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Errors Introduced by Finite Space and Time Increments

in Dynamic Response Computation
Samuel Levy and Wilhelmina D. Kroll

An investigation is made of the accuracy and stability of numerical integration methods
when applied to the computation of the dynamiec response of structures to impact loads.
The effect of finite time increments is studied both by obtaining analytical solutions for a
single-degree-of-freedom system and by carrying out numerical integrations for many-
degree-of-freedom systems; the effect of finite space increments is studied by replacing a
continuous beam by a diserete number of elastically connected point masses. It is found that:
(1) Of the methods investigated, only Houbolt’s is stable when the time increments are large
compared with the natural periods of the system. Errors are introduced by Houbolt’s
method, in this case, which result in the damping out of the responses in the higher modes
of vibration. All of the methods give good results when the time inerement is less than about
1/30 of the period in the highest frequency mode. (2) The distributed mass of a beam can
be considered to be concentrated at relatively few mass points for computational purposes;
using a five mass idealization, the bending moment at the center of a uniform beam is deter-
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mined with good accuracy.

1. Introduction

With larger aircraft, higher landing speeds, and the
necessity of flying in bad weather, the transient
vibrations caused by severe gusts, landing impacts,
and similar shock loads are becoming increasingly
important in the stress analysis of airplanes. The
usual method of computing these transients is to
superpose the response in a small number of the im-
portant modes [1, 2].! Such computations are
lengthy and in some cases give results that are of
questionable accuracy [3].

Houbolt [4] presents a numerical integration
method in which the derivatives in the equations of
motion are replaced by finite differences to permit a
step-by-step calculation of the dynamic response of
an elastic aireraft entering a gust. Houbolt’s
method is adaptable to the problem of the dynamic
response of an airplane to landing impact and was
used [5] to determine the deflections of the wing for
an unsymmetrical two-point landing of a model air-
plane. From these deflections, the bending mo-
ments on each wing at stations 17.5 inches from the
wing root were computed. The computed results
were compared with experimental results. The
agreement was good, indicating that the difference
equation approach holds promise as a means of
determining the dynamic response of airplanes to
shock loads.

The purpose of the present paper is to determine
the effect of the use of finite time increments and of
the replacement of the continuous structure by a dis-
crete number of elastically connected point masses
on the accuracy and convergence of numerical inte-
gration methods. The errors due to using too
coarse a time increment to adequately describe the
fine detail in the force-time history and due to
approximating the initial conditions by various finite
difference approximations are not considered in this

! Figures in brackets indicate the literature references at the end of this paper.
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report. A general study of errors in numerical inte-
gration procedures, using techniques similar to those
in this report, is given in references [6] and [7].

2. Error Due to Finite Time Increment

In order to determine the errors introduced by
finite time increments in numerical integration meth-
ods, a study is made of a single-degree-of-freedom
system having simple loading conditions. The mo-
tion of more complicated systems can be considered
as being made up of the motion in several normal
modes, each mode acting as a single-degree-of-free-
dom system. The results of this study can be used,
therefore, in judging the adequacy of the various
numerical integration methods for complicated sys-
tems as well as for simple systems. The results are
determined in analytical form, using the calculus of
finite differences, for convenience in judging the
accuracy of the methods and the peculiar nature
of the errors introduced by using them.

2.1. Basic Problem Considered

The basic problem considered in this section is
shown in figure 1. The mass, if initially disturbed,
should vibrate without damping or amplitude build-
up at a natural frequency w=+k/m (rad/sec). For
such a system, the equation of motion is

m L2
dt*

+kz=0. (1)

In applying numerical integration methods to the
solution of this equation, the following notation is
used:

At=time increment between successive steps in
the numerical integration process.
n=number of steps taken from t=0 to t=nAt;
as subseript, indicates value when t=nAt.
z,=displacement when t=nAt.
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Basic problem considered in comparing numerical
integration methods.

Ficure 1.

2.2. Method Replacing Second Derivative by
Equivalent Central Differences

Substituting into eq (1)

({i2> Af)z fn+1 D ) (2)
gives
e 2, )t kr,=0 (3)
(Af)Z ‘I‘n¢1 —-rn Ly G A &
which reduces to
k(At
ru+1+ ( ) ]-I‘n+~[‘rz—1:0~ (4)

To solve eq (4) by the caleulus of finite differences,
we make the substitution,
"I"n:len) (5)
where A is the arbitrary constant to be determined
from initial conditions, and g is the number to be so

chosen that eq (4) is satisfied. Substituting from
eq (5) into eq (4) gives

Aﬁ"+1+[—k(ﬁlt>2~2] Apr-magii=0 (6)
Dividing through by AB*!, eq (6) reduces to
2
g S0 -2 ]p+1-0 ™)

Several cases are of interest:
Case 2.2.1: 0<At<2ym/k; we will first consider

At=~2+m/k; that is, At=0.2252x)ym/k, where
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(27)y'm/k is the natural period of the system. In this
case, eq (7) reduces to
P 11=(), (8)
from which, .
B=g4y—l=s4i=¢ 2. (9)
Substituting this value of 8 into eq (5),
imn _imn n i
=Ae? +Be 2 =A"sin? +B cos?, (10)

where A, B, A’, B’ are arbitrary constants deter-

mined from the initial conditions. Since
n=t/(At)=tyk/m/{2, (11)
eq (10) can be written
z=A’sin 1.11tyk/m~+ B’ cos 1.11tyk/m. (12)

In this case, the effect of the numerical integration
method is to increase the effective natural frequency
from k/m to 1.11yk/m without introducing damping
or buildup of the response.

As the value of the finite time increment At is
varied from 0 to 2ym/k, the factor 1.11 in eq (12)
varies from 1 to 7/2, but otherwise the form of eq
(12) does not change.

Case 2.2.2: 2ym/k<At; we will first consider
At=3+m/k. Although such a large value of At
would not ordinarily be used on a single-degree-of-
freedom system, it is usually impossible to avoid such
a large value in a many-degree-of-freedom system
having high frequency modes. With At=3vym/k,
eq (7) becomes

B+78+1=0 (13)
giving

B=—.1459= — ¢ 1-9%5; g— 6 8541——¢l-%5,  (14)

Substituting these values of 8 into eq (5),

A( ) =il 925"+B( l 925n

=A" cos nw sinh 1.925n-+ B’ cos nr cosh 1.925n.
(15)
Substituting n=t/At= (tyk/m)/3 into eq (15) gives

=[A’ sinh 0.642t+\k/m-+B’ cosh 0.642tk/m]
cos 1.047tyk/m. (16)

In this case, the primary effect of the numerical
integration method 1is to introduce hyperbolic
functions of time in the answer. Because these
functions increase indefinitely with time, the solution
is unstable.



For all values of the time increment At™>2ym/k,

unstable solutions of the type shown by eq (16) re-

sult. The larger the value of At, the greater will be
the instability. It is this fact that makes the method
considered in this section (2.2) inappropriate for use
on many-degree-of-freedom systems where it is diffi-
cult to avoid large values of At relative to the higher
frequency modes.

2.3. Houbolt's Method
If, in eq (1), Houbolt’s substitution

d*r 1 . -
( ’1t2> :(E)—z (2-p11_")-rn—l_+_4-1‘n—2_-rn»3) (1 ‘)

1s made, we obtain

—""-)'rn~l+4-I'n—2_-rn—3)+]‘.'rn:”- (1 8)

m
( AW (2 Ly,

After transposing terms, eq (18) can be written as

[ + (N)Z] &y

Making use of the substitution given in eq (5), eq
(19) becomes

—5&,_1+42,_2—2,_5=0. (19)

|:2+k(’%t);] 416"‘ 34‘1B,l_l+4“16y172* ‘,lan—.';:().
' (20)
Dividing through by Ag"* gives
AT . 5
[2+" 80 g1—sg245 - (21)

Several cases are of interest.
Case 2.3.1: We will again consider At= 2\ m/k,

as was done In case ‘) 2.1.  Equation (21) then
reduces to
43*—5B*+48—1=0, (22)
giving the roots,
B:0.3710:P—1P.§i5)1
620.439+0.6942':k(_”-“"'““"”” (23)

820.439_0.694[:(('().15'7—1.01)71')
Substitution of these values of 8 into eq (5) gives
f,1:“1(’_U'ggln_T‘BP(_O'197"+1'UUTin> +(7(,t—0.197n —1.007in)

=Ae 00 e =097 (B 6in 1.007n+C" cos 1.007n)

IR 24
Using n=t/At=(tk/m)/+/2 gives

: = . /7\:
z=_Ae-0701t \k/m | ¢ -0.139t Ji/m <[5" sin 0.712¢ \/ ]%+

C’ cos 0.712t V fl)
m

(25)
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In this case, the effects of the numerical integration
method used are (1) to introduce a decaying ex-
ponential, the first term; (2) to lower the natural
frequency, 0.712 instead of 1; and (3) to introduce a
damping term on the response, ¢-0139 yk/m,

Case 2.3.2. 'The errors in the case where A is
small can be judged best by a numerical example.
With At-\O 1ym/k, a solution similar to that for
case 2.3.1 gives

|

- . k
= Ae—232t \Vkim | ¢—0.0095t k/m ([{’ sin 0.961¢ ,\/ -

(" cos 0.961¢ \/£>
m

In this case, the errors are a small drop in natural
frequency, 0.961 in place of 1; and the presence of
decaying exponentials. In the limit when At—0),
the coefficient 2.32-> o ; the coefficient 0.0095—0;
and the coefficient 0.961->1. The solution ap-
proaches the exact solution as At approaches zero.
Case 2.3.3. To judge the errors for large values of
At, we will consider the numerical case ‘where At—

V98ym/k. In this case, the solution is given by

+

(26)

. , . k
— Ae¢—0.1805¢t \k/m |- g —0. 1424t /k/m ’'g 18 /A
1e Vkim ¢ v (If sin 0 18%1‘\ m+

(" cos 0.]83[\/£>-

~I

(2

)

The errors are a large drop in natural frequency,
0.183 in place of 1, and the presence of decaying ex-
ponentials. In the limit when At—> o, the coeffi-
cients 0.1805, 0.1424, and 0.183 all alp])roacl) Zero.
It is thus seen that large errors may result for large
values of At, but that they will always be of a stable
type; rounding-off errors will not build up.

3. Error Due to Replacing Continuous Struc-
ture by a Discrete Number of Elastically
Connected Masses

An airplane wing is, essentially, a beam and, like
a beam, has an infinite number of degrees of freedom.
Since an analysis of such a structure without simplifi-
cation be difficult, if not impossible, it is customary
to replace the distributed mass of the airplane by
lumped masses connected by massless springs chosen,
appendix II of reference [8], to approximately repre-
sent the large-scale motions of the airplane. It is
also customary to approximate the distributed mass
by generalized masses [1], corresponding to the lower
modes of vibration. Such lumped or generalized
masses are never equivalent in their behavior to the
distributed mass of the airplane, since they can only
represent a finite number of degrees of freedom.

A general investigation of errors resulting from the
use of a finite number of masses is beyond the scope
of this report; however, since the Houbolt method
has advantages insofar as numerical integration is
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Fraure 2.
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Ficure 3. Time history of force applied to beam.

concerned, a study is made of the error resulting
when this method of numerical integration is used
and a finite number of lumped masses replace the
distributed mass. This is done by comparing the
computed responses with 3, 5, and 7 lumped masses
for an undamped, uniform, free-free beam of mass
m, length 2/ and bending stiffness, £/, figure 2, using
Houbolt’s method as modified in reference [5]. It is
assumed that the beam is subjected to suddenly ap-
plied transverse loads of the type shown in figure 3.
As more complicated time histories of loading can be
considered to be made up of stepwise changes of the
type shown in figure 3, the results will be significant
for any type of transverse loading. All displace-
ments are taken in a vertical direction. 'Translation
and rotation of the beam are considered in addition
to bending.

3.1. Uniform Beam With Load Applied at Center

A uniform beam is considered to be suddenly sub-
jected to a constant normal force P at its center.
The beam is idealized by considering the mass of
the actual beam, figure 4 (a), to be concentrated at
3-, 5-, and 7-mass points, figures 4 (b), 4 (c), and
4 (d), respectively.

To evaluate the combined errors due to the use
of finite numbers of mass points and finite time in-
crements, three time increments are used in the
numerical analysis for each mass distribution.
These time increments are

At—=\mB12E], %{?ﬁﬁ’/iéEL and %V’mzs/mE[.
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(a) Actual beam
m/4 m/2 m/4
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(b) Three mass system

m/8 m/4 m/4 m/4 m/8

oM~ ON- O OO

(c) Five mass system

m/12 m/se m/6 m/6 m/e m/6 m/i2

O-N-O- N O N~ O~ WO~ AN-O-AN-0
(d) Seven mass system

Ficure 4.  Distributions of mass considered for beam: subjected

to impact at center.

The computations are carried out as described in
reference [5] and as shown for a typical case in the
appendix. In this procedure, the initial conditions
are taken into account by considering the displace-
ments zero for three time increments prior to the
initial instant of time. The flexibility is taken into
account by the use of influence coefficients. Matrix
algebra is used to simultaneously compute the dis-
placements at all the mass points at a particular in-
crement of time from the given forces acting at that
time and from the known displacements at the pre-
ceding three increments in time. The bending
moment at the center is then computed from the
inverse of the influence coefficient matrix, the dis-
placements at the various mass points, and the lever
arms from these mass points to the center of the
beam. The bending moment, M, at the center of
the beam, positive when concave away from the side
of the beam being struck, is plotted on a dimension-
less basis in figures 5, 6, and 7 for the 3-, 5-, and 7-
mass approximations, respectively. It is noted that,
as the time interval used in the step-by-step nu-
merical integration is shortened, the maximum abso-
lute value of the bending moment is increased. As
is to be expected from the analysis of a single de-
gree-of-freedom svstem, the errors of the numerical
method cause a damping out of the oscillatory re-
sponse and, as the time increment is decreased, a
decrease in the period of the oscillatory response.

For each of figures 5 to 7, the mass distribution is
kept constant, and the increment of time used in
the numerical integration is varied to show the effect
of time increment. In each of figures 8 to 10, the
time increment is kept constant, and the responses
for the different mass distributions are plotted to
bring out more clearly the effect of increasing the
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caused by impact at center, three-mass idealization.
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Ficure 6. Bending moment ratio at the center of the beam
caused by impact at center, five-mass idealization.
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Ficure 7. Bending moment ratio at the center of the beam
caused by impact at center, seven-mass idealization.
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Ficure 9. Bending moment ratios for different mass
idealizations with impact at cenler mass, time increment

At=1/3ymB/12EI.
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Ficure 10. Bending moment ralios for different mass
idealizations with tmpact at center mass, time increment

At=1/5yml*/12EI.

number of masses. The maximum absolute value
of the bending moment at the center differs by not
more than 4 percent for the 5- and 7-mass systems,
regardless of time increment. There is some differ-
ence in the period of the response for the shorter
time increments for the 5- and 7-mass systems.

3.2. Beam With Impact at One Tip

Because it was believed that an impact at a tip
mass might result in a more severe loading condition,
an investigation is made for the case of a load P
applied at the tip of the beam shown in figure 4 (a),
using the idealizations shown in figures 4 (b) and
4 (c). The bending moments at the center for the
3- and 5-mass idealizations are shown in figures 11
and 12, respectively. It is noted again, as in case
3.1, that as the time interval used in the step-by-
step numerical integration is shortened, the maximum
absolute value of the bending moment at the center
is increased. As is to be expected from the analysis
of a single-degree-of-freedom system, the errors of
the numerical method cause a damping out of the
oscillations, which is particularly evident for the
longest time increment, and a decrease in the period
of the oscillatory response as the time increment
is decreased.

In figures 13 to 15, the time increment is kept
constant, and the responses for idealization of the
beam by 3 and 5 masses are plotted to bring out
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Fraure 18.  Bending moment at fuselage root for pair of beams
representing airplane, each beam idealized by five masses.

the effect of increasing the number of masses. It
can be seen that the period of the initial vibratory
response decreases with an increase in the number
of masses and that the damping increases. The
maximum bending moment at the center is relatively
unaffected.

3.3. Pair of Beams Representing a Fuselage and
Wing With Impact at Both Wing Tips

An airplane can be approximated by two uniform
beams at right angles to each other, one beam repre-
senting the wing, the other the fuselage. Such a
system, figure 16 (a), is investigated. Each beam
1s idealized as 5 masses, as shown in figure 16 (b).
The suddenly applied constant loads, P, are consid-
ered to act at each wing tip. The bending moments
at the center of both the ““fuselage’ and “wing’” beams
are computed by using the same three time incre-
ments in the numerical integration as were previ-
ously used. The bending moment at the center of
the struck beam (wing) 1s shown in figure 17 and
that for the other beam (fuselage) is shown in figure
18. The agreement between the bending moment
ratios for the three values of time increment is only
fair even for the two shortest time increments. As
might have been expected from the analysis given
of the single-degree-of-freedom system, the error
due to using the longest time increment is evident
in the marked damping of the oscillatory response.

3.4. Discussion

It is estimated that a time increment of about 1/30
of the period in the fundamental mode is necessary
for good accuracy in numerical-integration methods.
This value is based on several factors.

(1) The solution given in eq (26) corresponds to
about 20 time increments per fundamental period.
In this case the frequency coefficient, 0.961, is in
error by about 4 percent.

(2) The convergence indicated in the figures is
not quite complete for the shortest time increment,
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which corresponds to 1/13.74 of the fundamental
symmetrical mode period and only 1/5.00 of the
lowest antisymmetrical mode period. A shorter
time increment than this is certainly needed to give
the response of the higher modes.

(3) The recommended time increment is likely to
be used for computing responses with slower con-
vergence than the bending moment at the center of
the beam and for structures with slower convergence
than that of a uniform beam.

(4) It is likely that computations by numerical
methods will be carried out by automatic computing
machines where the advantage of additional accuracy
from a smaller time increment can be had with less
penalty than when hand computing is used.

It is noted from figures 8, 9, and 10 that, for each
time increment considered, the response to an impact
at the center is essentially the same for the 5- and
7-mass idealizations of the beam but considerably
higher for the 3-mass system. For impacts at one
end of the beam, figures 13, 14, and 15, the response
shows less change in going from the 3- to the 5-mass
idealizations than is the case for impact at the center.
It would appear that a uniform beam should be
approximated by a 5-mass idealization if errors in
the bending moment at the center are to be small.

In table 1, the maximum absolute values of
bending moment ratios are given. For the beam
with the impact at the center, the absolute value of
the bending moment increased as the time inter-
val for integration was decreased, but decreased
as the number of masses used for the idealization of
the distributed mass of the beam was increased.
From this, it may well be that the errors caused by
using a reasonable value of time interval for the
numerical integration will be offset to some extent
by the errors caused by using a finite number of
masses. For the impact at a tip mass, the increase
in bending moment with decrease in time interval is
appreciable, but the decrease in bending moment with
increase in number of masses is much less than for the
case of impact at the center.

Tasre 1. Maximum absolute value of bending moment at

center of uniform beam struck with force P

| M/ Pl|
Time interval - - —
| ' 3-mass ‘ 5-mass 7-mass
| | -
Impact at center
NmBEL 0.355 0.305 0.295
1/3V mB/12EI o . 450 .383 . 368
\sNmB2ET. 480 A16 | 400
Impact at tip
| 777 - N ] | S
NmBI2EL 0.355 0.333 | ______
|
VSVmBA2ET . 450 |48
Y5VmBA2EL .. _______ 480 | 485 | .



It is evident from figure 5 that the period of the
response approaches the value for the exact solution
for a beam idealized by 3 masses as the time interval
in the integration is shortened. This same decrease
in period with time increment is noted in figures 6
and 7 for the 5- and 7- mass idealization of the beam.
The period of the response also decreases as the num-
ber of masses is increased, figures 7, 8, and 9. This
latter result, at least qualitatively, verifies that ob-
tained by Duncan [9]. He has obtained an exact
solution showing that the periods of the computed
modes of vibration of a uniform beam decrease as
the number of masses chosen to represent the beam
is increased, and that the magnitudes of the errors
in the computed periods vary inversely as the square
of the number of masses.

4. Conclusions

From the analyses of the responses of single-degree-
of-freedom and many-degree-of-freedom systems to
a suddenly applied force, it may be concluded that:

a) Numerical integration methods give results
that closely approximate the exact solution only if
the increment of time between successive steps in
the integration is small compared to all the natural
periods of vibration of the system. In cases similar
to those investigated where bending moment near
the center is desired, a time increment of about %,
of the fundamental period of the system will give
good results.

b) Of the methods investigated, the Houbolt
method is the only one that gives convergent results
for large time increments. In this method, errors
introduced by large time increments result in the
damping out of oscillatory response.

¢) The distributed mass of the beam can be con-
sidered to be concentrated at relatively few mass
points for computational purposes. In cases similar
to those investigated, approximating a uniform heam
by a 5-mass idealization gives good results.

5. Appendix

The detailed method of determining the response
of a uniform beam to an impact load by numerical
integration is given in this appendix for the case of
a beam subjected to an impact at its tip. The case
considered is that where the time increment is
At=+ml/12EI. The responses for all the other
cases presented in this report are obtained in a
similar manner.

Station | 2 3 3 5
Mass m/8 m/4 m/4 m/4 m/8
P

Mass distribution for example considered in

appendiz.

Ficure 19.
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The mass of the uniform beam is considered to be
distributed at five stations along its length, figure 19.
The force, P, is applied at the tip, station 5. As
used in this report, an influence coefficient, 4, ; is the
displacement at station » due to a unit load at station
s with the center of the beam, station 3, fixed. The
influence coefficients are given in table 2. Denoting
the displacement positive upward at station » by d,,
the force at station » by F,, and the rotation at station
3 by «, the displacements of the beam at stations 1,
2,4 and 5 are

di=ds+ 6,1+ 61 Fo—ad,

do=dl3~+ 6,14 60 Fs— 2

: > (A1)
di=d3+ 03 F i+ 645 F 5+ 5’

d5:d3+ 545104‘*‘ 555F5+ al

Substituting the values of the influence coefficients
from table 2 into eq (A1), and solving for the forces

TaBLe 2. Influence coefficients 8, s for 5-mass idealized beam
shown in figure 19
S
r q [ =
s\ 1 2 3 4 ‘ 5
N |
1 B/3ET 51348 ET 0 | 0 | 0
2 51348 ET 1324 ET 0 | 0 0 |
3 0 0 [ 0 | 0 0 |
4 0 | 0 0 | B24ET SIYASET
5 0 ‘ 0 |0 | BBM48EI B/3E1
|

I I

in terms of the displacements at each station and of
the rotation at station 3.

- 3
F, :ﬁ?[ (9(1, —5dy+ 3(13—-—l
fi_):‘}?l[ﬂ (—5dy+16d,— 11ds+3ad),
> (A2)
1:4—4815411 (_11d3+16([4_0d5 3(1[),
I3 48ET _ [
Fi=— P (3(&—0/&—?—‘2(&—}—% IE

From the condition that the sum of the forces equal
Zero,

F1+FZ+F3+[‘4+IJ5:O, (‘A:‘;)
and substituting from eq (A2), the value of F}; is

48K1

F—p~

[3([1—11(12+ 16(13"‘ lld ‘+ 3d;] (A4\



f(f'[(_:)m the requirement that the net moment equal w025 ﬁ—l.;’) i_{_ 15 1{1_0.25 d;
! [ [ [
F,(0)+F, ( )+1’ s(D+F, < >‘|‘1‘ (20)=0, (A5) | Substituting the value of a from eq (A6) into eq (A2),

and rewriting eq (A4):

(A6)

and using eq (A2) and (A4),

5 3
Flzf‘%f;f (1.875d,—4.25ds+3.00d5—0.75d,+0.125dy),

ngz}%ﬁ!— (—4.25d,+11.50d,—11.00d;+4.50d,—0.75d;),

48K 1
—.l’v;
F;:%g}{ (—0.75d,+4.50d,—11.00d,+11.50d,—4.25d;),
_48EIT

ST

Fy,— (3.00d,—11.00d,+16.00d;—11.00d,+3.00d;), » (A7)

-~

F

(0.125d,—0.75d,+3.00d;—4.25d,+1.875d;)

The forces are the sum of the inertia loads due to
the acceleration of the mass of the beam and the

. Similar relations are ined by using the remain-
applied forces, Similar relations are obtained by using the remain

ing eq (A7) and (AS).
Multiplying eq (A10) and the corresponding equa-

S m - A . . : . 1
Iflz—g d,, tions for the other stations through by 3EI/PF to
© express the deflections as a dimensionless ratio, and
; transposing terms, the equations can be written in a
, m : . .
F,= = ds, form which, for station 1, reads
Tml \/3d KT 3d. T
| mo- 875 . —4.25
Fi=—7dy,  $(A8) (1 RERSTOIV) N ), 25 pp ),+
3d;E I 3d T
= i . 5 2
P, 3. 00( o ’ .m< = ,),+
L m X i 3(1512'1) - .
J= 3 ds+F J 0.125 PP [—(J.),, (A11)
) ) - ) where
where m is mass of uniform beam; d,, acceleration of
beam at station r(r=1,2, . . . 5); and P, applied - 73 7
onstant force at station 5 (J):= (i (3([[—
constant force ation 5. JV)= g T TAR PP t__\l
Using the difference eq (17), acceleration at station
r can be expressed as 4 3’[114‘1 +<3’1 LT . (A12)
Plﬂ ,_v_\z Pla t 3At

5 4 1
(e F (d»): Nz (‘l’)’—“'ﬁ (([')’_2'\'_*_3? (dr)esse Equation (A11) and the equations similar to it can be
(A9) | expressed in matrix form as

Equating the first of eq (A7) and (AS8) and substi-

b 3d,E1
tuting for (d,), from eq (A9), we obtain [A]{ (p[:; }l:{Jr}y (A13)
m _ ‘ :
TRAL [2(d1)e—5(d1)e—ar+4(d1)—2a0—(d1)i—3a = where the matrix [A] is given in table 3. Solving eq
‘ (A13) for the deflections gives,
4§5§I [1.875d,—4.25d,+3.00d;—0.75d ,+0.125d;],. SA.ET
T — [ A1-1
(A10) R R et (A14)
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TasrLe 3. Matrix [A] of deflection coeflicients for use in equation (A13")
) i 1 — ‘ ‘ —
1.875-[—#]11&12 | —4.25 ‘ 3.00 ! —0.75 ‘ 0.125
—4.25 i 1. m+%l";’_; ~11.00 1 4.50 } —.75
3.00 : —11.00 ‘ 1h+%‘;"lliﬂ —11.00 3,00
o | Tmid
—0.75 4. 50 —11.00 ‘ il 5+§()I AR ’ —4. 2.‘57"13
.125 ‘ —0.75 3.00 | —4.25 i LR
where [A]~! is obtained as the inverse of [A] with | where
At=~ml*/12FI. The matrix [A]~!is given in table 4. _25‘1 (A18)
The first of this set of equations in conventional form =
is
o B D=0.125 (3dpﬁl> +0.250 (3‘%51) L
(Ppp ) —1:344937(J1),+0.589567(J) + f vy
t
' 3d;E1 3d BT
0.113294(J5),—0.113732(J ), —0.237485(J;),, (A15) 0.250( —pps ) +0.250 ( PE ) +
are. fr ) ) BT
where, from eq (A12), 0.125 <3(;313 ) _ (A19)
t
. (3 ET . 3d, E1
(/1):=1.09375 PP ,_A,_O'&UOO ( Pt ), ., | The other equation is obtained by substituting for
SdEl (BLEDPP),, [(3d.ET)/P),, (34 ET)| P,
+0.21875 ( '13‘ (A16) | in eq (A19), their equivalents in terms of the J's eq
PE /i _sa (A14). This gave
Similar equations can be obtamned for J at the other SEI
stations. pI D,=0.28571375(J1),+0.28571362(J5),+
TaBLE 4. Inverted matriz [A]7) of table 3 with At=~/mB/12E] 0.28571375(J3),+0.28571362(J,),+
‘ 1.344&7;377 ‘70. — 0.1|3725;47 7 —0.1137:;2 —0.237485 | 0.28571375(Jy)1. (A20)
0. 58?567 .45193((]2 '30?2_5?4 . 079741 - 1155732 | . . . .
L o g5 Boan S | The small differences in the coefficients in eq (A20)
—. 237485 —. 113732 ; . 113294 . 589567 1. 344937 i 1-(\Sult fr()n’l roundlng_off error. 11101- a good error

It is assumed that, prior to the application of the
force, P, the displacements at all stations are zero.
The computations are tabulated as shown in tables
5 and 6. The J’s are computed for time ¢, table 6,
using eq (A16) for (J;), and similar equations for
the other J’s. The d’s are computed for time ft,
table 5, using eq (A15) for (3d,E£1/PP), and similar
equations for the other d’s. From the d’s at time ¢,
the J’s at time ¢+ At are computed and, from these,
the d’s at time t+At. Thus a time history of the
displacement ratios of the uniform beam due to the
suddenly applied constant force is obtained.

Since the step-by-step numerical procedure is
dependent on previously computed values, it is
desirable to have a check column which will indicate
errors made in the computation. The deflections at
each station were checked by computing the dis-
placement, D, of the center of gravity of the beam
from two different formulas. If these two values
of D agreed, the computation of the deflections was
assumed correct. The first equation for D), is:

SET . 1S [ 3dEI
WD'_EE( e e
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indication, the coefficients, as given, are needed.
The values of D from eq (A19) and (A20) are given
in columns (7) and (8) of table 5.

The J’s are checked by comparing their sums as
determined from two different formulas. The first
formula is

(z J,)t:<Jl),+<J2>,+<J3>,+<J4>,+<J5>,. (A21)

The second formula is obtained by substituting in eq
(A21) the value of (J;), in eq (A16) and correspond-
ing values for the other J’s.  Then, making use of eq
(A19),

(7).~

The values computed from eq (A21) and (A22) are
given in columns (7) and (8), respectively, of table
6. The good agreement between the check columns
in tables 5 and 6 indicate that the computation is
free of numerical error.

)e—ac—7.00(D);—2a,+

8.75(D

1.75(D),—3a,+0.4375. (A22)



TasLe 5.  Displacement ratios at stations along a uniform beam subjected to an impact at its tip

1 2 | 3 4 5 6 i 8 9
| L SR | S ———
; Time Displacement ratio 3d, EI/ Pl at stations— 3EID| Pl Bending
| ratio o S P A moment |
| 1281 ratioat |
[RAVa= 1 2 3 1 5 Eq (A19) Eq (A20) | center, M/PL
-3 0 0 0 0 0 0 0 0
-2 0 0 0 0 0 0 0 0
-1 0 0 0 0 0 0 0 0
0 —0. 103900 —0. 049758 0. 049566 0. 257936 0. 588410 0. 125000 0. 125000 . 153654
1 —. 525637 —. 168315 . 294203 . 967785 1. 83828 . 437499 . 437499 . 309800
2 - 1. 40216 —. 348058 . 820339 2.20772 3.79212 . 968745 . 968745 . 322636
3 —2. 72217 —. 596199 1. 61553 4.00162 6. 55516 1. 73436 1. 73436 . 253868
4 —4, 42824 —. 927607 2. 64076 6.35719 10. 2248 2.74216 2.74216 . 213325
5 —6. 50884 —1. 34718 3. 88834 9. 28142 14. 8320 3.99603 3.99603 . 227965
6 —8. 99357 —1. 85109 5.37772 12. 7830 20. 3579 5.49704 5.49794 . 257022
7 —11. 9070 —2.43581 7.12514 16. 8678 26. 7835 7. 24885 7.24885 . 265110
8 —15. 2485 —3.10178 9.13013 21. 5368 34.1121 9. 24923 9. 24923 . 254424
9 —19. 0059 —3.85121 11. 3845 26. 7885 42, 3569 11. 4993 11. 4993 244509 |
10 —23.1735 —4. 68514 13. 8843 32.6223 51. 5247 13. 9993 13. 9993 . 244722
11 —27. 7547 — 5. 60308 16. 6319 39.0387 61.6123 16. 7491 16. 7491 . 249966
12 —32. 7545 —6. 60427 19. 6304 46. 0388 72.6149 19. 7488 19. 7488 . 252659
13 —38. 1739 —7. 68860 22, 8806 53. 6226 84. 5319 22,9984 22. 9984 . 251377
14 —44.0108 —8. 85645 26. 3810 61. 7899 97. 3652 26. 4979 26. 4979 . 249285
15 | —50.2639 —10. 1081 | 80.1306 70. 5404 111. 117 30. 2473 30. 2473 . 248816
16 | —56.9335 —11. 4436 34.1295 79.8742 125. 786 34. 2465 34. 2465 . 249636
17 L0204 —12. 8628 38. 3783 89. 7915 141.372 38. 4957 38. 4957 . 250307
18 1. 5252 —14. 3657 42.8773 100. 292 157. 874 42. 9946 42,9946 . 250228
19 4478 —15.9524 47.6262 111.377 175. 294 47. 7434 47.7434 . 249824
20 —87. 7877 —17. 6230 52. 6249 123. 044 193. 631 52. 7420 52. 7420 . 249634
Tasre 6. Values of J at stations on beam
ﬁ e ——— e e — e ,‘7' = era— —— — m— ;77‘
| 1 } 2 ’ 3 } 4 ’ 5 , 6 ‘ 7 ‘ 8 i
| I
Time | Values of J at stations— 5 ‘
| ratio, _ _ S 2 )_1 Vi ‘
j ,\/1251 ! > . | " ’ . ‘ T (.(lz('Azz) i
ml? ‘ 1 C | |
| -3 | 0 | 0 0 0 ‘ 0 0 0
-2 0 0 0 0 ‘ 0 0 0
-1 | 0 [ 0 Lo 0 0 [ o 0 |
0 0 0 L0 0 0. 437500 0. 437500 0. 437500 |
| 1 —0. 113640 —0.108845  0.108126 0. 564234 108107 |  1.53125 1. 53125 |
2 —. 484003 —.281114 | . 556827 1. 66564 193326 | 3.39061 3. 39061
3 —1L09641 | —.488595 | 1.30132 3. 24861 3.10535 6.07028 6. 07028
4 —1. 86547 —.768722 | 2.22709 531345 | 4.69122 9. 59757 9. 59757 |
5 —2. 76821 —1. 13807 3. 30839 7.86939 | 6.71464 13. 9861 13.9861 |
6 | —3.83981 —1.58449  4.59119 10. 9287 9. 14720 19. 2428 10. 2428 |
7 —5.11017 —2.09753 | 6.11451 14. 5016 11. 9626 25. 3710 25. 3710
8 —6. 57770 —2.67831 | 7.87638 18. 5887 15. 1633 32.3724 32.3724 |
9 —8 22675 | —3.3323¢ | 9.85591 23. 1857 18. 7653 40. 2478 40. 2478
10 —10. 0499 —4.06206 12,0431 28. 2902 22. 7763 48. 9975 48. 9975
11 —12. 0515 | —4.86616 | 14.4435 33.9036 27.1923 58. 6219 58. 6219
| 12 —14. 2374 } —5.74265 | 17.0654 40. 0282 32.0074 69. 1209 69. 1209
| 13 —16. 6091 | —6.69120 l 19. 9102 46.6643 | 37.2204 80. 4946 80. 4946
i 14 —19.1638 | —T.7TI269 | 22,9745 53.8110 | 42.8339 92. 7428 92. 7428
\ 15 —21. 8998 | —8.80780 | 26.2557 61. 4678 48. 8498 105. 866 105. 866
16 —24.8172 | —9.97647 | 29.7542 69.6347 | 55.2680 119. 863 119. 863
17 —27.9174 —11. 2184 33. 4714 78.3122 | 62.0872 134. 735 134. 735
‘ 18 —31. 2008 | —12.5334 37. 4081 87.5005 | 69.3071 150. 481 150. 481
19 —34. 6671 | —13.9217 41. 5637 97.1993 | 76.9279 | 167.102 167. 102
\ 20 —38. 3159 —15.3834 45. 9376 107. 409 84. 9502 184. 597 184, 597
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The forces are determined from the displacements
of the masses at the five stations on the beam by use
of eq (A7). The forces, multiplied by thier distances
from the center of the beam determine the bending
moment at the center of the beam. Designating the
bending moment at the center by A,

M=Fi+F 5 (A23)
=201 0.25d,41.50d,—2.50d,+
1.50d,—0.25d;) (A24)
%: 0.5714286 24~ 3d E - +3.4285714 3‘%;7!—
5.7142857 ?3‘;)fl+3 4285714 3i)f{~
0.5714286 341}51—- (A25)

Values of the bending moment ratio computed
from eq (A25) are given in column 9, table 5. They
are plotted in figure 12 for At=+/ml/12EI

The authors thank Mrs. [.. W. Roberson for com-
puting the responses of the uniform beams to impact
loads.
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