The System Barium Oxide-Boric Oxide-Silica

Ernest M. Levin and George M. Ugrinic

A phase equilibrium diagram for the system $BaO-B_2O_3$ - SiO_2 has been constructed from data, obtained essentially by the quenching method, on 178 ternary compositions. One new compound, $3Ba \cdot O3B_2O_3 \cdot 2SiO_2$, melting at 1,009° C and possessing an extremely flat primary field appears, and its optical properties and X-ray diffraction data are given. The $BaO \cdot 4B_2O_3$ and SiO_2 primary phase areas include almost 70 percent of the diagram, and over these areas exists a large region of two-liquid immiscibility. Limited data indicates that the immiscibility gap decreases with increasing temperature. The solid solution region between $2BaO \cdot 3SiO_2$ and $BaO \cdot 2SiO_2$ extends into the interior of the diagram and is complex in nature. An isofract diagram for the quenched glasses is shown. For precise temperature control of a quenching furnace, a self-adjusting, bridge-type controller is described briefly.

1. Introduction

The system barium oxide-boric oxide-silica is of fundamental importance in the ceramic field, and the three end members comprise the major constituents of the large class of barium crown glasses. Other important constituents maybe aluminum- or zincoxide in the dense barium crown glasses, lead in the barium flints, and alkalis in the light barium crowns or flints [1].¹ Barium oxide surpasses nearly all other oxides in imparting both high index and low dispersion to glass. Many of the well-corrected, present-day optical systems, such as are found in photographic and projectional equipment, have resulted largely from the use of high barium-oxidecontent glasses, which have a favorable relationship between index and dispersion.

The Glass Section of the National Bureau of Standards has been engaged in an extensive study of the refractivity, dispersion, and density in the glassforming region of the barium-borosilicate system [2]. The phase equilibrium diagram for the system is of paramount importance in the interpretation of the data as regards the structure of these glasses. The high silica-boric oxide portion of the system, also, has possible application to the development of improved enamels and ceramic glazes. Notwithstanding the fundamental and practical importance of the ternary diagram, however, no systematic study of the phase equilibrium relationships has been reported.

The ternary system is of additional interest from several theoretical considerations. It contains one binary system $(BaO-B_2O_3)$ with an immiscibility gap and another $(BaO-SiO_2)$ with a portion of the liquidus curve approaching that of two-liquid immiscibility. In the BaO-SiO₂ system, $BaO \cdot 2SiO_2$ and $2BaO \cdot 3SiO_2$ show unusual behavior for refractory oxide systems, in that they form a complete isomorphous solid solution series without a maximum or a minimum. As a secondary objective, it was hoped that investigation of the ternary system might provide additional information on these problems.

2. Experimental Procedure

2.1. Raw Materials

The starting materials were silica gel $(SiO_2 \cdot nH_2O)$, boric acid (H_3BO_3) , and either barium nitrate $(Ba(NO_3)_2)$ or barium carbonate $(BaCO_3)$. The silica gel, 99.99 percent pure on an ignited weight basis, was specially prepared by an acid digestion process in the Chemistry Division of the National Bureau of Standards. The remaining starting materials were of reagent quality, meeting ACS specifications.

2.2. Preparation and Analysis of Mixtures

Because of the volatility of boric acid and the extreme hygroscopicity of boric oxide [3, 4], it was found advantageous in preparing ternary mixtures to add the boric oxide already combined with the baria. For this purpose a stock quantity of each of the four barium borates, $3BaO \cdot B_2O_3$, $BaO \cdot B_2O_3$, $BaO \cdot B_2O_3$, $BaO \cdot 2B_2O_3$, $BaO \cdot 4B_2O_3$, was prepared by mixing, grinding, sintering or fusing the appropriate amounts of boric acid and barium nitrate or carbonate. The product was ground to pass a No. 200 mesh screen and heated again. The process of grinding and reheating was repeated 2 or 3 times, until a homogeneous product, by petrographic examination, was obtained. Barium carbonate was used as the source of BaO for preparing 3BaO·B₂O₃; for the other borates, barium nitrate was used. The barium borates thus prepared were analyzed [4] for BaO and B₂O₃. Previous experience had indicated the approximate excess of boric acid required to formulate each compound, and in no case did the actual chemical composition vary from the theoretical compound composition by more than 0.5 percent. No attempt was made to adjust compositions to theoretical values, and the analyzed values were applied in subsequent calculations.

Stock quantities of the 4 barium silicates, 2BaO·SiO₂, BaO·SiO₂, 2BaO·3SiO₂, and BaO·2SiO₂,

¹ Figures in brackets indicate the literature references at the end of this paper.

		Composition							
Composition number	Starting materials]	Formulated	a		Analyzed ^b			
		BaO	B_2O_3	SiO_2	BaO	B_2O_3	SiO_2		
C-2BaO·SiO ₂ ° E-BaO·2SiO ₂ ° 24. 29. J-3BaO·3B ₂ O ₃ ·2SiO ₂ °	BaCO ₃ , SiO ₂ BaCO ₃ , SiO ₂ BaO·2B ₂ O ₃ , 2BaO·3SiO ₂ BaO·4B ₂ O ₃ , BaO·2SiO ₂ d BaCO ₃ , SiO ₂ , H ₃ BO ₃	% 83, 63 56, 08 55, 24 47, 69 58, 30	% 35. 60 25. 92 26. 48	$\% \\ 16, 37 \\ 43, 92 \\ 9, 26 \\ 26, 39 \\ 15, 22 \\ \end{cases}$	% 83. 53 55. 94 55. 11 47. 78 58. 48	% 35. 51 25. 98 26. 24	$\% \\ 16.47 \\ 44.06 \\ 9.38 \\ 26.24 \\ 15.28 \\$		

TABLE 1. Agreement between some formulated and analyzed compositions

^a From composition and amounts of starting materials.
 ^b By analytical determination.

^o Stock supply.

4 400g batch prepared. B₂O₃ added as boric acid, which accounts for a little larger discrepancy, in this case between formulated and analyzed compositions.

and of 1 ternary compound, $3BaO \cdot 3B_2O_3 \cdot 2SiO_2$, were prepared in a similar manner. Barium carbonate exclusively was used as the source of BaO in preparing the barium silicates.

Most of the ternary compositions were prepared to lie on joins connecting the compositions of barium borates, barium silicates, and the one ternary compound 3BaO·3B₂O₃·2SiO₂. In making up such series, the amounts of conjugate stock compounds required to yield 3-g mixtures were calculated, by applying the well-known lever principle. The calculated amounts, weighed into dry bottles, were shaken thoroughly with a mechanical mixer for a minimum of 1 hr, ground with a mechanical grinder for 1 hr, and then heated for several hours at some temperature between the solidus and the liquidus. The products were ground to pass a No. 200 mesh sieve and were resintered at a slightly higher temperature, but still below the liquidus. Once again, the products were ground and passed through a No. 200 mesh sieve. This treatment, in most cases, gave a fairly uniform product, as examined with a polarizing microscope. In a few instances, it was necessary to heat the material a third time. All heating was done in platinum crucibles by using an electrically heated furnace. Analysis of representative mixtures prepared as described showed satisfactory agreement between actual and theoretical compositions. Table 1 gives this agreement for several compounds and mixtures. The few compositions not on tie lines were made from appropriate quantities of either 2 already prepared mixtures or 3 stock compounds.

Analysis of ternary compositions consisted of determinations for ignition loss, silica, and baria; boric oxide was obtained by difference. Half-gram samples were decomposed by 1:1 HCl, evaporated almost to dryness, and the moist residue evaporated three times with 10-ml portions of methyl alcohol to remove the boric oxide. Silica was determined by double dehydration in the usual way; baria was precipitated and weighed as BaSO₄.

Figure 1 shows the 178 compositions investigated, together with the joins along which most of them were fromulated. It may be noted that many compositions in close proximity to each other were formulated on different joins, thus contributing statistically to the over-all accuracy of the method.

FIGURE 1. Compositions studied in the system $BaO-B_2O_3-SiO_2$, together with the joins along which most of them were formulated.

It might also be emphasized that the prepared compositions always consisted of crystalline or mixtures of crystalline and glassy phases, as equilibrium conditions could be approached more rapidly by melting than by crystallization from above the liquidus.

2.3. Apparatus and Method

Phase equilibria relationships in the system were obtained by the well established quenching technique [5, 6]. Charges of about 20 mg were heated in the relatively constant temperature zone (hottest region) of a vertical tube, platinum 80 percent-rhodium 20 percent wound, resistance furnace [7]. Constanttemperature control in this zone to within ± 0.3 deg. C was achieved with the use of a newly designed, self-adjusting, a-c bridge-type controller, described later.

Temperatures were measured with platinum versus platinum-rhodium (10%) thermocouples, which were originally calibrated against a standard thermocouple by the Pyrometry Laboratory of the National Bureau of Standards. All temperature values are given on the International Temperature Scale of 1948, based on absolute millivolts [8]. Be-

tween 630.5° and $1,063.0^{\circ}$ C (the gold point) the differences between the International Temperature Scales of 1948 and 1927 are less than 0.5 deg. C. At 1,500° C, however, the International Scale of 1948 is 2.3 deg. Cless than the scale of 1927; and at 2,000° C, the difference is 6.4 deg. C [9]. In reviewing the literature of high-temperature phase studies, it is found that many investigators go into great detail concerning the accuracy of thermocouple calibrations, vet never specify the temperature scale used. It cannot be safely assumed that all temperature values after January 1, 1948, are reported on the International Temperature Scale of 1948, even though on that day, by international agreement, the change from international to absolute units became effec-The changeover at the National Bureau of tive. Standards, for example, did not become effective until January 1, 1949. Since 1914 the Geophysical Laboratory of the Carnegie Institution of Washington has used a temperature scale based on the work of Dav and Sosman. The scale is in good agreement with the International Temperature Scale of 1948, up to about 1,550° C.

The thermocouple calibrations were checked periodically against the melting points of barium tetraborate (889° C) [4], the ternary compound, $3BaO\cdot3B_2O_3\cdot2SiO_2$ (1,009° C), gold (1,063° C), barium borate (1,105° C) [4] and barium disilicate (1,416° C).²

Quenched samples were crushed and examined with the polarizing microscope, using the standard immersion media methods. Refractive indices measured by this method are accurate to within ± 0.003 for n_D .

X-ray diffraction powder patterns (with copper K alpha radiation) were made for a number of compounds and mixtures. A commercial type Geiger counter X-ray spectrometer equipped with a synchronous motor-driven scanning unit and attached to an electronic high-speed recorder was used for this purpose.

2.4 Adjusting, Bridge-type Controller

A self-adjusting, bridge-type controller suitable for precise temperature control of a quenching furnace was designed and assembled from commercially available components by F. A. Mauer of the National Bureau of Standards. Like the electricfurnace thermostat developed by H. S. Roberts at the Geophysical Laboratory in 1925 [7], the controller operates on the change of resistance that accompanies a change in temperature of the furnace winding. The contacting galvanometer has been replaced by a servo amplifier (A, fig. 2), which provides power to operate a reversible, two-phase motor, M. As the amplifier operates on a 60-cycle a-c signal, the power for the furnace is adjusted by means of a variable autotransformer. This transformer is positioned by the reversible motor and provides the power required to maintain the furnace winding at the temperature prescribed by the resistance setting. The temperature is maintained constant, of course,

FIGURE 2. Schematic diagram of self-adjusting, bridge-type controller for high-temperature furnace.

A, Servo amplifier; M, reversible balancing motor, 27 rpm; V, variable autotransformer.

FIGURE 3. Temperature controller together with the quenching furnace and the temperature measuring equipment.

only if volatilization of the winding is negligible.

Figure 2 shows a schematic diagram of the controller, and figure 3 shows the controller, together with the quenching furnace and the temperature measuring equipment.

The controller offers a combination of features that have not been available in any one instrument. These principal advantages are as follows:

1. Control of temperature to within ± 0.3 deg. C. 2. Elimination of process lags by use of the furnace winding as the sensing element.

3. Use of alternating current to heat the furnace. This feature is important because a-c power is readily available, permits the use of a variable autotransformer to adjust the voltage without wasting power, and also permits amplification of the signal from the bridge.

4. Incorporation of proportional speed floating control with automatic reset. When the temperature departs only slightly from the control point, the autotransformer moves at a rate proportional to the departure. In the case of a large unbalance, the motor turns at an essentially constant speed until balance is reached. Because the motor rotates as long as the temperature remains different from the required temperature, the variac automatically assumes a new position for each temperature setting and even compensates for change in the line voltage of up to 20 percent. As long as power requirements and line voltage remain constant, oscillations of the balancing motor are barely perceptible. Consequently, even if the controller is switched off, the temperature will remain within a few degrees of the control point. This characteristic simplifies the problem of controlling the furnace in a desired temperature range so that it can be ready for use on the following day.

5. Simplification of operating procedure. A single knob is used for resetting the control point. Because of the reset action described above, the controller will position the variable autotransformer without further attention, to provide the power requirement for a new setting of the balance point. The control point setting can be varied continuously by means of a 10-turn precision potentiometer.

It should be noted that since an a-c bridge circuit is used, an impedance balance must be effected if maximum precision is desired. The bridge output can be recorded on an oscilloscope and capacitors added to the high-impedance arms of the bridge until a true null can be obtained [10].

The principal maintenance problem is presented by the variable autotransformer brushes. During operation, the "hunting" of the controller keeps the brushes moving back and forth between adjacent windings. Experience indicates that after about 6 months of operation, arcing may occur between the brushes and the slightly roughened windings. In this case, the brushes are cleaned or replaced, and the windings are cleaned according to the manufacturer's instructions.

3. Limiting Binary Systems

3.1. System $BaO-B_2O_3$

The binary system BaO-B₂O₃ was reported by Levin and McCurdie [4]. It is distinguished by a region of two-liquid immiscibility extending from about 70 percent of B₂O₃ (30 percent of BaO) to almost pure B₂O₃. Extrapolation from ternary data to the binary indicated that the reported binary liquidus temperatures were uniformly low by about 10° C. New determinations on the binary compounds confirmed this conclusion. A corrected diagram is reproduced as figure 4.

3.2. System B_2O_3 -Si O_2

Only limited information is available about the system B_2O_3 -SiO₂, and no liquidus values are known,

FIGURE 4. Phase equilibrium diagram for the system $BaO-B_2O_3$ [4]. Liquidus values have been raised by a uniform amount of 10° C.

FIGURE 5. The Binary system BaO-SiO₂, [12, 15]. Liquidus values not changed to International temperature scale of 1948.

as no mixture in the system has been crystallized. Morey [11] was unable to crystallize any mixture in the system, either from a dry mix or by hydrothermal treatment. Greig [12], and Cousin and Turner [13] believe that the oxides as liquids are completely miscible in all proportions. The latter authors, on the basis of thermal expansion and density-composition curves, could find no indication of compound formation. N. K. Dertev and T. H. Khudyakova [14], however, believe that several compounds (formulas unspecified) are possible.

3.3. System $BaO-SiO_2$

The binary system BaO-SiO₂, as shown in figure 5, was investigated originally by Eskola [15] and modified later by Greig [12]. It shows two regions of particular interest. In the first, dibarium trisilicate $(2BaO\cdot3SiO_2)$ and barium disilicate $(BaO\cdot2SiO_2)$ form a complete solid solution series. The liquidus

TABLE 2. Comparison of A-ruy armaciton data for compounds in the system Dat	ABLE 2. Cc	omparison a	of X-ray	diffraction	data for	compounds	in the system	BaO-SiO
---	--------------	-------------	----------	-------------	----------	-----------	---------------	---------

	2BaO	$\cdot \operatorname{SiO}_2$			BaO	$\cdot \mathrm{SiO}_2$			2Ba	$0.3 \mathrm{SiO}_2$		BaO·2SiO ₂			
((a)		(b)		(a)		(b)		(a)		(b)		(a)		(b)
d °	I d	d	Ι	d	Ι	d	Ι	đ	Ι	d	Ι	d	Ι	d	Ι
A 4. 23	20	$\begin{matrix} A \\ 5.1 \\ 4.4 \\ 4.23 \\ 3.78 \\ 3.53 \end{matrix}$		$\begin{matrix} A \\ 5.19 \\ 4.20 \\ 3.73 \\ 3.58 \\ 3.43 \end{matrix}$	$\begin{array}{c} \% \\ 19 \\ 10 \\ 55 \\ 17 \\ 100 \\ (1) \end{array}$	$ \begin{array}{c} A \\ \overline{4.22} \\ 3.70 \\ \overline{3.41} \end{array} $		$\begin{array}{c} A \\ 7.11 \\ 6.06 \\ \hline 3.93 \\ 3.79 \end{array}$		$\begin{array}{c} A \\ 7.0 \\ 6.05 \\ 5.00 \\ 4.33 \\ 3.75 \end{array}$		24 7.00 6.87 5.63 4.75 4.15		A 6. 7	% 9
$\begin{array}{c} 3.\ 43\\ 3.\ 17\\ 3.\ 11\\ 3.\ 03\\ 2.\ 95 \end{array}$	$\begin{array}{c} 63 \\ 16 \\ 14 \\ 100 \ (1) \\ 95 \ (2) \end{array}$	$\begin{array}{c} 3.\ 44\\ 3.\ 18\\ 3.\ 12\\ 3.\ 04\\ 2.\ 94 \end{array}$	$\begin{array}{c} 64 & (3) \\ 29 \\ 28 \\ 100 & (1) \\ 100 & (2) \end{array}$	3.36 3.13 2.84	57 (2) 50 32	$\begin{array}{c} 3.34\\ 3.13\\ 3.02\\ 2.94\\ 2.81 \end{array}$	$22 \\ 34 \\ 10 \\ 8 \\ 28$	$\begin{array}{c} 3.\ 71\\ 3.\ 51\\ 3.\ 44\\ 3.\ 33\\ 3.\ 28 \end{array}$	$\begin{array}{c} 75 \\ 10 \\ 10 \\ 87 \\ 76 \end{array} (2)$	3.683.433.303.26	$ \begin{array}{c} 80 & (2) \\ \hline 6 \\ 70 \\ 42 \end{array} $	$\begin{array}{c} 4.\ 02\\ 3.\ 57\\ 3.\ 39\\ 3.\ 36\\ 3.\ 27 \end{array}$	$\begin{array}{c} 77 & (3) \\ 52 \\ 14 \\ 23 \\ 25 \end{array}$	$ \begin{array}{r} 4.00 \\ 3.55 \\ \hline 3.28 \end{array} $	$ \begin{array}{c} 100 (1) \\ 20 \\ \hline 23 \end{array} $
$\begin{array}{c} 2.\ 91 \\ 2.\ 69 \\ 2.\ 56 \\ 2.\ 53 \\ 2.\ 44 \end{array}$		$ \begin{array}{c} 2. \ 69 \\ 2. \ 53 \\ 2. \ 44 \end{array} $	$ \begin{array}{c} 18 \\ 20 \\ 52 \end{array} $	$2.752.712.59\overline{2.36}$	$ \begin{array}{c} 18 \\ 23 \\ 9 \\ 31 \end{array} $	$2.77 \\ 2.59 \\ 2.45 \\ 2.35 $	$\begin{array}{c} 24\\10\\8\\25\end{array}$	$3.15 \\ 2.78 \\ 2.61 \\$	48 74 8	$\begin{array}{c} 3.\ 13\\ 2.\ 99\\ 2.\ 78\\ 2.\ 60\\ 2.\ 55\end{array}$	$ \begin{array}{c} 35 \\ 6 \\ 75 \\ 9 \\ 6 \end{array} $ (3)	$\begin{array}{c} 3.\ 15\\ 3.\ 11\\ 2.\ 86\\ 2.\ 76\\ 2.\ 69\end{array}$	$\begin{array}{ccc} 100 & (1) \\ 87 & (2) \\ 27 \\ 40 \\ 7 \end{array}$	3. 14 2. 77	60 (2) 36
$\begin{array}{c} 2.\ 40\\ 2.\ 30\\ 2.\ 24\\ 2.\ 12\\ 2.\ 10 \end{array}$	$25 \\ 6 \\ 27 \\ 24 \\ 36$	$\begin{array}{c} 2. \ 4 \\ 2. \ 31 \\ 2. \ 255 \\ 2. \ 13 \\ 2. \ 11 \end{array}$	$32 \\ 10 \\ 45 \\ 32 \\ 35$	$\begin{array}{c} 2.\ 30\\ 2.\ 24\\ 2.\ 19\\ 2.\ 14\\ 2.\ 09 \end{array}$	$35 \\ 31 \\ 5 \\ 11 \\ 19$	$2.25 \\ 2.14 \\ 2.09$	$\begin{array}{c} 34\\11\\40\end{array}$	$\begin{array}{c} 2.\ 41 \\ 2.\ 36 \\ 2.\ 28 \\ 2.\ 23 \\ 2.\ 21 \end{array}$		$\begin{array}{c} 2.\ 40\\ 2.\ 35\\ 2.\ 27\\ 2.\ 225\\ 2.\ 205 \end{array}$	$9 \\ 14 \\ 23 \\ 23 \\ 13$	$\begin{array}{c} 2.\ 61 \\ 2.\ 36 \\ 2.\ 35 \\ 2.\ 26 \\ 2.\ 23 \end{array}$	$12 \\ 16 \\ 16 \\ 32 \\ 29$	$2.60 \\ 2.35 \\ 2.27 \\ 2.23$	$ \begin{array}{r} 10 \\ 22 \\ 50 \\ 50 \end{array} (3) $
$2.02 \\ 1.975 \\ 1.909 \\ 1.867$	8 22 17 22	$\begin{array}{c} 2.\ 03\\ 1.\ 98\\ 1.\ 94\\ 1.\ 91\\ 1.\ 87 \end{array}$	$ \begin{array}{r} 16 \\ 29 \\ 7 \\ 24 \\ 28 \end{array} $	$\begin{array}{c} 2.\ 08\\ 2.\ 04\\ 2.\ 01\\ 1.\ 977\\ 1.\ 896 \end{array}$	$36 \\ 45 \\ 7 \\ 7 \\ 32$	$2.05 \\ 1.99 \\ 1.90$	$\frac{30}{15}$ $\frac{15}{29}$	$\begin{array}{c} 2.\ 14\\ 2.\ 09\\ 2.\ 04\\ 1.\ 981\\ 1.\ 918 \end{array}$	$ \begin{array}{r} 60 \\ 22 \\ 12 \\ 20 \\ 14 \end{array} $	$\begin{array}{c} 2.\ 14 \\ 2.\ 08 \\ 2.\ 04 \\ 1.\ 98 \\ 1.\ 91 \end{array}$	$ \begin{array}{r} 41 \\ 18 \\ 12 \\ 17 \\ 14 \end{array} $	$\begin{array}{c} 2.\ 21 \\ 2.\ 16 \\ 2.\ 06 \\ 2.\ 05 \\ 2.\ 00 \end{array}$	$51 \\ 25 \\ 21 \\ 32 \\ 7$	2.17 2.06	50 25
$ \begin{array}{c} 1.788\\ 1.762\\ \hline 1.710\\ 1.686\\ \end{array} $	$ \begin{array}{c} 10 \\ 33 \\ 47 \\ 11 \end{array} $	$\begin{array}{c} 1.\ 80\\ 1.\ 77\\ 1.\ 73\\ 1.\ 715\\ 1.\ 69 \end{array}$	$14 \\ 49 \\ 10 \\ 48 \\ 15$	$\begin{array}{c} 1.852 \\ 1.795 \\ 1.781 \\ 1.761 \\ 1.737 \end{array}$	$16 \\ 9 \\ 9 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	$ \begin{array}{r} 1.86 \\ 1.79 \\ \hline 1.76 \\ 1.72 \end{array} $	$\begin{array}{c}17\\10\\-\\13\\14\end{array}$	$ 1.881 \\ 1.825 \\ 1.811 \\ 1.789 $	8 14 17 25	$ \begin{array}{r} 1.88\\ 1.86\\ 1.825\\ \hline 1.79 \end{array} $	$\begin{array}{r} 7\\7\\16\\-20\end{array}$	$\begin{array}{c} 1.\ 923 \\ 1.\ 877 \\ 1.\ 827 \\ 1.\ 783 \\ 1.\ 732 \end{array}$	$ \begin{array}{c} 12 \\ 17 \\ 8 \\ 16 \\ 9 \end{array} $	$ \begin{array}{r} 1.91 \\ 1.87 \\ \overline{} \\ 1.78 \\ \hline \end{array} $	$\begin{array}{c}15\\20\\12\\\end{array}$
$\begin{array}{c} 1.\ 659\\ 1.\ 645\\ 1.\ 598\\ 1.\ 578\\ 1.\ 554 \end{array}$	7 8 5 3 3	$ \begin{array}{c} 1. \ 66 \\ 1. \ 64 \\ 1. \ 605 \\ 1. \ 58 \\ \end{array} $	$9\\25\\8\\7$	$\begin{array}{c} 1.\ 698 \\ 1.\ 635 \\ 1.\ 606 \\ 1.\ 570 \\ 1.\ 545 \end{array}$	$33 \\ 4 \\ 7 \\ 10 \\ 7 \\ 7$	1. 61 1. 56	7 9	$\begin{array}{c} 1.\ 760\\ 1.\ 745\\ 1.\ 654\\ 1.\ 636\\ 1.\ 617\end{array}$	$ \begin{array}{c} 11 \\ 11 \\ 22 \\ 10 \\ 7 \end{array} $	$\begin{array}{c} 1.\ 76\\ 1.\ 71\\ 1.\ 65\\ 1.\ 63\\ 1.\ 615 \end{array}$	$ \begin{array}{c} 16 \\ 8 \\ 12 \\ 6 \\ 6 \end{array} $	$\begin{array}{c} 1.\ 706\\ 1.\ 601\\ 1.\ 584\\ 1.\ 571\\ 1.\ 481 \end{array}$	$31 \\ 13 \\ 9 \\ 15 \\ 8$	1. 59 1. 48	10 13
1.5111.4701.4551.442	$\begin{array}{c} 6\\ 4\\ 5\\ 12 \end{array}$	$\begin{array}{c} 1.\ 52\\ 1.\ 51\\ 1.\ 475\\ 1.\ 46\\ 1.\ 445 \end{array}$	$ \begin{array}{c} 12 \\ 13 \\ 8 \\ 12 \\ 12 \\ 12 \end{array} $	$\begin{array}{c} 1.\ 517\\ 1.\ 486\\ 1.\ 477\\ 1.\ 468\\ 1.\ 448 \end{array}$	$ \begin{array}{c} 13 \\ 8 \\ 8 \\ 12 \\ 10 \end{array} $	1. 525	11	$ 1.557 \\ 1.518 \\ 1.513 $	11 7 8	$\begin{array}{c} 1.\ 60\\ 1.\ 58\\ 1.\ 555\\ 1.\ 52\\ \end{array}$	6 6 8 8	$\begin{array}{c} 1.458\\ 1.408\\ 1.392\\ 1.378\\ 1.292\end{array}$	$\begin{array}{c}11\\6\\-6\\9\\16\end{array}$	1.46 1.29	
$ \begin{array}{c} 1. 432 \\ 1. 416 \\ 1. 370 \\ \hline 1. 338 \end{array} $	$\begin{array}{c}10\\7\\10\\-5\end{array}$	$\begin{array}{c} 1.\ 435\\ 1.\ 42\\ 1.\ 375\\ 1.\ 345\\ \end{array}$	$ \begin{array}{c} 16 \\ 9 \\ 20 \\ 12 \end{array} $	$\begin{array}{c} 1.\ 430\\ 1.\ 415\\ 1.\ 392\\ 1.\ 366\\ 1.\ 333 \end{array}$	$ \begin{array}{c} 11 \\ 8 \\ 10 \\ 10 \\ 9 \end{array} $	1.40 1.375	10 9	$\begin{array}{c} 1.\ 505\\ 1.\ 481\\ 1.\ 474\\ 1.\ 450\\ 1.\ 422 \end{array}$		$ \begin{array}{c} 1.505\\ 1.48\\\\ 1.42 \end{array} $	6 6 	1.288 1.285 1.281	$\begin{array}{c} 16\\ 10\\ 10\end{array}$		
$ \begin{array}{c} 1.315\\ 1.292\\ 1.263\\ 1.248\\ \end{array} $	$ \begin{array}{c} 10 \\ 5 \\ 10 \\ 10 \\ \end{array} $	$\begin{array}{c} 1.32 \\ 1.28 \\ 1.265 \\ 1.25 \\ 1.24 \end{array}$	$25 \\ 16 \\ 23 \\ 15 \\ 11$	$\begin{array}{c}1.\ 315\\1.\ 306\\1.\ 291\\1.\ 279\\1.\ 270\end{array}$	$ \begin{array}{c} 10 \\ 7 \\ 7 \\ 12 \\ 8 \end{array} $	1.315 1.28	8	$\begin{array}{c} 1.\ 406\\ 1.\ 394\\ 1.\ 350\\ 1.\ 342\\ 1.\ 322 \end{array}$	$\begin{array}{c}4\\31\\8\\6\\13\end{array}$	$ \begin{array}{r} 1.395 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.32 \end{array} $	$\begin{array}{c}14\\6\\8\\6\end{array}$				
		$\begin{array}{c} 1.215 \\ 1.19 \\ 1.17 \\ 1.155 \\ 1.14 \end{array}$				1.24 1.15	55	$\begin{array}{c} 1.\ 299\\ 1.\ 249\\ 1.\ 241\\ 1.\ 225\\ 1.\ 200 \end{array}$	$ \begin{array}{c} 10 \\ 5 \\ 7 \\ 5 \\ 7 \end{array} $	$\begin{array}{c} 1.30\\ 1.25\\ 1.24\\ 1.22\\ 1.20 \end{array}$	$ \begin{array}{c} 15 \\ 9 \\ 6 \\ 6 \\ 8 \end{array} $				
										$\begin{array}{c} 1.17\\ 1.135\end{array}$	6 9				

^a Data from present investigation.
^b Data by A. E. Austin [20].
^c d=interplanar spacing.

^d I=relative intensity. • (1), (2), (3) = three strongest peaks in order of intensity.

curve shows no maximum or minimum. R. Thomas [16] concluded from his investigation of the system BaO-Al₂O₃-SiO₂ that dibarium trisilicate is not a compound at all but is merely that particular composition at or near the maximum in a solid solution series.

Another point of interest is the shape of the liquidus curve in the cristobalite primary phase area [12]. Indicative of an approach to two-liquid immiscibility, the curve is almost horizontal for a change in composition of nearly 30 percent. Ol'shanskii [17] investigated the system BaO-SiO₂ above the liquidus, between the temperatures of 1,800° and 2,570° C, but could find no trace of immiscible liquids. However, the S-shaped form of the portion of the liquids curve under discussion is typical of unmixing, or of a miscibility gap, occurring completely below the liquidus [18].

Before investigating the interior of the ternary system, it was considered desirable from the standpoints of experience and of possible additional information that might be gained, to check several of the

			Α.	Compositi	ons in the	$BaO \cdot 2SiO_2$	primary field		
	Compo	sition, by	weight	Treat	ment			Phases present	
Composi- tion number	BaO	B_2O_3	SiO_2	Time held before quench- ing	Tem- pera- ture	n of quenched glass (25° C)	Primary	Other	Glass
	Percent	Percent	Percent	hr	° C 1. 066	1 609			A 11
1 - 107	51.21	15.02	33. 77		1,060	1.005	Χ		×
2- 30	51.89	12.95	35.16	$\begin{bmatrix} 1\\1 \end{bmatrix}$	1,103 1,100	1. 612	Rare		×
3-47	53.83	6.94	39.23	$\begin{cases} 1 \\ 1 \end{cases}$	$1,243 \\ 1,238$	1.607	Rare		$\overset{A II}{\times}$
4-94	54.60	18.91	26.49	$\begin{bmatrix} 1\\ 16 \end{bmatrix}$	$1,002 \\ 997$	1.622	Very rare		$\stackrel{All}{\times}$
5- 64	54 61	19.48	25 91	$\int \frac{1}{16}$	999 995	1.623	Rare		All
0 04	01, 01	10.10	20. 01		991 1 055	1 620	X	$3BaO\cdot 3B_2O_3\cdot 2SiO_2$	×
6-49	54, 94	15.78	29, 28	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$	1,050	1. 020	Rare		×
0 10					1,000 986		×	$3BaO \cdot 3B_2O \cdot 2SiO_2$	×
7-95	55.16	11.70	33.14	$\left\{ \begin{array}{cc} & \frac{1}{2} \\ & \frac{3}{4} \end{array} \right.$	$1,150 \\ 1,146$	1.620	Rare		$\overset{\mathrm{All}}{\times}$
8-48	55. 58	6. 93	37.49	$\begin{cases} 1 & . \\ 1 & . \end{cases}$	1,243 1,238	1.616	Rare		$\stackrel{A ll}{\times}$
9-100	55.69	16.95	27.36	$\begin{cases} 1 \\ 1 \end{cases}$	1,050 1 045	1.627	Very rare		All
10-186	56.35	2.89	40.76	{ <u>1/2</u>	1,345 1,240	1.614	Poro		ÂÌI
11-185	56, 56	5, 30	38.14	$\begin{cases} \frac{72}{1/2} \\ \frac{1}{2} \end{cases}$	1, 277	1.623	nare		All
				$1^{\frac{1}{2}}$	1,273 1,078	1.627	a Rare		All
12-63	56.71	14.61	28.68	$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	$1,070 \\ 1,000$		X Heavy		××
10.101	* 4.00	0.00	94.00		$980 \\ 1.214$	1,623	×	$3BaO\cdot 3B_2O_3\cdot 2SiO_2$	$\underset{\text{All}}{\times}$
13-184	56, 89	8, 83	34. 28		1,210 1,130	1 624	^a Rare		\times
14-133	57.25	12.84	29.91		1,125 1,022	1.021	Rare		×
15 - 182	57.73	18.06	24.21		1,023 1,019	1,055	Rare		×
16-181	57.81	18.86	23. 33	$\begin{bmatrix} 1 \\ 3/4 \end{bmatrix}$	1,005 1,003 005	1.632	Very rare	2 P _00.2 P _00.0000	×
17-206	58.6	17.2	24.2	$\begin{cases} 1 \\ 1 \\ 1 \end{cases}$	1,048	1.632	A	3BaO·3B ₂ O ₃ ·2SIO ₂	Âll
10 11	50.15	17.00	00, 00		1,044 1,010	1.633	Kare		All
18- 41	59, 15	17.05	23. 22	119	1,005 984	1 (200	Ĥeavy	$3BaO\cdot 3B_2O_3\cdot 2SiO_2$	Â
19-90	59.47	15.79	24.74	$\begin{cases} 1^{\frac{1}{2}} \\ 1 \end{cases}$	1,049 1,045	1.038	Rare		×
20-91	59.88	13.94	26.18	$\begin{bmatrix} 1\\1 \end{bmatrix}$	$1,085 \\ 1,081$	1.635	×		$\overset{\mathrm{All}}{\times}$
				L 1	1,070		Heavy	2BaO-3SiO ₂	×
		В. С	omposition	ns in the 1H	BaO•3SiO2	primary fie	eld and solid-solution	on area	
21- 51	59 02	6.97	34.01	£ 1	1, 238	1.626			All
22 62	50.08	7.01	33 01	$1 \\ 1 \\ 1/2$	1, 233 1, 244	1.630	^b SS		All
22- 02	00.00	10.10	00.01	$\left\{\begin{array}{c} 1^{\frac{1}{2}} \\ 1 \end{array}\right\}$	$1,238 \\ 1,042$	1.638	^b ss		$\underset{\text{All}}{\times}$
23-175	60. 21	10.10	23.03	$ \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} $	1,037 1,125	1.638	Rare		$\underset{\text{All}}{\times}$
24-26	60.41	11.83	27.76		1,120 1.073	1 633	Rare		× All
25 - 176	60.49	14.53	24.98		1,068	1.055	° Rare		×
26 - 177	61.13	10.81	28.06	{ 1	1, 132	1.056	с Х		X
27-202	61.42	18.13	20.45	$1^{\frac{1}{2}}$	1,000	1. 043	Very rare		×
					991 981		Heavy	$3B_1O \cdot 3B_2O3 \cdot 2SiO_2$	Â
28 - 178	61.46	8.90	29.64	$\begin{cases} \frac{1}{4} & 1 \\ 1 & \frac{1}{4} & 1 \end{cases}$	1,201 1,196	1.638	Rare		$\overset{\mathrm{All}}{\times}$
29-42	61.47	6.96	31. 57	$\begin{cases} 1\\ 1 \end{cases}$	$1,245 \\ 1,240$	1.638	^b ss		$\stackrel{All}{\times}$
30-179	61.68	7.63	30.69	$\begin{cases} 1\\ 1 \end{cases}$	1,226 1 223	1.638	b ss		$\stackrel{\mathrm{All}}{\times}$
31- 54	61.74	13.40	24.86	1/2	1,089	1.640	Bare		All
32-79	62.29	14.71	23.00	34	1,064	1.642	Raro		ÂÌI
33-180	62.49	2.90	34.61	$\begin{cases} 1/2 \\ 1/$	1, 365	1.637	haa		All
				$1^{\frac{1}{2}}$	1,360 994	1. 647	5 SS		All
34-172	62.53	18.30	19.17	$\begin{bmatrix} 1 \\ 1/2 \end{bmatrix}$	990 980		Kare	$3\operatorname{BaO} \cdot 3\operatorname{B}_2\operatorname{O} 3 \cdot 2\operatorname{SiO}_2$	×
35-52	62.87	16.08	21.05	$\left\{ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{4} \end{array} \right.$	1,040 1,035	1. 642	Ware		$^{\rm All}$

TABLE 3. Data on liquidus determinations in the system BaO-B2O3-SiO2

		B. Compo	ositions ir	n the 1BaO	$2\mathrm{SiO}_2$ prin	nary field a	nd solid solution a	area—Continued	
	Compo	osition, by w	eight	Treat	ment			Phases present	
Composi- tion number	BaO	B_2O_3	SiO ₂	Time held before quench- ing	Tem- pera- ture	n of quenched glass (25° C)	Primary	Other	Glass
	Percent	Percent	Percent	hr	° <i>C</i>				
36-78	63.42	17.38	19.20	$\left \begin{cases} 2 \\ 1 \end{cases} \right $	1,001	1.645	Waro		
	20. 80				1.350	1.640	ware		ÂÌI
37- 58	63. 59	3.05	33.36	{ î	1,345		b SS		×
38- 59	64.80	9.13	26.07	$\begin{cases} 1 \\ 1 \end{cases}$	1, 182	1.645	a Dawa		All
				$\begin{pmatrix} 1 \\ 116 \end{pmatrix}$	1,177	1 648	• nare		ÂÌI
20 82	64 09	16.05	10 19	$1 2^{-2}$	998		Rare		×
39- 03	04. 92	10.95	16.15	11/2	984		Moderate		X
					968	1 649	Heavy	$3BaO\cdot 3B_2O_3\cdot 2S_1O_2$	All
40-60	66.01	15.21	18.78	i i	1,030	1.013	Rare		×
41- 76	66 62	18 25	15 13	5 11/2	976	1.654			All
11 10	00.02	10.20	10.10		973	1 074	Rare		X
42-55	67.15	11.62	21.23		1,102 1,097	1. 004	° Bare		X
49 179	67 99	0.10	92 64	1/2	1, 164	1.654			ÂÌI
40-170	07.22	9.10	25. 98	1/2	1, 159		Very rare		X
44-187	67.52	18.13	14.35	34	947	1.661	Raro		X
45 151	07.05	10.07	15.00	1 1	982	1.668	Luare		ÂÌI
45-171	67.65	16.67	15.68	1 i	977		Rare		×

TABLE 3. Data on liquidus determinations in the system BaO-B₂O₃-SiO₂-Continued

			с.	Composit	ions in the	$BaO \cdot SiO_2$	primary field
46-84	67.81	9, 88	22.31	$\begin{cases} 1/2 \\ 1/2 \\ 1/2 \end{cases}$	$1,145 \\ 1,141$	1.666	All X
47 - 127	68.48	15.81	15.71	$\begin{cases} 1/2 \\ 1 \end{cases}$	995 989	1.659	All X
48-188	68.57	17.19	14.24	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right.$	965 961	1.670	All
49-85	68.61	7.94	23.45	$\begin{cases} 1 \\ 1 \end{cases}$	1,237 1,232	1.667	Rare All X
50 - 86	69.88	4.84	25.28	$(2^{\frac{1}{2}})$	1,352	~ 1.67 1.664	Very rare
51-31	70.02	17.68	12.30	$\left\{ \begin{array}{c} 114\\ 112\\ 112\\ 112 \end{array} \right.$	960 950 943		RareX ModerateX ModerateX
52 - 22	70.22	15.71	14.07	1	1,016 1,013	1.665	All X
53-23	71.04	7.86	21.10	$\begin{cases} 1\\1 \end{cases}$	1,305 1,298	1.669	All ×
54 - 168	72.01	17.69	10.30	$\left\{\begin{array}{c} 1/2\\ 2/3\end{array}\right.$	975 970	1.672	Rare All ×
55 - 126	72.08	12.05	15.87	$\left\{ \begin{array}{c} 1^{\frac{1}{2}} \\ 1 \end{array} \right.$	$1,189 \\ 1,184$	1.683	Rare All
56 - 125	74.13	9. 91	15.96	$\begin{cases} \frac{1}{2} \\ \frac{1}{2} \end{cases}$	$1,250 \\ 1,244$	1.681	Rare All
57 - 70	74. 93	18.16	6. 91	$\left\{ \begin{array}{c} 1\\ \frac{1}{2} \end{array} \right.$	961 959		Rare All
58 - 169	75.69	12.08	12.23	$\begin{cases} & \frac{1}{2} \\ & \frac{1}{2} \end{cases}$	$1,160 \\ 1,155$		Very rare All
59 - 110	76, 06	18, 24	5.70	$\left\{ \begin{array}{c} 1\\ 1\end{array} \right.$	950 946	1.684	Rare All
60 - 37	76.11	15, 70	8.19	$\begin{cases} 3/4 \\ 3/4 \end{cases}$	$1,038 \\ 1,030$	1.680	Rare All ×
61 - 158	76.83	17.88	5.29	$\left\{ \begin{array}{c} 1\\ 1\end{array} \right.$	$\begin{array}{c} 954 \\ 949 \end{array}$	1,696	All ×
62 - 157	77.61	17.53	4.86	$\left\{ \begin{array}{c} 1\\ 1/2 \end{array} \right.$	959 954	1.695	Rare All ×
63-200	78.02	17.34	4.64	$\left\{\begin{array}{c}1\\1\\1\end{array}\right.$	$962 \\ 957 \\ 952$	1.698	$ \begin{array}{c c} & & & & & \\ \hline Rare_& & & \\ Moderate_& & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$

D. Compositions in the $2BaO \cdot SiO_2$ primary field

64-124 65-170 66-71 67-201 68-156 69-155 70-72	76.01 76.71 77.99 78.40 78.72 79.16 79.39	7, 95 10, 54 11, 78 16, 12 13, 43 14, 43 8, 84	16. 04 12. 75 10. 23 5. 48 7. 85 6. 41	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 1 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{c} 1,308\\ 1,302\\ 1,263\\ 1,258\\ 1,200\\ 1,160\\ 1,224\\ 1,206\\ 1,055\\ 1,055\\ 1,055\\ 1,055\\ 1,274\\ 1,270\\ 1,223\\ 1,217\\ \circ1,359 \end{array}$	$\begin{array}{c} \sim 1.69 \\ \hline 1.696 \\ \hline \\ \sim 1.694 \\ \hline \\ 1.698 \\ \hline \\ 1.704 \\ \hline \\ 1.704 \\ \hline \end{array}$	Rare Rare Moderate BaO-SiO ₂ X. Rare X. Rare Moderate	
70-72	79.39	8.84	11. 77	$\left\{\begin{array}{c}1\\1/2\\1/2\end{array}\right.$	e 1, 359 1, 344		Moderate Heavy	^d ×××

TABLE 3. Data on liquidus determinations in the system BaO-B₂O₃-SiO₂-Continued

		2.		E. Compos	sitions in t	the 3BaO·B	₂ O ₃ primary field			
	Compo	osition, by	weight	Treatment			Phases present			
Composi- tion number	BaO	$\mathrm{B}_2\mathrm{O}_3$	$ m SiO_2$	Time held before quench- ing	Tem- pera- ture	$n ext{ of } quenched glass \ (25^{\circ} ext{ C})$	Primary	Other	Glass	
71-199	Percent 77.82	<i>Percent</i> 19. 76	Percent 2.42	$ \begin{cases} hr \\ 1 \\ 1 \\ \frac{1}{2} \\ 1 \end{cases} $	$^{\circ}C$ 910 906 900 f 875	1.698	Very rare Moderate Heavy	Rare $BaO \cdot B_2O_3$ (BaO \cdot B_2O_3)(BaO \cdot SiO_2).	$\overset{All}{\underset{\times}{\times}}_{\times}$	
72–109 73–108	80. 04 83. 05	16.42 15.05	3. 54 1. 90	$\begin{cases} 3/4 \\ 1 \\ 1 \frac{1}{2} \\ \frac{1}{2} \end{cases}$	$1,077 \\ 1,073 \\ 1,206 \\ 1,198$	1.705	Rare		$\stackrel{\text{All}}{\underset{\text{b}}{\times}}$	

F. Compositions in the $BaO \cdot B_2O_3$ primary field

74-165 75-166 76-116 77-115 78-114 79-113 80-77 81-75 82-61 83-21 84-73 85-112 86-74 87-167 88-36 89-35 90-111	54. 88 56. 46 62. 80 63. 47 64. 93 65. 09 65. 82 66. 98 67. 22 69. 41 69. 58 69. 84 70. 24 71. 38 71. 41 74. 23 74. 70	43, 79 41, 38 28, 13 28, 42 29, 06 23, 23 23, 06 20, 08 21, 30 23, 56 25, 73 21, 07 18, 32 18, 66 25, 52 19, 63 18, 85	$\begin{array}{c} 1.\ 33\\ 2.\ 16\\ 9.\ 07\\ 8.\ 11\\ 6.\ 01\\ 11.\ 68\\ 11.\ 12\\ 12.\ 94\\ 11.\ 48\\ 7.\ 03\\ 4.\ 69\\ 9.\ 09\\ 11.\ 44\\ 9.\ 96\\ 3.\ 07\\ 6.\ 14\\ 6.\ 45\\ \end{array}$	$\left\{\begin{array}{c}3\\5\\5\\5\\6\\6\\6\\6\\6\\6\\6\\6\\6\\6\\6\\6\\6\\6\\6\\6\\$	$\begin{array}{c} 897\\ 892\\ 926\\ 921\\ 1,002\\ 999\\ 996\\ 1,023\\ 1,054\\ 1,054\\ 1,054\\ 1,050\\ 998\\ 999\\ 998\\ 999\\ 998\\ 999\\ 965\\ 998\\ 4979\\ 1,020\\ 1,077\\ 1,003\\ 996\\ 958\\ 958\\ 968\\ 958\\ 968\\ 958\\ 968\\ 968\\ 968\\ 968\\ 968\\ 951\\ 968\\ 968\\ 951\\ 951\\ 996\\ 939\\ 999\\ 999\\ 999\\ 999\\ 999\\ 999$	$\begin{array}{c} 1.\ 620\\ \hline 1.\ 622\\ \hline 1.\ 645\\ \hline 1.\ 646\\ \hline 1.\ 652\\ \hline 1.\ 653\\ \hline 1.\ 653\\ \hline 1.\ 655\\ \hline 1.\ 653\\ \hline 1.\ 663\\ \hline 1.\ 663\\ \hline 1.\ 663\\ \hline 1.\ 662\\ \hline 1.\ 662\\ \hline 1.\ 664\\ \hline 1.\ 664\\ \hline 1.\ 674\\ \hline 1.\ 678\\ \end{array}$	Moderate	3BaO·3B ₂ O ₃ ·2SiO ₂	$\begin{array}{c} \mathrm{AII} \\ \times \\ \mathrm{AII} \\ \times $
89-35 90-111 91-189	74. 23 74. 70 77. 00	19. 63 18. 85 20. 00	6. 14 6. 45 3. 00	$ \left\{\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1/2 \right. $	$ \begin{array}{r} 951 \\ 946 \\ 939 \\ 934 \\ 925 \\ 920 \\ \end{array} $	1. 674 1. 678 1. 696	Rare Rare		$ \begin{array}{c} \widehat{\text{All}} \\ \times \\ \widehat{\text{All}} \\ \times \\ \widehat{\text{All}} \\ \times \end{array} $

G. Compositions in the $BaO{\cdot}2B_2O_3$ primary field

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	92- 96 93-147 94-119 95-151 96-148 97-149 98-120 99-162 100-152 101-203	39. 30 40. 26 40. 57 42. 42 42. 65 43. 49 44. 21 46. 25 48. 05 48. 55	55. 04 52. 80 55. 81 55. 09 47. 25 45. 30 49. 81 46. 44 47. 56 46. 90	5.66 6.94 3.62 2.49 10.10 11.21 5.98 7.31 4.39 4.55	$\left\{\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	845 841 835 841 839 858 853 872 841 838 840 855 870 867 885 880 880 881 884 881	$\begin{array}{c} 1.568 \\ \hline \\ 1.573 \\ \hline \\ 1.572 \\ \hline \\ 1.578 \\ \hline \\ 1.588 \\ \hline \\ 1.588 \\ \hline \\ 1.599 \\ \hline \\ 1.598 \\ \hline \\ 1.602 \\ \hline \end{array}$	Rare A Moderate BaO·4B ₂ O ₃ Rare A Moderate A Moderate A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100–152 101–203	48.05 48.55	47. 56 46. 90	4.39 4.55	$ \begin{cases} 34 \\ 34 \\ 12 \\ 12 \\ 13 \\ 14 \end{cases} $	884 881 884 877	1. 598 1. 602	Rare A Moderate A
	102–164 103– 80	52.90 53.69	45. 71 44. 37	1.39 1.94	$ \begin{cases} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1 \end{cases} $	906 900 897 894	1. 617	Rare A Rare X

TABLE 3.	Data on liquidus	determinations in the sys	stem BaO-B ₂ O ₃ -SiO ₂ Continued
----------	------------------	---------------------------	--

			I	I. Composi	itions in th	he BaO·4B ₂	O ₃ primary field		
	Comp	osition, by	weight	Treat	ment			Phases present	
Composi- tion number	Composi- tion number BaO B2O3 SiO2 Time held before quench ing	Time held before quench- ing	Tem- pera- ture	$n ext{ of } quenched ext{ glass } (25^{\circ} ext{ C})$	Primary	Other	Glass		
	Percent	Percent	Percent	hr	°C				
104-193	18.0	62.0	20. 0		874	$\left\{ \begin{array}{c} 1.45 \\ 1.542 \end{array} \right.$	}	· · · · · · · · · · · · · · · · · · ·	All 2 glasses
105-134	23. 24	43.11	33. 65		871 830 825	$\left\{ \begin{array}{c} 1.457 \\ 1.53 \end{array} \right.$	Rare		2 glasses All 2 glasses
106–29 i	29.05	70, 95			880 876	$\left\{ \begin{array}{c} 1.464 \\ 1.535 \end{array} \right.$	}		All 2 glasses
107-133	29.63	54.99	15.38	$\begin{cases} 18 \\ 2 \end{cases}$	841 836	$\left\{ \begin{array}{c} 1.44 \\ 1.55 \end{array} \right.$	}		All 2 glasses
108-137	32. 33	59.98	7.69		861 856	{ 1.545	}Rare		All 2 glasses
109-138	33.34	61.85	4. 81		870	{ 1.548	}		All 2 glasses
110-132	34.18	63.42	2.40	$ \left\{ \begin{array}{c} & \frac{72}{1/2} \\ & \frac{1/2}{3/4} \end{array} \right\} $	805 875 872	1.55	Rare		2 glasses All \times
111- 43	36.70	59.87	3.43	$\left\{\begin{array}{cc} 1\\ 1\end{array}\right.$	$\frac{864}{860}$	1.556	Rare		$\overset{\mathrm{All}}{\times}$
112-101	37.62	56.94 *	5.44	$\left\{ \begin{array}{cc} \frac{1}{2} \\ \frac{1}{3} \end{array} \right.$		1.563	Moderate		$\stackrel{A11}{\times}$
113-146	38.71	56.41	4.88	$\left\{ \begin{array}{c} 1/2 \\ 1/3 \\ 1/4 \end{array} \right.$	845 840 820	1.565	Rare	PoO aP O	
114-118	39. 33	57.86	2.81	$ \left\{ \begin{array}{c} 1/2 \\ 1/2 \\ 1/4 \end{array} \right. $	830 861 857	1.567	Rare	Ba0·2B ₂ O ₃	$\overset{\times}{\underset{\times}{\overset{\operatorname{All}}{\overset{\operatorname{All}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}{\overset{\operatorname{K}}}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}}}{\overset{\operatorname{K}}}{\overset{\operatorname{K}}}{\overset{K}}}{\overset{K}}}{\overset{K}}}{\overset{K}}}}}}}}}}$

I. Compositions in the ${\rm SiO}_2\,{}^{j}$ primary field

115 - 136	10.10	18.75	71.15	2	e 960	$\begin{cases} 1.459 \end{cases}$	}×		2 Glasses
					020	(~~1.45	í .		
116 - 135	17.51	32 49	50.00	∫ 17	830	1~1.55	}		All 2 glasses
110 100	11.01	02.10	50.00	1112	821	,	X		2 Glasses
117 - 195	20.0	30.0	50.0	1/2	e 860	1.50	}×		2 Glasses
						$1 \sim 1.50$	1		-
118 - 194	00.0	10.0		f 1,6	e 826	1.50	}X		2 Glasses
	20.0	40.0	40.0	1/2	821		′х	$BaO \cdot 4B_2O_3$	2 Glasses
119-145	25.55	11 41	63 04	16	e 1 978	∫ ~1.47	ly.	-	9 Glaggog
			00.01	/2	1, 210	$1 \sim 1.57$	/		2 0145565
				(18	1,018	~ 1.40	}		All 2 glasses
120 - 142	29.85	27.18	42.97	10	960	(~1.00	'×		2 Glasses
				· -	1 250	$\int \sim 1.46$)		2 010500
121-144	34 13	15 25	50.62	∫ <u>1/2</u>	1,350	$1 \sim 1.56$	}		All 2 glasses
	01.10	10.20	00.02	1 1/2	1,314		X		2 Glasses
122 - 161	37.76	16.87	45.37	1	e 1, 201	57	X		2 Glasses
						(~ 1.57)	1		
123 - 141	38.54	25.00	00.07	ſ 1	e 922	}	}×		2 Glasses
		55.09	20.37	L 56	910		Χ		2 Glasses
124 - 140	42.63	38.82	18.55	$\{ 1 \}$	915	{	}		All 2 glasses
				(2	010	1.59)		O Classes
	1.2			í 3	826	1 573	^		2 Glasses
125 - 27	39.28	51.91	8.81	11/2	823	1.070	Χ		X
				11/2	814		X	$BaO \cdot 2B_2O_3$	Ŷ
100 100	10.00	10		1 1/3	838	1.577			All
126-102	40.36	48. 52	11.12	1,1/3	830		X	D. O aD O	×
					810	1 589	×	$BaO \cdot 2B_2O_3$	×
127 - 44	41.37	45.43	13.20	ł i	830	1.002	Rare		X
				16	810		Χ	$BaO \cdot 2B_2O_3$	Ŷ
128 - 160	41.72	18.64	39.64	1	e 1, 200		Χ		×
190-103	41 91	11 09	14.17	1/2	860	1.588			All
125 105	41.01	44. 02	14.17	$1 \frac{72}{16}$	835		\$	Bo O. 9B. O.	×
120 104	40.40	40.01	15 50	14	860	1.588	A	Ba0.2B ₂ O ₃	ÂII
130-104	42. 40	42.01	15, 55	1 1/4	847		Χ		×
191 100	10.01	00.00		{ 1	891	1.592			All
131-139	43. 91	39.98	16.11	1 1/2	880		X	aD 0 aD 0 adio	×
					1 102	1 505	×	$3BaO \cdot 3B_2O_3 \cdot 2S1O_2$	X
132-131	45.05	20.12	34.83		1,055	1.000	Rare		X
				1 1	955	1.600			Âll
133 - 45	45.56	32.52	21.92	11/2	950		Rare		×
					900	1 200	Χ	$3BaO\cdot 3B_2O_3\cdot 2SiO_2$	×
134 - 29	47.69	25.92	26.39	1 1 1	1,101	1. 606	×		All
195 105	10 70	00.40	00 70	114	1.008	1,610	^		ÂII
155-105	48. 79	22.49	28.72	1	1,004		Χ		×

See footnotes at end of table. 259947 - 53 - - 5

			I. Cor	npositions i	in the SiO	₂ j primary	field-Continued				
	Composition, by weight			Treatment			Phases present				
Composi- tion number	BaO	$\mathbf{B}_{2}\mathbf{O}_{3}$	SiO_2	Time held before quench- ing	Tem- pera- ture	n of quenched glass (25° C)	Primary	Other	Glass		
136–191 137–46 138–106	Percent 49. 79 49. 89 50. 59	Percent 22. 34 19. 13 16. 94	Percent 27. 87 30. 98 32. 47	$ \begin{array}{c} hr \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1 \\ 1\end{array} $	$^{\circ}C$ 1,005 1,000 1,015 1,010 1,032	$ \begin{array}{r} 1.615 \\ \hline 1.611 \\ \sim 1.61 \end{array} $	Rare		All × All × All		
139-143	50. 64	22. 62	26.74	$\left\{ \begin{array}{c} 1\\ 1\\ 1\\ \end{array} \right\}$	1,020 1,002 996 1,005	1.616	×				
140-192 141-190	50.69 51.43	21. 41 23. 08	27. 90 25. 49	$\left\{\begin{array}{c}1/2\\1/2\\1\\1\\1\\1\end{array}\right.$	$ \begin{array}{r} 1,000\\ 1,000\\ 996\\ 993 \end{array} $	1. 615	Rare Rare ×	3BaO·3B ₂ O ₃ ·2SiO ₂	All All X		
			J, Comp	ositions in	the 3BaO	·3B ₂ O ₃ ·2SiC	D ₂ primary field				
140.00	11.00	11.05	10.15	$\left(1\right)$	850	1, 593			All		
142-66 143-97	44. 98 45. 80	41. 87 39. 94	13, 15		844 897 892 904	1.601	× Rare		× All × All		
144 - 163 145 - 65	47.43 47.92	44.49 35.05	8.08 17.03	$ \left\{\begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array}\right. $	901 965 960	1.607	Rare		× All		
146 - 121	48.49	42.74	8.77	$ \left\{\begin{array}{c} 1\\ 1\\ 1\\ 1 \end{array}\right. $	924 919 936	1.604	X				
147-122 148-204	49.02 49.25	41.86 45.96	9.12 4.79	$ \left\{\begin{array}{c}1\\1\\\frac{1}{2}\\\frac{1}{2}\end{array}\right\} $	930 932 890	1.604	Rare		× All		
149 - 205	49.95	45.02	5, 03	$ \begin{cases} \frac{1/2}{1/2} \\ \frac{1/2}{1/2} \end{bmatrix} $	886 904 899	1.606	Rare	very rare Ba-2B ₂ O ₃	$\stackrel{\times}{\stackrel{\text{All}}{\times}}$		
150-67	50, 85	28.24	20, 91	$ \left\{\begin{array}{c} 1\\ 1\\ 1 \end{array}\right. $	986 980 995	1.613 1.617	Rare		$\stackrel{All}{\times}$ All		
152-98	52, 00	21.14 25.33	26.80 22.58		989 997 992	1.623	×		All		
153-123	52.10	36.78	11.12	$ \left\{\begin{array}{c} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{array}\right. $	985 979	1.617	Rare				
154-38	53, 41	43.90	2.69	$\left\{\begin{array}{c}152\\1\\2\end{array}\right\}$	894 886	1.015	Rare Moderate	BaO·2B ₂ O ₃	$\overset{\mathrm{All}}{\times}$		
155-99	53.56	21.92	24.52	$ \left\{\begin{array}{c} 1\\ 1\\ \frac{1}{3} \right. $	$998 \\ 995 \\ 1,003$	1.620 1.622	Rare		$\stackrel{All}{\times}$ All		
157-50	53.00 54.11	27.18	15.50	$ \left\{\begin{array}{c} \frac{1}{4}\\ 1\\ 1 \end{array}\right\} $	998 1,000 996	1.622	X		$\stackrel{\times}{_{\scriptscriptstyle \mathrm{All}}}$		
158-34	54.32	24.37	21.31	$ \left\{ \begin{array}{c} 1 \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array} \right. $	$1,001 \\ 998$	1.625	Moderate		All ×		
159-39	54.38	39.45	6.17	$\begin{cases} 1 \\ 1\frac{1}{4} \\ 1 \end{cases}$	957 954 999	1.620 1.622	Rare		$\stackrel{All}{\times}_{All}$		
160-93	54.46	20.67	24.87	$\begin{cases} 1 \\ 1\frac{1}{2} \\ 1\frac{1}{4} \end{cases}$	995 984 988	1 699	Rare Moderate	BaO·2SiO ₂	×		
161-24 162-87	55.24 55.72	35.50 32.52	9.26 11.76	$\begin{cases} \overset{\gamma_2}{1} \\ \overset{\gamma_4}{1} \end{cases}$	$981 \\ 1,002$	1. 628	Rare		$\underset{\text{All}}{\times}$		
163-40	56.56	29.47	13.97	$ \begin{bmatrix} 1/2 \\ 1 \\ 1 \end{bmatrix} $	$998 \\ 1,005 \\ 1.000$	1.629	Rare Moderate		$\stackrel{\times}{\stackrel{\Lambda ll}{}}$		
164-68	57.15	26.79	16.06	$\left\{\begin{array}{c} 11_{2} \\ 11_{2} \\ 11_{2} \\ \end{array}\right.$	$1,008 \\ 1,005$	1.631	Moderate		$\stackrel{\widehat{\mathrm{All}}}{\times}$		
165-32	57.67	24.37	17.96	$\begin{cases} 1\frac{1}{2} \\ 1 \\ 1 \end{cases}$	$1,008 \\ 1,004 \\ 985$	1.633 1.631	Moderate		$\stackrel{\text{All}}{\times}$		
166-57	57.72	34.85	7.43	$\left\{\begin{array}{c} 3/4\\1\\1\end{array}\right.$	980 951 940		Rare Moderate Large	BaO·B ₂ O ₃	×××		
167 - 25	57.83	23.66	18.51	$\begin{cases} 1 \\ 1 \\ -2 \end{cases}$	1,005 1,001 1,005	1.634	Rare				
168-88	58.11 58.30	21.83 26.48	20.06	$ \begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix} \begin{bmatrix} 2 \\ 1/2 \end{bmatrix} $	1,005 1,000 1,013	1.631	Χ		All		
170-89	58.63	20.48 19.51	21.86	$\left\{ \begin{array}{c} 1/2 \\ 2/2 \\ 1 \end{array} \right\}$	1,011 1,002	1.634	Very rare		All		
171-174	59.82	18.43	21.75	$\left\{\begin{array}{c}1\\1\\1\end{array}\right\}$	998 997 994	1.638	Kare		All		
172-197	61.30	19.49	19.21	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right.$	995 990	1.641	Rare		All		
173-117	61.41	27.52	11.07	$\left\{\begin{array}{c}1\\1\\1\end{array}\right.$	$ \begin{array}{r} 1,007 \\ 1,005 \\ 994 \end{array} $	1.642	Rare Moderate	$BaO \cdot B_2O_3$	$\stackrel{All}{\times}$		

india of bata of tryatado actor interestiono in the ogotom bito bito 200 of 000 0000	TABLE 3.	Data on liquidus	determinations	in the system	$BaO-B_2O_3-SiO_2$ -Continued
--	----------	------------------	----------------	---------------	-------------------------------

TABLE 3. Data on liquidus determinations in the system BaO-B₂O₃-SiO₂--Continued

	Compo	weight	Treat	Treatment			Phases present		
Composi- tion number	BaO	B_2O_3	SiO_2	Time held before quench- ing	Tem- pera- ture	$n ext{ of } quenched ext{glass} (25^{\circ} ext{ C})$	Primary	Other	Glass
174-56 175-81 176-82 177-196 178-53	Percent 62. 44 63. 13 64. 20 64. 77 65. 41	Percent 23. 23 21. 31 18. 70 21. 39 22. 10	Percent 14.33 15.56 17.10 13.84 12.49	$ \begin{array}{c} hr \\ 1 \\ 1 \\ 1^{1/2} \\ 1^{1/2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2^{1/6} \end{array} $	$^{\circ}C$ 996 992 998 993 974 985 981 972 969 961	$ \begin{array}{r} 1.641 \\ \overline{1.645} \\ \overline{1.647} \\ \overline{1.648} \\ \overline{1.648} \\ \overline{1.648} \end{array} $	Moderate Rare Rare Rare Rare Woderate	Ba0.Ba0.	$\begin{array}{c} All\\ \times\\ All\\ \times\\ All\\ \times\\ All\\ \times\\ All\\ \times\\ All\\ \times\\ \end{array}$

 * X-ray powder pattern of crystals grown at 1,100° C showed very slight irregular shift in d spacings from pure BaO-2SiO₂. No detectable change in optical properties. ^b Solid solution with BaO-2SiO₂ and with barium borates, confirmed by optical

and X-ray data.

and \mathbf{X} -ray uata. • \mathbf{X} -ray powder pattern of primary physe crystals showed a maximum shift of 0.02 A in *d* spacings from pure 2BaO-3SiO₂. No detectable change in optical ^d Includes quench growths and barium platinates.

features of the $BaO-SiO_2$ system. Melting points, optical properties, and X-ray diffraction data for all compounds in the system were determined; and a microscopic and X-ray study of the BaO-2SiO₂-2BaO·3SiO₂ solid solution area was made.

The melting points and optical properties of the compounds were found to be, in general, in close agreement with the reported values [15, 16]. Eskola [15] reported the melting point of dibarium silicate $(2BaO SiO_2)$ as being above that of platinum. By a method of optical pyrometry [19], it was possible to estimate the melting point as $1,815 \pm 25^{\circ}$ C. Microscopic examination of 2BaO·SiO₂ that had been heated above 1,800° C gave some new optical data. The material appeared as irregular grains showing good cleavage parallel to the plane containing the alpha and beta vibration directions; it was biaxial positive with a very small 2V (5 to 10°); $\alpha = 1.800, \beta = 1.80+, \gamma = 1.826.$

Table 2 gives a comparison of the X-ray powder pattern diffraction data obtained in this study with that of Austin's [20]. Although agreement between the two sets of data is reasonably good, enough differences exist to warrant recording. It can be seen from table 2 that minor differences exist in interplanar spacings and relative intensities between corresponding patterns. The present study reveals additional interplanar spacings for most of the compounds, in particular for $BaO \cdot 2SiO_2$. Perhaps the most notable difference in the corresponding pairs of patterns is the lack of agreement of the three major peaks (identified as (1), (2), and (3) in table 2). Only the numbers (1) and (2) peaks for $2BaO \cdot SiO_2$ and the number (1) peaks for $BaO \cdot SiO_2$ and $2BaO \cdot 3SiO_2$ agree between the two sets of data. The remainder of the peaks are either interchanged in order of intensity or are entirely different. The discrepancies in order of intensity of the three major Liquidus greater than this temperature

^t Temperature of a ternary invariant point. ^s All glass devitrified to form quench growths.

^b Glass and quench growths. ⁱ To check liquidus of binary immiscibility region.

¹ Nost difficult of the primary phase regions studied and, consequently, the least accurate; tridymite only form identified. **k** Composition of 3BaO·3B₂O₃·2SiO₂.

peaks for corresponding sets of data are due probably to orientation. In this study, an attempt was made to minimize orientation in the sample during specimen mounting. The finely ground material (passing a No. 200 mesh screen) was neither packed nor scraped at any stage of preparation but was sprinkled freely over a microscope slide (which served as a specimen holder) that had been smeared with a thin layer of petrolatum.

Study of the BaO·SiO₂-2BaO·3SiO₂ solid solution area was based on the following four compositions: 100 percent of $BaO \cdot 2SiO_2$ (0 percent of $2BaO \cdot 3SiO_2$), 70.8 percent of $BaO \cdot 2SiO_2$ (29.2 percent of 2BaO. $3SiO_2$, 37.5 percent of $BaO \cdot 2SiO_2$ (62.5 percent of $2BaO\cdot 3SiO_2$, and 0 percent of $BaO\cdot 2SiO_2$ (100 percent of 2BaO·3SiO2). Results of the optical examination agreed with Eskola's study [15]. The X-ray data, however, did not conclusively show a solid solution series. The powder pattern for the composition containing 70.8 percent of $BaO \cdot SiO_2$ (29.2 percent of $2BaO \cdot 3SiO_2$) showed several double peaks which indicated the presence of two phases. Even after an additional melting and grinding of the mixture, these double peaks persisted. It is believed that single crystal work, which would permit the determination of unit cell sizes, would be the most suitable method of studying the solid solution area by means of X-rays.

4. Experimental Results and Discussion

4.1. General Statement

Table 3 gives the essential quenching data for the 178 compositions studied, grouped according to primary fields of crystallization. The compositions within each primary field are arranged according to increasing percentage of BaO. The locations of the

FIGURE 6. Phase equilibrium diagram for the system BaO-B₂O₃-SiO₂, showing isotherms, boundaries, and invariant points.

FIGURE 7. Composition triangles in the system $BaO-B_2O_3-SiO_2$.

compositions studied are shown in figure 1. The data from table 3 are plotted in figures 6 and 7.

Figure 6 shows the ternary diagram for the system, with the temperatures of the invariant points listed alongside. The heavy lines, solid and dashed, represent the phase boundaries and delineate the primary phase areas. The arrows indicate the direction of falling temperature, in the conventional manner. Isotherms are drawn generally at 100-deg intervals, but in some cases at 50- or 25-deg intervals. The temperatures for the polymorphic inversions of silica, such as quartz to tridymite and tridymite to cristobalite, could not be obtained experimentally, but for the case of the tridymite-cristobalite inversion the assumption was made that the inversion temperature is the same as for pure silica, namely, 1,470° C. Little data could be obtained in the regions very rich in BaO, for example, in the $2BaO \cdot SiO_2$ and BaOprimary phase areas, (1) because of the reaction of the samples with platinum at high temperatures to form barium platinates, (2) because of the extremely rapid rate of devitrification of samples during quenching, and (3) because of the rapid hydration of samples

after quenching. Experimental difficulties due largely, it is believed, to the high viscosity of the melts were encountered, likewise, in studying most of the two-liquid immiscibility region and the silica primary phase area. It should be noted that such factors were encountered as very fine crystals difficult to identify, evidences of nonequilibrium conditions, failure to obtain clear-cut separation of the immiscible liquids, and inability over most of the silica field to determine liquidus temperatures. This portion of the diagram, therefore, is of a tentative nature, but it is thought that the relationships as shown are essentially correct.

Each of the eight binary compounds shows a primary phase region in the ternary diagram (fig. 6). Only one ternary compound, 3BaO-3B₂O₃-2SiO₂, is found. The system contains 5 ternary eutectics, lettered A, B, C, D, E; five ternary invariant points not eutectics (reaction points) lettered F. G. H. I. J: and 2 quintuple points, lettered K and L, at which 2 liquid phases are in equilibrium with 2 crystalline phases and vapor. With the exception of point J, temperatures of these invariant points range between 810° and 980° C. The invariant point J is under $1,370^{\circ}$ C, the value of the binary eutectic between BaO and $3BaO \cdot B_2O_3$. However, as point J is located near the binary eutectic, it is to be expected that its liquidus value is not much lower. One other invariant point, M, representing the equilibrium between silica, boric oxide, and BaO.4B₂O₂ is postulated [21] to lie somewhere in the narrow region between the B_2O_3 -SiO₂ binary and the boundary between the two immiscible liquids and one-liquid regions. The most prominent feature of the diagram is the large extent of the area of two immiscible liquids, which covers approximately 50 percent of the diagram. It is also interesting to note that the $BaO \cdot 4B_2O_3$ and SiO_2 primary phase areas include almost 70 percent of the diagram.

Figure 7 shows the eleven composition triangles formed in the system by the Alkemade lines. For the purpose of clarity, isotherms are not shown. Three secondary binary systems are evident: $BaO \cdot SiO_2 - BaO \cdot B_2O_3$, $3BaO \cdot 3B_2O_3 \cdot 2SiO_2 - BaO \cdot B_2O_3$, and 3BaO·3B₂O₃·2SiO₂-BaO·2B₂O₃ (see also fig. 8, D, E, F). It cannot be stated with assurance whether or not the system 3BaO·3B₂O₃·2SiO₂- $BaO.2SiO_2$ is a binary because the exact nature and extent of the solid solution field is not known (see fig. 8, A). The system $3BaO \cdot 3B_2O_3 \cdot 2SiO_2 - BaO \cdot B_2O_3 BaO \cdot 2B_2O_3$ is seen to be a secondary ternary system. Crystallization paths for compositions in that portion of the baria-borosilicate system where liquid immiscibility does not occur are, in general, straightforward and familiar types. Typical crystallization paths in a two-liquid area are discussed by Flint and Wells [3].

4.2. Stability Fields of the Binary Compounds

a. $BaO.2SiO_2$

Barium disilicate forms solid solutions with $2BaO \cdot 3SiO_2$ and probably with the barium borates,

the partial limits of these solid solutions are shown in figure 6. Compositions studied in the $BaO \cdot 2SiO_2$ primary field are given in table 3, part A. Liquidus temperatures vary from the melting point of BaO·2SiO₂ (1,418° C)³ to a minimum of 950° C (point E). Optical properties of the primary phase crystals within the limits of experimental measurements did not differ from those of pure BaO.2SiO₂. X-ray diffraction powder pattern data of primary phase crystals grown at 1,100° C for two compositions (11 and 13 of table 3) showed a very slight and irregular shift of d spacings from the pure $BaO \cdot 2SiO_2$. The shift averaged less than 0.01 A, which is about the expected limit of accuracy of the experimental conditions. When liquidus temperatures along the join BaO·2SiO₂-3BaO·3B₂O₃·2SiO₂ are plotted (fig. 8, A), a distinct and experimentally significant discontinuity is found in the liquidus curve at about 1,250° C. At this break, the minimum deviation of the curve from one which would show no breaks (that is, a straight line) is 50° C, a value undoubtedly above the limit of experimental error. It must be concluded, therefore, that the break in the curve is is indicative of a relatively sharp phase change. It would seem likely that the break represents the transition temperature between two closely related solid solution phases, but the nature of these phases is not known.

b. $2BaO \cdot 3SiO_2$

Dibarium trisilicate forms solid solutions with $BaO.2SiO_2$ and with the barium borates. The partial limits of the solid solutions are shown in figure 6. Compositions studied in the $2BaO.3SiO_2$ primary field are given in table 3, B.

Primary phase crystals from compositions 21, 22, 29, 30, 33, 37 (table 3, B) gave distinct evidence of being solid solution crystals, both by optical and X-ray methods. No detectable differences in optical properties from pure 2BaO \cdot 3SiO₂ were found for the primary phase crystals obtained from the remaining compositions. However, crystals from the compositions 25, 26, 38, and 42 showed small and irregular shifts in *d* spacings, to a maximum extent of 0.02 A. X-ray data were not obtained for all compositions in the field, but it seems from the limited data available that all or most of the compositions would show similar slight differences.

When the liquidus temperatures are plotted for the join $3BaO \cdot 3B_2O_3 \cdot 2SiO_2 - 2BaO \cdot 3SiO_2$, a discontinuity is found in the liquidus curve at about $1,250^{\circ}$ C (fig. 8, B), or the same temperature as the break in the $3BaO \cdot 3B_2O_3 \cdot 2SiO_2 - BaO \cdot 2SiO_2$ join. The liquidus curve for the join $BaO \cdot B_2O_3 - 2BaO \cdot 3SiO_2$ (fig. 8, C) similarly shows a break in the $2BaO \cdot 3SiO_2$ solid solution field, but it is not as pronounced and occurs at a lower temperature (approximately $1,125^{\circ}$ C). The latter join is more nearly parallel to the isotherms than the other two joins mentioned, and, consequently, the location of the break may be less accurate.

 $^{^3}$ Temperature values on the BaO–SiO2 binary have not been converted to the International Temperature Scale of 1948.

FIGURE 8. Some binary and pseudo binary systems investigated in the system BaO-B₂O₃-SiO₂
 ●, Actual composition; ○, extrapolation from isotherms; ss, solid solution.

In his study of the system BaO-Al₂O₃-SiO₂, Thomas [16] found varying indices of refraction for all compositions within the field surrounding the composition $2BaO \cdot 3SiO_2$; and, therefore, he proposed that $2BaO \cdot 3SiO_2$ is not a true compound but merely a particular composition at or near the maximum in a solid solution series. X-ray powder pattern data appeared to confirm his conclusion, although the variations in d values were not as pronounced as the variations in indices of refraction. In the present study, the reverse situation is true, namely, that X-ray measurements in many instances appear to show very slight differences that are not revealed by optical methods. The present study, likewise, does not conclusively prove the existence of a 2BaO-3SiO₂ primary phase field of unvarying composition and properties.

The question as to whether or not dibarium trisilicate is a compound becomes especially important when drawing the composition triangle (fig. 7). Obviously, if dibarium trisilicate is not a compound, no Alkemade line can originate from its composition point. Finally, the method of eutectic matrix composition [22, 23] was tried.

Seven pertinent ternary compositions, shown by the dots in figure 7, were selected for study. The formulated compositions were melted and stirred above the liquidus in order to obtain homogeneity. The melts were then crystallized by subjecting them to a slow cooling schedule. The phases in the devitrified samples were identified by petrographic examination.

Most of the samples contained varying amounts of quench growths and small amounts of glass, indicating that equilibrium conditions and complete devitrification were not achieved. In most cases only two crystalline phases were identified. This may be explained on the basis that devitrification of the solid solution crystals consumed all the available liquid before a third phase crystallized. In the case of one composition (a, table 4) for which no solidsolution phase appeared, a different explanation is necessary, as, for example, too small a percentage of fine-grained material intermixed with the quench growths of another phase.

Figure 9 and table 4 show the location of the compositions studied, together with the phases identified. Compositions b, c, and e after devitrification showed three phases: $3BaO \cdot 3B_2O_3 \cdot 2SiO_2$, $BaO \cdot B_2O_3$, and a

solid solution with optical properties closely resembling 2BaO·3SiO₂. Only 3BaO·3B₂O₃·2SiO₂ and $BaO \cdot B_2O_3$ were found in composition a. The data from the four mentioned compositions are consistent with the compatability triangles as drawn. If the correct Alkemade line were really the join $3BaO \cdot 3B_2O_3 \cdot 2SiO_2 - BaO \cdot SiO_2$, a possibility if $2BaO \cdot 3SiO_2$ is only a composition in a partial solid solution series between $BaO \cdot 2SiO_2$ and $BaO \cdot SiO_2$, a $BaO \cdot B_2O_3$ phase should not have been obtained for compositions b and e, but rather some indication of BaO·SiO₂. Furthermore, composition g gave no indication of a $3BaO \cdot 3B_2O_3 \cdot 2SiO_2$ phase whereas a, only a few percent away, showed a moderate amount of $3BaO \cdot 3B_2O_3 \cdot 2SiO_2$. It seems reasonable to suppose that an Alkemade line, as drawn, passes between the two compositions. Compositions b and e both showed $BaO B_2O_3$, whereas compositions d and f, nearby, did not. The only join that satisfies this result connects $3BaO \cdot 3B_2O_3 \cdot 2SiO_2$ and $2BaO \cdot 3SiO_2$. Because the composition $2BaO \cdot 3SiO_2$ seems to represent the only logical point for the origination of two Alkemade lines, it must be concluded that $2BaO \cdot 3SiO_2$ is a compound, regardless of the extent of the solid-solution region.

FIGURE 9. Location of 7 glass compositions and phases identified in the devitrified glasses.

TABLE 4. Phases identified in seven devitified glasses, in an attempt to determine by the method of eutectic matrix composition whether 2BaO·3SiO₂ is a compound or merely a particular composition

Desig-	Composi- tion num-	Composition (weight percent)			Phases identified (1=large amount; s=small amount; m=moderate amount; ss=solid solution)						
nation	table 3	BaO	B_2O_3	SiO_2	$3BaO{\cdot}3B_2O_3{\cdot}2SiO_2$	$BaO \cdot B_2O_3$	$2BaO\cdot 3SiO_2$	$BaO.2SiO_2$			
$a \\ b \\ c \\ d$	177 172	% 64.8 61.3 65.3 58.3	$\% \\ 21.4 \\ 19.5 \\ 19.0 \\ 20.1$		m l s l	l s m	m (ss) s (ss)	s (ss)			
$egin{array}{c} e \\ f \\ g \end{array}$	27 17	$ \begin{array}{r} 61.5 \\ 58.8 \\ 67.4 \end{array} $	$ 18.1 \\ 17.3 \\ 20.2 $	20.4 23.9 12.4	l m	s 1	s (ss) s (ss)	m (ss)			

c. $BaO \cdot SiO_2$

Compositions determining the barium silicate primary phase area (fig. 6) are listed in table 3, part C. Optical properties of the BaO·SiO₂ crystals agreed well with the recorded values [15, 16, 20]. The lowest temperature for any liquidus in the field is $875 \pm 5^{\circ}$ C, at the ternary eutectic C. Barium silicate and barium borate form a true binary system, with a eutectic at about 940° C and 43 percent, by weight, BaO·SiO₂ (fig. 8, D).

d. $2BaO \cdot SiO_2$ and BaO

Information on the field of dibarium silicate could be obtained from only seven compositions (table 3, part D). Six of these compositions were located along the 2BaO·SiO₂-BaO·SiO₂ boundary. The seventh (No. 70), on about the 79 percent BaO isopleth, formed quench growths and barium platinates to the extent that the liquidus value could not be determined; and such was the case for all compositions in the field richer in BaO. Dashed isotherms were drawn by extrapolation from known boundary curves.

For similar reasons, together with the high temperatures involved, no liquidus values could be obtained in the BaO primary phase region. Because of the reaction of BaO at elevated temperatures with the platinum of a thermocouple, differential thermal analysis cannot be applied, as was discovered in the study of the BaO-B₂O₃ binary system [4]. It is apparent, however, that the BaO primary field must be limited to a small area in the corner of the diagram.

e. $3B\alpha O \cdot B_2 O_3$

Liquidus determinations in the tribarium borate field presented most of the same difficulties as in the 2BaO·SiO₂ and BaO areas; however, the three compositions studied (table 3, part E) served to delineate the tribarium borate field, which is the smallest in the system. Composition 71 (liquidus 908° C) was close to the ternary eutectic C (fig. 6), and a sample quenched from 875° C showed three crystalline phases (3BaO·B₂O₃, BaO·B₂O₃, and BaO·SiO₂) in equilibrium with small amount of glass. A ternary reaction point is postulated at J (figs. 6 and 7), where the crystalline phases 3BaO·B₂O₃, BaO and 2BaO·2iO₂ would be in equilibrium with glass. The invariant point J might be expected to be near in both temperature and composition to the binary eutectic between 3BaO·B₂O₃ and BaO at 1,370° C.

f. $BaO \cdot B_2O_3$

Eighteen compositions (table 3, F) were studied in the primary phase field of barium borate, and no experimental difficulties or unusual features were encountered. Four ternary invariant points C, D, H, and B (figs. 6 and 7) ranging in temperature from 875° to 925° C were located on its boundaries. Barium borate forms true binary systems with both BaO·SiO₂ and $3BaO·3B_2O_3·2SiO_2$ (fig. 8, D and E).

g. $BaO \cdot 2B_2O_3$

The 12 compositions studied in the barium diborate field are given in table 3, G. The compound forms a true binary system with $3BaO \cdot 3B_2O_3 \cdot 2SiO_2$ (fig. 8, F) and accordingly a temperature maximum is shown on the boundary curve BF of figure 6.

h. $BaO \cdot 4B_2O_3$

Compositions for this field are listed in table 3, H. Barium tetraborate occupies a primary phase region second in extent only to that of silica. It is interesting to note, also, that less than 5 percent of the field lies in a one-liquid region, whereas more than 95 percent is in the two-liquid immiscible area (fig. 6). As the percentage of silica increased, determinations of liquidus temperatures became successively more difficult because of sluggish crystallization of the viscous melts. The boundary between the twoliquid and the one-liquid region adjacent to the B_2O_3 -SiO₂ binary was not determined and is shown as a dashed line (figs. 6 and 7). That this boundary must lie within several percent of the B_2O_3 -SiO₂ binary is deduced from the limited data on the indices of refraction of the low index conjugate glass (see "n of quenched glass", table 3, H). The values are approximately the same or less than those for pure SiO_2 or B_2O_3 , both of which are about 1.46 [24].

i. B_2O_3

If the compatability triangle formed by BaO-4B₂O₃, B₂O₃, and SiO₂ (fig. 7) is correct, no additional compounds showing a stable primary phase area can be formed within its boundaries. It is then necessary to postulate an invariant point M located in the narrow one-liquid region adjacent to the B₂O₃-SiO₂ binary, where the three primary phases coexist in equilibrium. In this event boric oxide would possess a very narrow primary field extending from the invariant point to pure boric oxide. Because of experimental difficulties, no attempt was made to substantiate this conclusion.

j. SiO₂

The silica primary phase area (fig. 6) occupies approximately 40 percent of the phase diagram, and the silica liquidus surface is distorted by the occurrence of liquid immiscibility. The field consists of a large portion in the two-liquid area limited on three sides by a portion in the one-liquid area. A narrow strip of one-liquid area is present along the B_2O_3 -SiO₂ binary and extends to the postulated eutectic at M. Another portion of the one-liquid area extends along the BaO-SiO₂ binary to the eutectic at 1,374° C between BaO·2SiO₂ and SiO₂, and then penetrates the interior of the diagram adjacent to the primary phase fields of BaO·2SiO₂, $3BaO·3B_2O_3·2SiO_2$, and $BaO·2B_2O_3$. The invariant point A representing the equilibrium between SiO₂, $BaO·2B_2O_3$ and $BaO·4B_2O_3$ is at 810° C. That the silica field must extend to the BaO·4B₂O₃ field was first evident from the fact that SiO_2 and $BaO\cdot 4B_2O_3$ were the only primary phases identified in the twoliquid area, and fields entering a two-liquid area must persist until liquid miscibility is again encountered.

Systematic investigation of the silica field was hampered by the extremely high viscosities of all the melts and the attendant slow rate of crystal growth and approach to equilibrium. Actual liquidus values could not be obtained for a number of compositions (115, 117, 119, 122, 123, 128 table 3, I); but phase identification in these cases was useful in approximating the limits of liquid immiscibility. In areas adjacent to the primary phase boundaries, it was not usually possible to determine the exact temperature of appearance or disappearance of the silica phase. Consequently, the silica area of the diagram is less accurate than the rest both as regards to temperature and boundaries.

Tridymite was the only form of silica identified. Even at temperatures as low as 823° C (No. 125 of table 3, I), or about 44 deg below the inversion temperature of pure tridymite to quartz, no quartz was formed in any of the mixtures. In the study of the system K₂O-MgO-SiO₂ [25], Roedder also found tridymite persisting metastably, to a eutectic point at 715 $\pm 10^{\circ}$ C. He concluded that a quartz liquidus stable at a higher temperature presumably existed, but because of the viscous nature of the glass, excessive time would be required to demonstrate the point.

4.3. Stability Field of the Ternary Compound 3BaO-3B₂O₃·2SiO₂

This was the only ternary compound found in the system, and 37 compositions within its primary field were studied (table 3, J). The field occupies a large portion of the glass-forming region of the system, and it was observed qualitatively that rates of devitrification (or of crystal growth) with the exception of compositions in the silica field were much slower than for compositions in the other primary phase areas.

The compound $3\text{BaO} \cdot 3\text{B}_2\text{O}_3 \cdot 2\text{SiO}_2$ melts congruently at 1,009° C. As seen from the spacing of the isotherms (fig. 6), its primary field is extremely flat, indicative of a high degree of dissociation of the compound in the liquid state [26]. The compound crystallizes as irregular, elongated, and fiber-like grains with positive sign of elongation. It is biaxial negative: $\alpha = 1.669$, $\beta = 1.696$, $\gamma = 1.702$ (25° C), with a moderate optic axial angle of about 35°. The refractive index of the glass is 1.633. When the compound is formed by devitrifying glass, polysynthetic twinning is prominent. Data from the X-ray diffraction powder patterns are given in table 5.

Five ternary invariant points (B, H, G, E, F, fig. 6) are found along the boundaries of the 3BaO- $3B_2O_3 \cdot 2SiO_2$ field. The lowest of these invariant points is at $825^{\circ} \pm 10^{\circ}$ C (point F). The ternary compound forms true binary systems with BaO·B₂O₃

TABLE 5. X-ray diffraction data for the compound $3BaO\cdot 3B_2O_3\cdot 2SiO_2$, showing interplanar spacings (d) and their relative intensities (I)

d	Ι	d	Ι
A	%	A	%
4.96	35	2.17	23
4.91	47	2.14	20
4.65	48	2.09	25
4.09	17	2.06	35
3.95	46	2.04	32
3.69	53	1.989	17
3. 59	16	1.898	11
3. 51	6	1.808	3
3.43	13	1.776	7
3. 29	89(3)	1.759	10
3.09	100(1)	1.742	13
2.96	98(2)	1.722	4
2.82	58	1.659	6
2.75	12	1.642	8
2.72	16	1.602	17
2.65	25	1.579	4
2.50	50	1.529	8
2.47	8	1.484	9
2.34	13	1.461	4
2.20	23		

and with $BaO\cdot 2B_2O_3$ (fig. 8, E, F). As discussed earlier, it is not believed that $3BaO\cdot 3B_2O_3\cdot 2SiO_2$ forms a true binary system with $BaO\cdot 2SiO_2$, because the nature of the solid solution area is not known (fig. 8, A).

4.4. Two-Liquid Area

The approximate shape of the two-liquid area at the liquidus is shown in figure 6. An interesting feature of the immiscibility area is the marked increase in concentration of BaO in the less siliceous liquids, proceeding toward the interior of the diagram from the baria-boric oxide binary. The maximum content of BaO in the ternary liquids is about 43 percent, which is an increase of 11 percent over the BaO content of the corresponding binary liquid. A similar observation was made in the lime-boric oxide-silica system [3, 21] and in the $ZnO-B_2O_3-SiO_2$ system [27]; but in these systems both the $CaO-SiO_2$ and the $CaO-B_2O_3$ binaries and the $ZnO-SiO_2$ and $ZnO-B_2O_3$ binaries, respectively, exhibit large immiscible regions. In the present system only the $BaO-B_2O_3$ binary possesses a liquid immiscibility region, but the flat liquidus portion of the $BaO-SiO_2$ system indicating an approach to two-liquid immiscibility as discussed earlier (fig. 5) is probably a factor contributing to the wide extent of liquid immiscibility in the ternary system. In a study of the effect of lanthanum and barium in glass-forming systems, Brewster and his coworkers [1] present some very limited data on immiscibility in the system BaO-B₂O₃-La₂O₃. Their data indicate that in this system, the addition of La_2O_3 to the binary system BaO-B₂O₃ causes a decrease in extent of liquid immiscibility.

Geller and Bunting [28] in an investigation of the system PbO-B₂O₃-SiO₂ found a large region of twoliquid immiscibility similar to that in the CaO-B₂O₃-SiO₂ system. The PbO-B₂O₃ binary has an immiscibility gap [29], but none has been reported in the PbO-SiO₂ binary [30, 31]. The immiscibility area, nevertheless, shows an increase in concentration of

TABLE 6. Tie-line compositions in the immiscibility area

Compo- sition number	Initial ^a			High SiO ₂ glass			Low SiO ₂ glass			Liquidus	Separation
	BaO	B_2O_3	SiO_2	BaO	B_2O_3	$\rm SiO_2$	BaO	$\mathrm{B}_{2}\mathrm{O}_{3}$	SiO_2		
104 118	% 18.0 20.0	% 62. 0 40. 0	% 20. 0 40. 0	$\begin{cases} & \% \\ & 29.\ 62 \\ & 29.\ 15 \\ & 32.\ 55 \end{cases}$	$\begin{array}{c} \% \\ 64.\ 21 \\ 64.\ 88 \\ 42.\ 79 \end{array}$	$\% \\ 6.17 \\ 5.97 \\ 24.66$		$ 59.24 \\ 60.02 \\ 33.83 $	$ $	$\left.\begin{array}{c} \circ C\\ 872\\ > 823\end{array}\right.$	$\left\{\begin{array}{l}925^{\circ}{\rm C}/16~{\rm hr.}\\1,250^{\circ}{\rm C}/1~{\rm hr.}\\1,250^{\circ}{\rm C}/1~{\rm hr.}\end{array}\right.$

^a Formulated from end members and not analyzed.

PbO in the less siliceous liquids proceeding toward the interior of the diagram from the PbO-B₂O₃ binary. The PbO concentration varies from about 45 percent on the PbO-B₂O₃ binary, to a maximum of about 60 percent. Inspection of the PbO-SiO₂ diagram showed that the liquidus curve had not been determined beyond about 35 percent, by weight, of SiO₂. It is postulated, therefore, from the shape of the ternary immiscibility boundary that the liquidus curve in the unexplored area of the PbO-SiO₂ binary might be S-shaped as in the BaO-SiO₂ system.

A study was made of the compositions of conjugate liquids formed within the immiscible area by melting of two compositions, one in the BaO·4B₂O₃ and the other in the SiO₂ primary field. The results are listed in table 6 and shown in a portion of figure 7. In figure 7, the solid dots in the BaO·4B₂O₃ and SiO₂ fields represent the two initial compositions; and the open circles connected by straight lines, the analyzed values of the separated compositions.

The initial compositions were prepared from the end members, barium carbonate, silica gel and boric acid, by the described method of repeated grinding and partial fusion. These two compositions were not analyzed at the start, but the two separated compositions, regardless of the degree of separation, and the associated initial one must lie on a straight lind provided there has been no change on the initial composition during the heat treatment. Figure 7 shows that the three associated compositions do lie essentially on a straight line; and it is reasonable to assume that composition number 118 (in the silica field) was altered slightly during its preparation. In no case was separation of the conjugate immiscible liquids complete, but the intersection of the line passing through them with the boundaries of the immiscible area is a tie line for the particular temperature of separation.

The quintuple line KL is the boundary separating the BaO·4B₂O₃ and SiO₂ primary fields. Any point on the quintuple line represents the equilibrium between two liquids of compositions K and L, two solids BaO·4B₂O₃ and SiO₂, and vapor.

As separation of the immiscible liquids could not be achieved by gravity at the liquidus temperature or slightly above, the actual separations were made well above the liquidus. For composition number 104 (fig. 7 and table 6) separation was tried at two temperatures, 925° and $1,250^{\circ}$ C, in an attempt to obtain information on the effect of temperature on

the extent of two-liquid immiscibility. Because of incomplete separation, it was not possible to draw any conclusions from the lengths of the two tie lines. Inspection of the data, however, in two other respects was revealing: (1) The tie lines for the two temperatures of separation for composition 104 (fig. 7) showed a small but significant angle between them. This rotation of the tie line with increasing temperature is positive indication that the compositions of the conjugate liquids are changing with temperature [32].(2) The indices of refraction, measured with the polarizing microscope, of clear fragments of the low silica (high index) conjugate glasses were as follows: 1.542 ± 0.002 and 1.540 ± 0.002 (25° C) for the glasses separated as liquids at 925° and 1,250° C, respectively. Extrapolations from figure 10 showing the indices of refraction of the quenched glasses indicate that a decrease in index of refraction of 0.002 corresponds to a decrease in BaO content of about 2 percent. Measurements of the high silica conjugate glasses were more difficult and less exact. but the index of refraction of the glass separated at 1,250° C was definitely higher (between 1.45 and 1.46) than the glass separated at 925° C (just under 1.45). It seems, therefore, from these data that the two-liquid area decreases in extent with increasing temperature.

A few preliminary experiments were performed using the high-temperature centrifuge developed by T. F. Newkirk and Fred Ordway ⁴[33]. Much better separations than by gravity were obtained, and this approach offers new promise in the study of liquid immiscibility. Their equipment, however, is suitable only for small samples, and micromethods of analysis would have to be applied.

Recent studies on several selected compositions located near the boundary of the BaO rich immiscible liquid have shown that it is possible to quench these compositions as two glasses at one temperature and as one glass at some higher temperature, presumably where complete miscibility is encountered. Work is in progress with the view of determining the shape of the immiscibility dome.

4.5 Insofract diagram for quenched glasses

Figure 10 shows an isofract diagram for the quenched glasses. It can be seen that barium oxide

 $^{^4}$ Associated with the Portland Cement Association Fellowship at the Nationa Bureau of Standards.

FIGURE 10. Indices of refraction of quenched glasses in the system BaO-B₂O₃-SiO₂.

imparts the greatest change in refractive index and that the increase in refractive index for a given addition of BaO becomes greater as the BaO corner is approached. Of particular interest is the convex nature of the isofracts, with the BaO vertex as a common center of curvature. Thus, indices of glasses lying on a BaO isopleth will show a maximum at about the center of the isopleth. These findings agree with those of Hamilton and his coworkers [2], who have made a detailed and accurate study of indices and densities of annealed glasses in the system. Their index values are higher, in general, by a small but irregular amount from those of the present study, in which no attempt was made to relieve the internal stresses and strains caused by quenching.

5. Summary

The equilibrium diagram for the system BaO-B₂O₃-SiO₂ was constructed from data, obtained essentially by the quenching method, on 178 ternary compositions. All the binary compounds showed primary fields in the ternary system. One new compound, $3BaO\cdot 3B_2O_3\cdot 2SiO_2$, melting at 1,009° C and possessing an extremely flat primary field was found, and its optical and X-ray properties described. Table 7 lists the compositions and liquidus temperatures of the ternary invariant points together with the crystalline phases in equilibrium with liquid.

The BaO·4B₂O₃ and SiO₂ primary phase areas include almost 70 percent of the diagram, and over these areas exists a large region of two-liquid immiscibility. On the basis of rotation of a tie line in the immiscibility region at two temperatures and of a change in index of refraction of the conjugate glasses at the two temperatures, it was concluded that the immiscibility gap decreases with increasing temperature.

Applying the method of eutectic matrix compound composition showed that $2BaO \cdot 3SiO_2$ is probably a compound and not merely a particular composition, even though the exact nature and extent of the $2BaO \cdot 3SiO_2$ solid-solution field could not be ascertained. The solid-solution region between $2BaO \cdot 3SiO_2$ and $BaO \cdot 2SiO_2$ extends into the interior of the diagram and was found to be complex.

An isofract diagram for the quenched glasses shows that barium oxide exerts the greatest influence on increase of refractive index. The isofracts lie nearly parallel to the borosilicate binary.

A self-adjusting, bridge-type controller suitable for precise temperature control of a quenching furnace was described briefly.

Point a	Phases in equilibrium with one liquid	th one liquid Type				Approx- imate limits	Temper- ature
A B C D E	$\begin{array}{l} BaO\cdot 2B_2O_3, BaO\cdot 4B_2O_3, SiO_2, \\ BaO\cdot B_2O_3, BaO\cdot 2B_2O_3, BaO\cdot 3B_2O_3\cdot 2SiO_2, \\ 3BaO\cdot B_2O_3, BaO\cdot B_2O_3, BaO\cdot SiO_2, \\ aO\cdot B_2O_3, BaO\cdot SiO_2, BaO\cdot SiO_2, \\ BaO\cdot B_2O_3, BaO\cdot SiO_2, 2BaO\cdot 3SiO_2, \\ 3BaO\cdot 3B_2O_3\cdot 2SiO_2, BaO\cdot 2SiO_2, SiO_2, \\ \end{array}$	Eutectic dodo dodo dodo	$\begin{array}{c} \% \\ 38.7 \\ 54.2 \\ 77.4 \\ 68.0 \\ 51.8 \end{array}$	$\% \\ 53.8 \\ 44.0 \\ 19.0 \\ 18.6 \\ 21.2$	$\begin{array}{c} \% \\ 7.5 \\ 1.8 \\ 3.6 \\ 13.4 \\ 27.0 \end{array}$		$^{\circ}C$ 810 ± 10 875 ± 5 875 ± 5 920 ± 10 950 ± 20
F G H J	$\begin{array}{l} 3Ba0\cdot3B_2O_3\cdot2SiO_2,Ba0\cdot2B_2O_3,SiO_2\\ 3Ba0\cdot3B_2O_3\cdot2SiO_2,Ba0\cdot2SiO_2,2Ba0\cdot3SiO_2\\ Ba0\cdotB_2O_3,Ba0\cdotSiO_2,2Ba0\cdot3SiO_2\\ 3Ba0\cdotB_2O_3,Ba0\cdotSiO_2,2Ba0\cdotSiO_2\\ 3Ba0\cdotB_2O_3,Ba0\cdotSiO_2,2Ba0\cdotSiO_2\\ Ba0,3Ba0\cdotB_2O_3,2Ba0\cdotSiO_2\\ \end{array}$	Reaction do do do do do	$\begin{array}{c} 43.\ 4\\ 60.\ 2\\ 67.\ 5\\ 78.\ 3\\ 87\end{array}$	$\begin{array}{c} 45.\ 4.\\ 18.\ 4\\ 18.\ 5\\ 17.\ 3\\ 12 \end{array}$	11. 221. 414. 04. 41	± 1.0 $\pm .5$ $\pm .3$ $\pm .6$ $\circ ?$	$\begin{array}{r} 825 \ \pm 10 \\ 980 \ \pm 5 \\ 925 \ \pm 10 \\ 962 \ \pm 10 \\ < 1,370 \end{array}$
M d	BaO·4B ₂ O ₃ ,B ₂ O ₃ ,SiO ₂ Phases in equilibrium with two liquids (K, L)	Eutectic	<2	>30	< 30	c ?	<450
K L	BaO-4B ₂ O ₃ ,SiO ₂ BaO-4B ₂ O ₃ ,SiO ₂	(e) (e)	37.4 1	54.6 40	8.0 59	±1.0 °?	815 ±10

TABLE 7. Ternary invariant points in the system BaO-B₂O₃-SiO₂

^a Figures 6 and 7.

^b Determined by extrapolation of established boundary curves to intersection; values given in weight percent. ^c Because exact location of one or more boundaries not determined. ^d Postulated [21].

^e Quintuple line joins compositions of liquids K and L.

The authors take pleasure in expressing their appreciation to Floyd A. Mauer for the design and construction of the self-adjusting bridge-type furnace controller; to Edgar H. Hamilton, G. W. Cleek, and O. H. Grauer, of the Glass Section of the National Bureau of Standards, for preparation of the seven devitrified glass samples used in determining the nature of the $2BaO \cdot 3SiO_2$ composition; and to Barbara M. Sullivan for obtaining the X-ray diffraction powder pattern data.

6. References

- [1] Gordon F. Brewster, Norbert J. Kreidl, and Tyler G. Pett, Lanthanum and barium in glass-forming systems, J. Soc. Glass Tech. **31**, 153 (1947).
- [2] Edgar H. Hamilton, G. W. Cleek, and O. H. Grauer, Some properties of BaO-B₂O₃-SiO₂ glasses and a theory of glass structure. (Publication pending.)
- [3] E. P. Flint and Lansing S. Wells, The system lime-boric oxide-silica, J. Research NBS 17, 727 (1936) **RP941**
- [4] Ernest M. Levin and Howard F. McMurdie, The system BaO-B₂O₃, J. Research NBS **42**, 131 (1949) RP1956. [5] E. S. Shepherd, G. A. Rankin, and F. E. Wright, Binary
- systems of alumina with silica, lime, and magnesia, Am. J. Sci. [4] 28, 293 (1909).
 [6] W. L. Hill, G. T. Faust, and D. S. Reynolds, The binary
- system P₂O₅-2CaO·P₂O₅, Am. J. Sci. 242, 457 (1944).
- . S. Roberts, The Geophysical Laboratory furnace thermostat, J. Opt. Soc. Am. **11**, 171 (1925). [7] H.
- [8] Henry Shenker, John L. Lauritzen, Jr., and Robert J. Corruccini, Reference tables for thermocouples, NBS Cir. 508 (1951)
- [9] R. J. Corruccini, Differences between the international temperature scales of 1948 and 1927, J. Research NBS 43, 133 (1949) RP2014.
- [10] B. Hague, A. C. bridge methods, 5th ed. (Sir Isaac Pitman & Sons, Ltd, London, 1946).
- [11] G. W. Morey, The ternary system Na₂O-B₂O₃-SiO₂, J. Soc. Glass Tech. **35**, 270 (1951).
- [12] J. W. Greig, Immiscibility in silica melts, Am. J. Sci. [5], 13, 1–44, 133–54 (1927).
 [13] A. Cousen and W. E. S. Turner, Studies of the glasses
- boric oxide-silica, J. Soc. Glass Tech. 12, 169-190 (1928)
- [14] N. K. Dertev and T. H. Khudyakova, Solubility of silica in SiO₂-B₂O₃ glasses (Zhadnov Ind. Inst., Gorki) J. Applied Chem. USSR 23, 839–45 (1950)
- [15] P. Eskola, The silicates of strontium and barium, Am. J. Sci. [5], 4, 345 (1922).

- [16] R. H. Thomas, Phase equilibrium in a portion of the ternary system BaO-Al₂O₃-SiO₂, J. Am. Ceram. Soc. 33, [2], 36 (1950)
- [17] Ya. I. Ol'shanskiĭ, Equilibrium of two immiscible liquids in silicate systems of alkali-earth metals, Doklady Akad. Nauk., SSSR, 76 [1], 93 (1951); J. Am. Ceram. Soc. absts., **34** [8], 145 (1951).
- [18] W. Eitel, Silicate melt equilibria, Par. 67 (Rutgers University Press, New Brunswick, N. J. 1951).
- [19] R. F. Geller, A resistor furnace with some preliminary results up to 2,000° C, J. Research NBS **27**, 555 (1941) RP1443; R. F. Geller, P. J. Yavorsky, B. L. Steierman, and A. S. Creamer, Studies of binary and ternary combinations of magnesia, calcia, baria, beryllia, alumina, thoria and zirconia in relation to their use as porcelains, J. Research NBS 36, 277 (1946) RP1703.
- [20] Alfred E. Austin, X-ray diffraction data for compounds in systems Li_2O-SiO_2 and $BaO-SiO_2$, J. Am. Ceram. Soc. **30** [7], 218 (1947).
- [21] G. W. Morey and Earl Ingerson, System CaO-B₂O₃-SiO₂, Am. Mineralogist **22** [1], 38 (1937). [22] Wilfrid R. Foster, Contribution to the interpretation of
- phase diagrams of ceramists, J. Am. Ceram. Soc. 34
- [5], 151 (1951). [23] Wilfrid R. Foster, A study of solid state reaction in the ternary system MgO-ZrO₂-SiO₂, J. Am. Ceram. Soc. **34** [10], 302 (1951).
- [24] A. N. Winchell, The microscopic characters of artificial inorganic solid substances or artificial minerals, 2nd (John Wiley & Sons, Inc., New York, N. Y., ed. 1931.
- [25] Edwin Woods Roedder, The system K₂O-MgO-SiO₂, Am. J. Sci. 249, 81-130 and 224-248 (1951).
- [26] Alexander Findlay, The phase rule and its applications,
- [20] Alexander Finday, The phase rule and its applications, p 113 (Dover Publications, New York, N. Y., 1945).
 [27] Earl Ingerson, G. W. Morey and O. F. Tuttle, The systems K₂O-ZnO-SiO₂, ZnO-B₂O₃-SiO₂, Zn₂SiO₄-Zn₂GeO₄, Am. J. Sci. **246**, 31 (1948).
 [28] R. F. Geller and E. N. Bunting, The system PbO-B₂O₃-SiO₂, J. Research NBS **23**, 275 (1939) RP1231.
 [20] B. E. Gollor and E. N. Butting, The system PbO B O
- [29] R. F. Geller and E. N. Bunting, The system PbO-B₂O₃, J. Research NBS 18, 585 (1937) RP995.
 [30] R. F. Geller, A. S. Creamer, and E. N. Bunting, The
- system: PbO-SiO₂, J. Research NBS 13, 237 (1934) ŘP705.
- [31] F. P. Hall and Herbert Insley, Phase diagrams for ceramists, J. Am. Ceram. Soc., Part II (Nov. 1947).
 [32] G. Masing, Ternary systems, p. 103 (Reinhold Publishing Corp., New York, N. Y., 1944).
 [33] T. F. Newkirk and Fred Ordway, The high-temperature
- centrifuge and its use in phase equilibrium studies, Bull. Am. Ceram. Soc. **31** [3] (abst., 54th Annual Meeting Program 1952).

WASHINGTON, May 12, 1953