Pairs of Normal Matrices With Property L

Helmut Wielandt

A short proof is given, under weaker assumptions, of the following theorem first proved by N. Wiegmann: If the eigenvalues α_i, β_k of two normal $n \times n$ matrices A, B may be numbered in such a way that the eigenvalues $\gamma_i(z)$ of $C(z) = A + zB$ are given by $\gamma_i(z) = \gamma_i + z\beta_k$, for $i = 1, \ldots, n$ and all complex values of z, then $AB = BA$.

Two $n \times n$ matrices A, B are said to have property L if their eigenvalues α_i, β_k($k = 1, \ldots, n$) may be ordered in such a way that the eigenvalues of $A + zB$ are normal, for all complex numbers α_i, β_k. Though every pair of commuting matrices has property L, the converse is not true. However, if A and B have property L and are normal, then $AB = BA$ according to a theorem of Wiegmann. We wish to show that the assumptions of Wiegmann's theorem may be weakened considerably. We begin by proving the following lemma which has some interest in itself.

Lemma: Let A and B be arbitrary $n \times n$ matrices. Then the set Z of all points z in the complex plane for which $A + zB$ is normal, is either the whole plane, a straight line, a circle, or it contains, at most, two points. If B is normal, neither the circle case nor the two-point case may occur. If Z is the entire plane then $AB = BA$.

Proof: $A + zB$ is normal if, and only if,

$$(A + zB)(A^* + zB^*) - (A^* + zB^*)(A + zB) = 0,$$

(1)

If $z = x + iy$, (1) is equivalent to a set of $2n^2$ real linear equations in x,y, and $(x^2 + y^2)$. Each of these $2n^2$ equations defines either the whole plane, a circle, a straight line, or else, at most, one point.

The intersection of these $2n^2$ points sets obviously is one of the six types described in the lemma. That all these types may indeed occur is shown by the following matrices $A + zB$:

$$
\begin{pmatrix}
1 & z \\
z & 1
\end{pmatrix}, \begin{pmatrix}
z & 0 \\
0 & z
\end{pmatrix}, \begin{pmatrix}
0 & z \\
z & 0
\end{pmatrix}, \\
\begin{pmatrix}
z & 0 \\
0 & z
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}.
$$

In case B is normal, the terms of (1) containing zz^* cancel, hence Z is determined by linear equations in x and y only. So Z is neither a circle nor a pair of points.

In case Z is the entire plane (1) holds for every z, hence the coefficient of z vanishes, that is, $BA^* - A^*B = 0$. Since B commutes with A^*, it also commutes with every polynomial $f(A^*)$, hence, with A itself. (If A is normal, then $A = f(A^*)$ for some polynomial f. This well-known fact follows by transforming A into diagonal form by means of a unitary transformation.) The lemma being proved, we turn to the generalization of Wiegmann's theorem.

Theorem: If the eigenvalues α_i, β_k of two normal matrices $A = (a_{ik})$, $B = (b_{ik})$ may be ordered in such a way that the eigenvalues $\gamma_i(z)$ of $A + zB$ satisfy the inequalities

$$\sum_{k=1}^{n} |\gamma_k(z)|^2 \geq \sum_{k=1}^{n} |\alpha_k + z\beta_k|^2$$

(2)

for some values $z = z_\lambda$ ($\lambda = 1, \ldots, l$) which are the vertices of a polygon containing 0 in its interior, then $AB = BA$. (This obviously contains Wiegmann's theorem since if A and B have property L then (2) holds even with equality sign for every z.)

Proof: According to a theorem of Schur, we have

$$\sum_{i,k} |a_{ik} + zb_{ik}|^2 \geq \sum_{k} |\gamma_k(z)|^2$$

(3)

for every z, where the equality holds if, and only if, $A + zB$ is normal. From (3) and (2) we have for $z = z_\lambda$

$$\sum_{i,k} |a_{ik} + zb_{ik}|^2 \geq \sum_{k} |\alpha_k + z\beta_k|^2$$

(4)

which reduces to

$$\sum_{i,k} (a_{ik}z\bar{b}_{ik} + a_{ik}z\bar{b}_{ik}) - \sum_{k} (\alpha_kz\bar{\beta}_k + \alpha_kz\beta_k) \geq 0$$

(5)

since $\sum |a_{ik}|^2 = \sum |\alpha_k|^2$ and $\sum |b_{ik}|^2 = \sum |\beta_k|^2$ in view of the fact that A and B are normal. Since the left-hand side of (5) is linear and homogeneous in x and y, (5) defines either a half plane containing 0 on its boundary or the left-hand side of (5) vanishes identically. The former case cannot occur, for the half plane contains z_1, \ldots, z_l, hence it contains 0 in its interior. So in (5), and hence in (4), equality holds for every z. Combining this with (2) and (3) we

conclude that in (3) equality holds for \(z=z_3 \), hence \(A+z_3B \) is normal. Since \(z_1, \ldots, z_l \) are not collinear and \(B \) is normal, the lemma asserts that \(A+zB \) is normal for every \(z \), hence \(AB=BA \).

Remark: The theorem is best possible in the sense that there exist noncommuting normal matrices \(A, B \) such that inequality (2) holds for every \(z \) of a closed half plane containing 0 on its boundary (and for a fixed suitable ordering of the eigenvalues \(\alpha_k, \beta_k \)). An example is given by

\[
A = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & i & 0 \\
0 & 0 & 0 & -i
\end{pmatrix}, \quad B = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix}
\]

with the ordering \(\alpha_k=1, -1, i, -i; \beta_k=i, -i, 0, 0 \).

Here we have \(\gamma_k(z)=1, -1, (-1-z^2)^{1/2}, -(1-z^2)^{1/2} \)

hence \(\sum |\gamma_k(z)|^2 \geq \sum |\alpha_k+z\beta_k|^2 \) for every \(z \) with \(y \geq 0 \)

(though \(\gamma_k(z)=\alpha_k+z\beta_k, k=1, \ldots, 4 \) is valid for \(z=0 \) only).

Washington, April 17, 1953.