.-m]lﬂ-

Hence, in the limit for u,,—p—0, this shift AN becomes proportionately much larger than
the shift 6x required to bring about substantial effects of obliquity.

Proceeding beyond this qualitative argument, a complete treatment of the problem would
consist of solving the transform equation (8) by a procedure of successive approximations,
whose first step should yield the Wick-type results. Efforts in this direction have yielded
rather cumbersome developments. In practice such a complete treatment has been made
unnecessary by the development of the semiasymptotic numerical method [6] (see section 2.4),
which requires, as an analytical complement, only a knowledge of the singularity at p=p,
u,=1. One possible approach to the remaining problem would be to seek a special solution of
the eq (8) for the case when the primary radiation is not the most penetrating one, that is,
when N<\,,, us=pn, since Wick has already solved the problem for \j >\, ps=pno. Whereas
Wick assumed a linear variation of g, near A=2X\,, we should assume here a parabolic variation
near A=N\,,, that is, u(N) ~p,+3i,,(A—\,.)% Instead of following this approach, we shall take
a somewhat more general one, namely, to seek special solutions of the equation valid “in the
asymptotic limit”

[u(N) =pl/p—0, (22)

that is, for A~X\,, u,~1. This will be done without utilizing any initial approximation about
w(N) or k£(\,\) but the approximations considered above will result automatically from the
consistent application of the limit process.

The first step of our treatment consists in choosing instead of u, a new direction variable
that measures the effect of obliquity on penetration. Equation 21 shows that this effect is
proportional to the mean value of p(1—u,)/[u(N)—p]. Accordingly, we replace the unit space
vector u=(J,¢) with a homolographic projection variable that is represented in plane polar
coordinates by the vector

v=(2p(1—us)/(u—p)1"* ) ~ ([p/(u—p))"*3,0). (23)

(The approximate equality corresponds to the small angle appm\unatlon F< <1, whlch we
need not utilize at this point.) The inverse transformation of (23) is

Upy=1— %Z‘?[u()‘) _P]/Z’; u (_U, )‘) i (ilI'(‘OS Uz, “’) (24)

It is also convenient, though not essential, to renormalize the dependent variable y(p,u.,\)
by multiplication with u(X\) —p, that is, to take

w(v;k) = [#()‘) _p]y(p7un )‘) . (25)
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The dependence of w on p will not be indicated explicitly.
The transform equation (8) takes now the form

A
(1—{»%?‘2)@0(2:,)\):(2#1))”] ANEOV ) fdv’a(l—u-u—)\—{- MW@ N T 8(A— A £ty
0 .
= (27p) ! fdv’k(k—- AN O, N w (@ N—ANO U] FT8(N—No) f (1 —30*(uo—D) /), (26)

where A stands for 1—wu-u’. Since u is given by (24) as a function of v and N, and similarly
u’ as a function of v/ and N=X—A, A(\,v,v") is defined as the root of the equation

A=1—u(,)\)-w ©' \—A). (27)

We are now interested in the solutions of (26) in the critical region A~X\,, u(\) ~pu, and in
the asymptotic limit [u(\) —p]/p~0. Following Wick, we seek here solutions of the homo-
geneous equation corresponding to (26), that is, of

1 +30w(w,\) = 2mp)! f(lv’k()\——A, MNw@ ,A—A), (28)

and leave it for the next section to superpose solutions of (28) in such a manner as to fulfil
the inhomogeneous equation (26) at the source where N=NX,.
Our knowledge of the straight-ahead solution and the discussion of section 6 on the effect

X
of small deflection suggest that we split off from w(», \) a factor exp {0[ (l)\'/[u()\’)—])]}y

where € remains to be determined, with the intention of showing that this factor contains the
whole singularity of w in the asymptotic limit. Thus we set

— A
w(®,N) =x(2,\) exp {(’f (l)\’/[u()\’)*p]} (29)

_
VBN = WOV =1 x 0N exp 1T [N lu )= 29)
Equation (28) becomes

(14309 x (0,)) = 2np) ! f o'k (A—AN) exp {~(7f:_l\dx'/[y<x'>—m} XN,  (30)

and we shall show that in the asymptotic limit A vanishes, so that £#(A—A,\) equals O, and the
exponential becomes independent of . As a result x becomes, in this limit, a nonsingular
function of » only, so that the exponential in (29) does indeed represent the singular behavior
of w. The values of C will be fixed by the condition that x () converge for large .

To carry out this program, we begin by studying the equation (27) which determines A.
If we substitute w and u’ from (24), (27) becomes

fi 1_,_[1_1 u(N)—p 02] [1_1 pAN—A)—p Uﬂ]
2 p 2 P

— al LA = 1/2
M{% #A)—p I:l__l #(N)—p 02]_1 p(A—A)—p [1_1 p(A—A)—p Uﬂ]} 2 p0'. (31
2 P 4 2 P 4 p

Terms of higher order in [u(X\)—p]/p will be disregarded henceforth in the asymptotic limit,
Such terms should be treated by a power expansion in case one intended to proceed to higher
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approximations. This procedure has the same effect upon (31) as the “small angle approxima-
tion”” indicated in (23). Equation (31) reduces then to

o ik o ol el

Since this equation indicates that A tends to vanish in proportion to [u(A\)—pl]/p, in the
asymptotic limit, we replace A with the variable

E=Ap/lu(N) —pl, (33)

which we surmise to remain finite in the asymptotic limit. The dependence of p(A—A) on A
will also be indicated through a parameter which tends to a finite limit, namely

=[N — A= 0))/pA=[u(N) — g\ — EHu(\) — pl/p)1/Hu(N) —pl (34)
p(A—A)=p(N) —npA. (35)

With these substitutions, (32) reduces to the quadratic form
@+0"n)282 =202 +0") + (0" + 00" — 200 )9l e+ [ (P40 — 40| =0. (36)

This equation depends on £ not only explicitly but also through 5. However, if the right side
of (34) is expanded into powers of [u(N\) —p]/p and only the first term is retained, one finds that

1= (du/dN)[p=i(N)/p (37)

independently of £. Therefore, £ is given by (36) as an algebraic expression £(v-v’,u/p) which is
finite and independent of [u(\)—p]/p in the asymptotic limit. Owing to (33), A vanishes then
in the asymptotic limit, as we had surmised.

Therefore, in this limit, £(N—AN)=/k(A\,X)=C, the exponent of (30) becomes

T j AN ()=l =T N[ —p]=(C/i) In [1— Ei/p). (38)

A—E[lu(N)— p]/p

and the equation (30) reduces to

(1430 x(0,N) = (C/QWP)de' [1—& (0,07, 0/p) i/ PIPEx (0 V). (39)

The kernel of this integral equation depends on X through k. Within the narrow critical
range of photon energies, A~X\;, in which we seek an analytical solution, u (\) can be expressed
as a power series

Accordingly,one may seek the solution of (39) by expanding both the kernel [1 —£(v,v", /p) i/p)C/ i
and the vnknown function x(2,\) into powers of (A—X\;). Since the critical range around X\
becomes infinitely narrow in the asymptotic limit, the singularity of y(p,u,,\) (at p=ps,u,=1)
depends only on the zero-order term of the expansion into (\—X\,)". Therefore, for the purpose
of studying this singularity, we may set

x(@,N) ~x(@,\) =x0(v), (41)

where xo() fulfils the eq (39) at A=X\,, and with p=y,, that is,

(1 ‘{" %62) Xo (1/) - (0/27"#3) f(ll’,[]. - S(v1v,;/:‘o./l-’~s) /.‘S,/P‘s]C/L" XO(CI) . (42)
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In this manner we have reduced the problem to the solution of an equation in the single vari-
able », that is, we have achieved the same separation of the energy and direction variables
(N and #) as was achieved by Wick. The only difference lies in having achieved the separation
by a limiting procedure rather than by initial assumptions regarding the variation of w(\) and
the constancy of £(X\,\). Notice that (42) holds whether \; coincides with the primary wave-
length A, (that is, for N\;_>\,,), with the longest wavelength \ (that is for N\p<’A<'\,,) or with the
wavelength of minimum absorption \,,(that is for No<{X\,,</\). In the last event u,= 4, =0 and,
according to (36) and (37), the kernel of (42) reduces to

{1 —E(v,v’,hs/m);lx/m]“'z‘s Yiymo=€xp [— (Clun)£(®,0,0)]=exp { —3 (Clp.)jv—v'|2}  (43)

Equation (42) is equivalent to the Wick eigenvalue equations and has finite solutions x,(»)
only for special values of ¢'.  As in the standard eigenvalue problems with a single independent

variable, the successive eigenfunctions lf)o)(vhxél)(v), o x™@®) .. .have 0,1 .. . n ...
nodes. The corresponding eigenvalues C', OV . . . C™ . . . depend monotonically on n.

The eigenvalue C'© is the largest one, algebraically. Each of the eigenvalues 0™ characterizes a.
type of singularity of (p,u,,N). As mentioned before, these singularities coincide with those of
the straight-ahead solutions (14) in section 5 except for the replacement of the constant €’ with
(. The solution of the inhomogenous equation (8) or (26) will be constructed, in the next
section, as a superposition of components, each of which is a solution of the homogeneous equa-
tion, with different values of €.  We anticipate here that the component with the largest value
of O in (29’) is clearly the one with the sharpest singularity and therefore the one which predom-
inates and which alone matters in the asymptotic limit.

The equivalence of (42) with the Wick equations is immediately apparent when \,=\
ws= i, us=0, that is, when the kernel of (42) takes the form (43), so that

my

[ 1450 [xa)=1Cr2mun [ o' exp | =5 Cln)lo— vl o). (44)

This equation coincides with (W53) [1], as shown by substituting
v:—;— (M/k)28, Clun=2k/M, Clun=DM-+1)2/2M2 (45)
When #,7#0 no better procedure is seen, to show the eigenvalence with the Wick equations, than
to backtrack from (42) to an equivalent homogeneous equation in the variables A and u, and to

handle this problem by Laplace and Fourier transforms in the manner of Wick. One may then
identify xo(») with a transform of solutions of Wick equations according to the formulae

Xo(0) = 2 [ dt expter TS (2wl 20
—Gifsei) | dt [dg exp @it g-v) 0 gl 2n) )
—Gufswi) [t [dq exp (—itq-o+ e TEU w200 g). (46)
The functions f, ® and U obey the equations
|0 = g iantdd) + pua |0 = o[ du exp (Flu--wl)f), @7y
(o) + o Wldo)) g ar(ddo) +C exp (—0%) | 6(6)=To(c), (4s)

{ul o)+ o7 @do) 5 i -C exp (—o)—ino’luef UG)=CUG) 49)
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All of these equations obtain when u;=0 as well as when u;50, and for u,<0 (that is, for \o<
A<N) as well as for u; >0. In particular, (47) coincides with (44), for u,=0, if w is replaced
with (20 /) ?v.

The self-adjoint differential equation (49) has the form of the Schroedinger equation for
the motion of a particle oscillating radially in a cylindrically symmetrical potential. Tt is
identical with (W105) [1] as shown by performing the substitutions

Clus=(M-+1)22M?, pfus=2v/M, C|i,=2—op. (50)

It is also identical with eq (V4) [4] as shown by replacing o with ¢2/2 and € with —Q/j,.
Wick has estimated the largest eigenvalue of his Schroedinger-type equations by a vari-
ational method. When g,=0 he finds

O~ (C"*—§ 2= C[1—} (un/C)]". (51)

This eigenvalue reduces to ' as p,/C approaches zero. The ratio (/u, represents the differ-
ential cross section for Compton scattering, for X’ =N\, expressed in units of the minimum value
of the total cross section.  When g0 the largest approximate eigenvalue is

O~ il (Ofu)r(r+1) 7 F /e (i) 7], (52)
where the parameter » indicates the solution of the algebraic equation
4(O/us) (r+1) 24 (po/us) r?=1. (53)

When the logarithmic derivative |u/us| is large, one may solve (49) by a perturbation
method starting from the solutions of the quantum mechanical harmonic oscillator problem
and treating e=pu /i, as a small quantity. The result, given in (V6) [4], is

E:O—% pla—1)+Cé/a(a+e)+ C% (a+te€)?/ud(ate)i+ . . ., (54)
with
a=[1+4(C/p.)el. (55)

In practice u/ps1s seldom very small, and the range of application of the simple perturbation
method is limited. The investigation of eigenvalues proceeds more effectively by the simple
variational method of Wick or by the methods that were developed by Spencer [6] for the numer-
ical solution of the semiasymptotic problem. Appendix C contains a description of these latter
methods and tables of eigenvalues.

8. Effect of Obliquity of the Primary Badiation

We resume here the discussion of section 2.6 regarding the influence of the source direction
on the penetration law.

In the last section, we have studied the singularity of special solutions of the transform
equation at p=pu, These special solutions obey a homogeneous transform equation shorn of
any source term. It was understood that the solution y(p,u,,N) of the complete, inhomogeneous,
transport equation (8), in the critical range N~\; and in the asymptotic limit, should be con-
structed as a superposition of special solutions (29”)

—_ A
Yz, N) =Zutty[u(N) — I 7' x™ (2, N) exp§0(’”f d>\’/[u(>\’)~1)]}

— A
~ Zaaln() — 21X () exp{0<"> f AN (V) —m}- (56)
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Here x," (0) and €™ represent, respectively, the n-th eigenfunction and eigenvalue of (42).
The function x™(»,\) in the middle part of (56) represents the complete expansion
x"=2x" (1) (\—X,)" which begins with x,"" and can be carried to higher order of approxima-

tion if necessary.
. A
As p approaches p,, the factors exp{O(")f (l)x'/[,u()\')—p]% become infinitely large, provided

C™>0. Wick pointed out that only one of the eigenvalues 0", namely €©, may happen to
be positive. At any rate the term n=0 of the sum (56), with the algebraically largest eigen-
value 0@, will increase fastest as p approaches p, and will predominate over all others in the
asymptotic limit. Therefore, the singularity of »(p,u,,\) depends primarily on the behavior of

— A
exp{O“’)f d)\’/[,u()\/)——p]}, as anticipated in section 7. The behavior of this factor is described

by (14) in section 5.

In addition, one must consider the factor [u(N)—p]~*, if u(N\)~pu, and especially the depend-
ence, if any, of the coefficienit @y on p. The coefficients a, of the superposition (56) are deter-
mined by the inhomogenity of the transform eqn (8), that is by the characteristics of the radia-
tion source. Therefore, these characteristics may influence the singularity of v (p,u,.\), and
hence the penetration law at great depths, through the dependence of a, on p.

It has been pointed out in section 2.6 that the obliquity of the primary radiation has much
less influence on the penetration for Ligh source energies, Ng< <\, than for \;>\,,. This im-
portant difference shows up clearly in the process of determining the coefficients @, of the ex-
pansion (56).

If the source energy is considerably larger than the energy of maximum penetration, one
will probably have to resort to numerical integration of the transform eq (8) from the source
wavelength A, at least up to some wavelength X\, somewhat lower than \,,. If \< < \,,, and one
is interested in the distribution of photons of energy higher than the energy of maximum pene-
tration, then \; equals the wavelength of these photons and one must choose \,<\,. Whether
A< N OF Ny=N\,,, we define N\, so that Ng<N\, <X\, <\,.. A superposition of analytical solutions
valid in the eritical range X~X\, should then be fitted to the numerical solution at N\, Under
asymptotic conditions, (u,—p)/p< <1, the fitting-wavelength X, can be so chosen that w(\,)—
us > >us—p, that is so that u(N\)—p can be safely replaced with p(N)—pu; for N<\,. When this
is so, the photon distribution at X\, varies no longer as p approaches p, still further. Similarly
the analytical solutions x ™ (»,\) ('xp{?(’” J‘)\d)\’/[y()\’)—p]}, extended from A~NX\; to A\, no

longer depend on p in the proximity of N, where p may be effectively replaced with ..

Under these conditions, the fitting of the superposition of analytical solutions to the actual
photon distribution at \,, that is, the determination of the coeflicients @, of (56), gives a result
imdependent of p. Any change of obliquity of the source radiation causes a change of the
directional distribution of the photons at X\, and, therefore, a change of the coefficients a,. The
photon distribution through the eritical range will vary with p in a manner which depends on
the intensity ratio of the component solutions a,x,(»,\) exp { . . . } of (56) and, therefore, on
the obliquity of the source radiation.

However, the intensity of the lower energy radiation depends only on the n=0 term of (56),
once p is sufficiently near to u,, and therefore it will vary with p only through exp
{@‘O)f)\d)\’/[p()\’)——p]}, independently of the ratios among the @,’s.  That is, the source oblig-
uity influences the intensity of the lower energy radiation through the same factor @, independ-
ently of depth of penetration, provided this depth is adequate to insure fully asymptotic
conditions.

A quite different situation prevails when N>\, since the coefficients of the analytical
solutions in (56) must be fitted to the directional distribution of the source radiation right at
No=N\;, in the middle of the critical range. Here, the dependence of the a,’s on p has been worked
out by Wick for an isotropic source [1], and in reference |4] for a monodirectional source.
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General formulae equivalent to a determination of the a,’s will be given here below, but they
are of very limited usefulness because of their complication and, especially, because they imply
a knowledge of the directional eigenfunctions x¢*’ (v). A practical solution of the effect of
source obliquity under these conditions will probably require much additional work.

An analytical solution for X\, >>\,, equivalent to (56) and fitted to the directional distri-
bution of the X-ray source, can be obtained performing a Laplace transformation of the energy
variable \, according to Wick [1]. This is a solution of the transport equation (8) schematized
in the following manner:

(1) r(N) is taken as o+ o(N—DNo),

(2) k(NN is replaced with O,

(3) u=(9,¢)isreplaced with a ‘“small-angle approximation” vector 8= (s,¢), with 0 <s < o,
such that u, may be replaced with 1—3s* and w-u’ with 1—%|s—s’[>. For small angles, one
sets s~. The solution of the equation is then written as

1 i 1 e
y(P,s,k)Im f_iw dnen® =20 o fdkelx/%k-sﬂokzﬂp

® ol ] C™lio—1 ol
S f dl ‘"’I:l J“”] Dn< |:1 LJ) 5
b ( )Mo‘—P 0 ‘ +H0_p E +#0—P 67>

Here U7, and C™ are the eigenfunctions and eigenvalues of (49) and

D, <“):4i7r2 f dsf (1 “% 82> fdke—wz'ak.s—ﬁok%’p U, (k) (58)

is, in essence, a coefficient of the expansion of the directional distribution of the source—in—
dicated by f(u,) in (8)— in terms of the eigenfunctions of (47). Some simplification is attained
by considering only the X-ray flux integrated over all directions, since in this case (57) yields

1 e U,(0) - pol T]C M1 fol
-5 n(A—Xg) BN l Pl 0 e od N VN
fdsy(p’s’)‘)—zvri fwim dnerC 02, 2(ko—p) fdle ' [1+#0=p] D. <" [1+#0—p:l)
(59),

Much further simplification obtains for two special types of source, namely, (a) mono--
directional perpendicular to the source plane, f(1—3s?)=4(s), and (b) isotropic, or practically-
isotropic, f(1—%s*) ~f=const., since (58) reduces, respectively, to

Dy(a) = fo " dke—rot220 1T, (k), (60a)

and

D, (o) =3U,(0)f. (60b).

Whether D, is constant or proportional to its argument, the two integrals in (59) may be:
treated as a Laplace transform followed by its inverse, so that (59) reduces to

i . . o (n) ,;0_ © .
f dsy(p,s, =2, 200 4 _1 [“r’”ix ;0 >]C / f kdke=+#ok*20 U, (k),  (61a)
0 0

47 dN po—p
and

ey | o fro(A—No) TJC ™ fiig—1
[ay@sn =23 0O | 1420 [T, (61b)

respectively, that is, to algebraic functions of yo—p. (The p in the exponential of (61a) may be-

safely replaced with p).
For other types of directional distribution, the dependence of (57) or (59) on wy—p is quite:
complicated and even difficult to survey qualitatively, as had been anticipated.
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9. Inversion of the Laplace Transform

Following the discussion of the singularity of y(p,u,,\) at p=u, in sections 5 and 7, we
shall now translate each type of singularity of the Laplace transform into a corresponding
distribution-in-depth of the X-rays for large values of the depth 2z within the medium. The
translation is done by means of the inverse transform formula (7)

i = 1 i
Y (e N =5 f exp(—p2) Yy Ndp—exp (— o) 5. f _exp ()21 y (ps,Ndp. (62)

2w

Having split off the factor exp(—pu) in the last expression, the remaining integral represents
the buildup factor B(z,u,,\) (to within a constant factor equal to the source intensity). Hence-
forth, we shall be interested in the dependence of B on z for any given obliquity %, and wave-
length X\ and, therefore, we shall omit explicit reference to u, and X.  Similarly, it will be con-
venient to indicate y(p,u,,\) simply as y(us—p), so that (62) takes the form

B@ =g | dp exp [w—p)elyu—p), (63)

The preceding sections have called attention to two types of singularities of y(u,—p),
namely: (a) an inverse power law, which we indicate as

Y(us—p)oc(us—p) %7, (640)
and (b) an exponential function of the inverse square root, which we indicate as
Y(us—p) o< exp [Dusf (us—p) V2 (64b)

Equation (64a) describes the singularity when \,>>\,, and the directional distribution of the
source is either perpendicular to the source plane or effectively isotropic, as shown, respectively,
by (61a) and (61b). In addition, the same type of singularity arises for Np<_\,, in the calcula-
tion of the buildup factor for N<'\,,, that is, when Ng< A<\, in which case the straight-ahead
result (14¢) applies, except for the replacement of €' with C©. Henceforth €@ will be in-
dicated briefly as €. The value of K in (64a) is given by

K=0i| (65)

for A<\, according to (14¢), and for A\, >\, with an isotropic source, according to (61b),
whereas

K=0Clj,+1 (66)

for \;,”>\,, with a monodirectional source, owing to the derivative in (61a). Equation (64b)
describes the singularity when \;=X\,, and \>>\,, which implies <\, in which case (14b)
applies, except for the replacement of C' with €, and

D:27r2(.:'2/um(d2u/d)\2)m. (67)

It may be added that the build-up of the radiation of maximum penetration A=N\,,, for
which \,=X\,, also,*involves an integration of the arctangent type of integral in (13b) over a
range of m/2 of theﬁarctangent, instead of . Moreover, in this case, the factor [u(A\)—p]™* in
(14b) represents (us;—p)~'. As a result, (64b) must be replaced with

Y(us—p)oc (us—p) ! exp [Fus/(us—p)1'?, (64c)
where

F=nC*2,,(d*u/dN?) ,=D/A4. (68)
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Notice that both K and D bave been defined as numerical coefficients whose value has to
be calculated for each medium and for the appropriate wavelength but is always of the order
of 1. To emphasize the dimensional structure of K and D, we rewrite (65) and (67) in the
following manner:

d\
((l

b ("> [T, o

The power-law singularity (64a), entered into the integral (63) vields the build-up factor
proportional to +*, which was anticipated in (2). This result can be easily derived by replacing
(us—p)r with —¢ in the integral (63):*

k()\ M) (65"

1 i 1 i /K
B(z)“ﬁf_im dp exp [(ps—p)a](us—p("F =¥ ﬁf—im dt exp (_t)(—t)—Kq:Iﬁ (69)

(See appendix C, tables 1, 2 for values of K, j,/u,, O p,.)
If desirable, one can also carry out the build-up factor integration by entering into (63)

not merely the singularity of y as given by (64a), but the expression of fdsy(p,s,)\) as given by
(61a) or (61b). We may write

B o [ dp explu—p)al u—p) = [ 14020 10)

and proceed, for example, by expanding the binomial

[14£0=2T o ICK AT, .

)V' Mo—DP
and integrating term by term, which yields

B(a)e Z II%L,VZ)[ fo A=Al =1Fi(— K, 1,— jio[A—Agl2) =L e(— jro[A\—Aglz). (72)

Here (F, indicates, as usual, the confluent hypergeometric function whose power expansion is
represented by the =,, and L_x indicates the Laguerre function, to which the F; reduces
when its second parameter equals 1. The binomial expansion (71) is actually unnecessary
since (70) is directly recognizable as an integral representation of #; or L_x. Equation (72)
was derived from a schematized treatment of the straight-ahead problem in (14) |2].

The singularity (14b) for \;=NX\,, entered into the integral (63), yields a build-up factor
represented by a transcendental function of unusual type, namely

B(z)e f I (R R

=Dpn(Dpna)™"? %f dt exp {(¢+17) (Dun@)"* } =Dpn(Dun@) *PE(Dunz]'?). (73)
A

Here t=(un—p) (Du,) 2223, the contour A loops around the origin in the positive direction
and

G(z):z%{fAdt exp [(t4£-12)z]. (74)

*The expression of the integral as a I'-function is found, for example, in reference [20], last formula on p, 245,
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[10]
[11]

[12]
[13]

For large values of z, the function G can be evaluated by steepest descent method in the

proximity of the saddle point, which lies at t=2

G(2) ~(27) 712 (2%432) 7172 exp (272/3z).

This formula, entered into (73), vields

B(x)oc (Dpm) (Dpnx)=5/52755(37) 12 exp [27233 (Dumz)'?].

23 The result is

(76)

This build-up factor is proportional to z7°/% exp [H (u,x)"?], as anticipated in (3), with

H=2"B3D'B=3(x>C?/2pnfi w)'".

(77)

This result was derived in (IT 13¢) [3] for the straight-ahead approximation, that is with ' in

the place of .

(See appendix C, table 3 for values of w,, I, D, and C).

The case A=X\;=X\,, with the singularity (64c), may be treated by taking the second deriv-
ative of B(z) with repsect to DV? since this operation generates (64¢) from (64a), and then
replacing ) with the appropriate value (68) of #, namely D/4, and H with 77/2**=0.63 H.

The function G(z) has been tabulated throughout the range z >0 by carrying out the

integration (74) numerically along the steepest descent path Im(t-+4¢"%)=0.

However no

application of this tabulation has been required because Spencer [6] found it convenient to

evaluate integrals of the type

1 2
37 | AP0—D)" exD{ (i — D2+ D/ — I )

(78)

by expansion into powers of [Du,/(u,—p)]"? followed by term-by-term integration in the

manner of (70) and (72).

sion was moderately rapid despite the large value of the argument.

The method proved practical because the convergence of the expan-

(The number of terms in

the expansion corresponds to the multiplicity of scattering [6]).
I thank L. V. Spencer for many helpful discussions and for contributing the appendix C.
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11. Appendix A. Connection Between the
X-Ray Distributions From a Plane Iso-
tropic and From a Point Isotropic
Source

The X-ray distribution from a plane isotropic source is
represented by the solution of eq (5), with f(u,)=1. The
equation for a point isotropic monoenergetic source is a partic-
ular case of (4) in which one takes the source term S(r,u,\) =
5(r)d(A—Xg). The solution of this equation will be indicated
as F(ru,\), where w,=u-r/r is the radial component of u.

Following up the discussion of plane-symmetrical geom-
etries in section 1, we notice that the plane isotropic source
5(x)s(A—X¢) may be regarded as a plane integral over a
distribution of point isotropic sources located at ro= (0,y,20)

5(@)8(A—No) = f_mm f_mm(lg/uclzoé(r—ru)é()\f—' N). (A1)
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Owing to the linearity of the transport eq (4), the distribution
Y (x,u.,\) will be similarly expressed as an integral over the
distribution F(r,u,,\). Consider an isotropic point source at
(0,70,20) and a point P at (z,0,0). The distance from the source
to P is r=[22+4 4+ 2¢2]"/2 and u, is equal to (ux —uylo— u.20)/
[x2+ yo?+ 202]12.  We have

(A2)

If we take cylindrical coordinates (p,¢,x), with p2= 1+ z¢
and y=arcos [— (uyyo+ u,z0)/p(1—u2)12], (A2) l)e(om(=

UL+ [1—u]Y%p cos ¢
[z2+p?]V2

YA = f d¢f pdpF([x+ o2, )
(A3)

The distribution F(r,u,,A\) may be represented by the
Legendre polynomial expansion

F(ryu,N) =X (2l+1) (4m)71F(r,\) Py(u,), (A4)
and similarly
Y (@,uz,N) = 220+ 1) (4m) 1Y (@, N) Pr(uz). (A5)

27
Since the fo d Y Pi([uze+ (1—u2)* p cos ¢l/[x2+p?]*%) equals

simply 27 P(u,) Pi(x/[22+ p%]), (A3) reduces to
Yila N = [ pdoF il 24,0 PiGallar+ 1)

= L ® RAR Fy(R,)) P(z/R). (A6)

The Legendre coefficients with I=0 represent the total
intensity distribution at each point, irrespective of direction
of propagation. Since Py=1, the relationship (A6) simplifies
for 1=0 to

Yo, N) :Lm RAR Fo(R,N) (A7)

Fo(z,\) =210 Y,(z,\)/ Oz. (AS)

12. Appendix B. Note on the Treatment of
Strongly Nonself-adjoint Systems

Consider the system of equations.

21 Gnmm~+ PTri1=Cn. (B1)

In the limit p=0 this system has a trivially simple solution
since the first equation contains the variable z;, alone and all
other equations can be solved chainwise. If p is sufficiently
small, the terms pz,; may be regarded as small perturbations
with respect to the trival case p=0.

Our method of proceeding is this: If one assumes a trial
value of the ratio z,/z;, the first equation determines the
absolute value of z; and z,. Thereafter the n-th equation
determines the n-1-th variable, chainwise. Owing to the
smallness of p, any error in the initial estimate of x,/x; which

causes a wrong estimate of E AnmTm, causes a much larger

m=

error in the estimate of x,.4, and so on. A trial and error
method with successive estimates of z,/zy may thus proceed
quite rapidly, because the amplification of the error in
successive equations soon causes the trial solution to become
grossly unrealistic, as judged by some suitable criterion.

Experimental calculations were made with the homoge-
neous system

Tn= (Tn—s+Tn-2FTa—1—Tn+1)/2, (B2)

assuming x, =0 for negative n. This system may be regarded
as representing a game of chance of the parchesee type, in
which case z must be positive. Successive variables are
linear funections of the trial value of z,/x, with alternate and
rapidly increasing slope. Calculation up to n=8 suffices to
show that the solution becomes unacceptable unless x/z
~0.325.

As a physical model for the considerations presented here,
one may think of a chain of pendulums with asymmetrical,
or ‘“coaster”, couplings, such that the motion of each pen-
dulum influences the next pendulum on its right strongly,
but the one on its left only weakly. If the right-to-left cou-
pling were nil, then the motion of the whole set would be fully
determined proceeding from the left to the right. Because
the right-to-left coupling is weak, one can still determine the
whole motion easily by approximation methods proceeding
in the same way from left to right. Any error in the initial
estimate of the motion of one pendulum implies a large error
in the corresponding estimate for the pendulums further to
the right.

We call this situation “strongly nonself-adjoint’’ because it
is a typical feature of the self-adjoint problem with sym-
metric coupling that one must consider the whole set of pen-
dulums simultaneously. Similarly, we would characterize
the trivial case of a completely one-way coupling as “extreme
nonself-adjoint”.

In general terms one might state the situation as follows.
Self-adjoint systems are represented by symmetrical mat-
rices. Extremely nonself-adjoint systems are represented by
matrices all of whose elements vanish on one side of the
diagonal; these systems have simple solutions. Systems with
matrices having small-valued elements on one side of the
diagonal should generally be amenable to easy approximate
treatment, especially if these elements are confined to a strip
near the diagonal.

13. Appendix C.* Determination of Wick's
Eigenvalue by Semiasymptotic Itera-
tion Procedures

This method for determining eigenvalues can perhaps best
be illustrated by proceeding step by step through the solution
of a specific example. Thus, suppose we want to determine
the eigenvalue of eq (44) for the case of Pb, that is, for

@1 —2:90% TQ_begin with, we backtrack a little and define
a variable u=(C/u,)"?». In terms of this variable, eq (44)
becomes

[C/um+—u2]m<u>~(0/nm) Jaw 5 eru—wixw). ©

Next, we multiply this equation by powers of (u42/2), integrate
over the u space, and thus write down formally moment
equations of which the first two are

(C/um) Ko+ Ki= (Clum) Ko }
(C/pm) K1+ Ky= (Clum) (Ki+ Ko))

where K, = (1/21r)fdu(u2/2) nxo(w). If we write ¢=C/un and
insert numbers, these two equations become

£Ky+ K1 =2.90K, }
£Ki+ K,=2.90(K:+ Ky))

(C2)

(C3)

Now the right sides of these equations are the moments of
a smooth, positive, monotonically decreasing (as wu— =)
function, which we shall call R(u). We shall assume that a

reasonable representation for this function is R (u) = be—8(w*/2)
From (C1) we then have xo(u) =[£+u2/2]-1be-B0?/2)
If we take moments of this quantity, we readily obtain the

relation
i/ Ko=g= s{ﬂ 5 1}, (C4)

*By L. V. Spencer.
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where f(z)=ze*[— Ei(—2z)]. We now establish an iteration
procedure using eq (C3) and (C4), namely

1

(n+1) — (n)J —

g £ If(ﬁ(n)g(n)) ]}

£t =2 90— g(ntD ; (CH)
i 1

B("H):g(nu),l;l

gM=1.3407 g®=1.4556
£ =1.5593 £@=1.4444
BW=0.42722

F(BWED)=0.5172

B(?) =0.40723
f(BPE®)=0.49284 f(BG

The difference between successive &’s is converging by a
factor~3-4 at each step. Consequently, &(®) should be,
within a small fraction of a percent, equal to 1.404. This
yields C=0.484C. This compares with Wick’s variational
value of C=0.499C. (See eq (51).)

This type of calculation can be extended easily by taking
into account more of the moment equations (C2). A calculation
making use of four moment equations yields an approximate
eigenvalue in agreement with that of the variational method
to better than 1 percent.

The iteration procedure for the case of a monotonically
increasing attenuation coefficient can be set up in the same
way. Our original intention was to calculate the eigenvalues

where 7 refers to n’th approximation. The middle equation
in (C5) is simply a rewrite of the first of eq (C3), while the
last equation in (C5) is obtained by fitting moments of the
assumed R(u) to the right sides of eq (C3).

The function f(z) can be easily calculated from standard
tables. For interpolation between tabulated values we use
the relation f(x+6) =f(x)[1+4+6(1+1/z)]—s.

To begin the calculation we make a guess that ¢(°)=1.
This yields £(°) =1.90, §(°) =0.5, and g°°=0.95. Continuing,
£(0.95) =0.5863. Thus

g® =1.4864
E®=1.4136

g¥9=14931 ¢g©®=1.4951

£@=1.4069 £ =1.405
B®=0.40219 BW=0.40111

£@)=0.48632 [f(BWEW)=0.48481

of tables 2 and 3 by this method using four moment equations
and starting from a variational method value. It turned out,
however, that the semiasymptotic calculations agreed to
within about a percent or better with the variational calcu-
lations in all parts of the tables 2 and 3 and thus we decided
to present the numerical values of the variational calculation
results obtained from eq (51) and (52).

The agreement between variational and semiasymptotic
caleulations argues strongly for an accuracy of 1 percent or
so in the eigenvalue determinations. However, in practical
sinations, K and H depend also upon first and second deriva-
tives, respectively, of u. These are difficult to determine
accurately. There may thus be quite sizeable errors in the
tabulated values of I and D (table 3) and of p,/u, (table 1).

Tasre 1. Values of ps/us and Clu, for various materials and
energies
H,0 Al ‘ Fe ‘
| Source S -
energy . .
| i | Ol | e | O | el | O
Mev
10 7.5 7. 54 4.1 6.21 | ______ B
8 6.6 6. 87 4.0 5.91 0.48 4.64
6 5.5 5.96 3.8 5.43 1.2 4.56
4 4.0 4.91 3.3 4.68 2.0 4.25
3 3.1 | 422 2.7 4.10 2.1 | 3.8
2 2.1 | 3.38 2.0 3.33 1.8 | 3.30
1 6| 2 .96 2.37 .89 2.36
| .8 73 2.12 .73 2.12 .72 2.11
.6 .52 186 .52 1.86 . 54 1.84
4 .32 1. 58 .32 1, 57 .37 1.52
.3 .22 1.41 .22 1. 40 .32 1.32
N> .13 1.23 .155 1.21 .31 1.01
.15 . 086 1,12 145 1.09 .33 0.767
|
Source =
energy Sn Pb U
10 | coeoon | cmen | aeeee
& T | RO | R T | B
O N | SRS | R s | S
4 0.40 361 |
3 .86 3.49 0.33
2 1.4 3.13 il 'rf A
1 15511 2.22 i/ 3
.8 .92 1. 95 1.6 .
oli) .83 1. 63 1.5 .6
o N 1817 1.35 .4
.3 74 798 1.2 . 333 1.2 . 260
D 5 417 .95 L 133 A . 100
.15 70 223 .77 L0647 .82 . 0485
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Values of the exponent K= 6/;28 of the build-up factor for various combinations

TABLE 2.
of the parameters pg/us and Clu,
[Values of sis/us and C/us for various materials and energies are given in table 1]
fises Clps=0.02 0.05 0.1 0.25 0.5 2 4 6 8
0.02 0. 0200 0. 0516 0.1095 0.374 2. 63 13. 00 42.3 113.0 189.5 272
.05 . 01939 . 0494 L1052 .332 1.328 5. 49 17. 21 45.5 76.5 108. 9
L . 01846 L0473 . 0988 b 23.0 38.5 54.7
.25 . 01617 L0411 . 0844 9.48 15.69 22.2
.5 . 01341 . 0687 4. 96 8.16 11.32
1 . 0506 2.67 4.24 5.87
D . 0335 1.477 2.28 3.11
4 e e .821 1.173 1.674
6 .877 . 870 1.165
] . 447 I L671 . 897

TaBLE 3.—Values of up, H=3[x2C2/2u, (d2u/dN?),]15,
D=4H3/27 and C for various materials

WasHiNGgTON, March 17, 1953.

C
(cm?/g per
Material ot H D Compton
wavelength
unit)
cm?/g
H20 0. 0167 2.0 1.3 0.118
Al . 0216 2.1 1.4 . 0942
Fe . 0300 2.8 3.4 . 0826
Sn . 0351 2.6 2.7 . 0689
W . 0391 2.5 2.4 . 0619
Pb . 0410 2.3 1.8 . 0594
U . 0425 2.1 1.4 . 0565
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