Journal of Research of the National Bureau of Standards Vol. 51, No. 1, July 1953 Research Paper 2429

Eigenvectors of Matric Polynomials [

Murray Mannos

It is the object of this paper to compare the eigenvectors of an arbitrary $n \times n$ matrix *A* over the complex field with those of the matric polynomial $f(A)$. While it is well known that each eigenvector of A is an eigenvector of $f(A)$, it is not, in general, true that A and $f(A)$ have identical eigenvectors. In this regard a necessary and sufficient condition that A and $f(A)$ have identical eigenvectors is given. The condition is that both (1) and (2) hold: (1) $f'(\lambda) \neq 0$ for all eigenvalues λ of the matrix A corresponding to nonlinear elementary

divisors.

(2) The values of $f(\mu)$ are distinct for all eigenvalues μ of the matrix A corresponding

to linear elementary divisors.
When either (1) or (2) fails to hold, then $f(A)$ has eigenvectors that are not eigenvectors of A. This situation is also discussed.

The vector space of eigenvectors of the matrix A corresponding to the eigenvalue λ shall be denoted by $V_{\lambda}[A]$. The vector space spanned by the eigenvectors of A shall be denoted by $V[A]$. Further, $d\{V_\lambda[A]\}\$ and $d\{V[A]\}\$ shall denote their dimensions. It is clear that each eigenvector of *A* is an eigenvector of $f(A)$. That is, $V_{\lambda}[A] \subseteq V_{f(\lambda)}[f(A)]$ for each eigenvalue λ of A. Thus $V[A] \subseteq V[f(A)].$

Let *J* be the Jordan canonical form of *A*. Then there exists a nonsingular matrix P such that $P^{-1}AP = J$ and so $P^{-1}f(A)P = f(J)$.

Lemma 1. The eigenvectors of \tilde{A} and $f(A)$ are iden*tical if, and only if, the eigenvectors of* J *and* $f(J)$ *are identical.*

Proof. This follows from the fact that $P\xi$ is an eigenvector of PBP^{-1} if ξ is an eigenvector of the $\text{matrix } B$.

Since $P\{V_{\lambda}[J]\} = V_{\lambda}[A]$, it follows that

 $d\{V[f(A)]\} - d\{V[A]\} = d\{V[f(J)]\} - d\{V[J]\},$

where $P\{V_{\lambda}[J]\}$ denotes the space of all vectors $P\xi$, where ξ is an eigenvector of J corresponding to λ .
Lemma 2. If $D = diag$ [$\alpha, \alpha, \ldots, \alpha$; $\beta, \beta, \ldots, \beta$;

Lemma 2. If D = *diag* [$\alpha, \alpha, \ldots, \alpha$; $\beta, \beta, \ldots, \beta;$
Lemma 2. If D = *diag* [$\alpha, \alpha, \ldots, \alpha$; $\beta, \beta, \ldots, \beta;$
 \ldots ; π, π, \ldots, π], *where* $\alpha, \beta, \ldots, \pi$ are distinct, then $\mathcal{N}[D] = \mathcal{N}[f(D)]$. Furthermore, the eigenvectors of D are *identical with those of* $f(D)$ *if, and only if,* $f(\alpha)$, $f(\beta)$, \ldots , $f(\pi)$ *are all distinct.*

Proof. If D is of order n , it is clear that both the eigenvectors of *D* and $f(D)$ each generate the whole *n*-dimensional vector space. If $f(\alpha) = f(\beta)$, then it is easily seen that $f(D)$ has eigenvectors corresponding to the eigenvalue $f(\alpha) = f(\bar{\beta})$, which are not eigenvectors of D .

L emma 3. *Ij*

r

$$
J_m(\lambda) = \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 & \lambda \end{bmatrix}.
$$

 $^{-1}$ Preparation of this paper was sponsored (in part) by the Office of Scientific Research, USAF.

then

 $f(J_m)$

$$
f(\lambda) f'(\lambda) \frac{f''(\lambda)}{2!} \frac{f'''(\lambda)}{3!} \cdots \frac{f^{(m-1)}(\lambda)}{(m-1)!}
$$

\n
$$
0 \quad f(\lambda) f'(\lambda) \frac{f''(\lambda)}{2!} \cdots \frac{f^{(m-2)}(\lambda)}{(m-2)!}
$$

\n
$$
0 \quad 0 \quad f(\lambda) f'(\lambda) \cdots \frac{f^{(m-3)}(\lambda)}{(m-3)!}
$$

\n
$$
\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots
$$

 Ω Ω Ω o o o $\overline{0}$ o \cdots , $f(\lambda)$ $f'(\lambda)$ \ldots , 0 $f(\lambda)$

Proofs of the lemma may be found in Wedderburn² and MacDuffee.³

Lemma 4. *If* $f'(\lambda) = f''(\lambda) = ... = f^{(r)}(\lambda) = 0$ *and* $f^{(r+1)}(\lambda) \neq 0$ ($r=1,2,\ldots,m-2$), then

$$
d\{V_{f(\lambda)}[f(J_m(\lambda))]\}-d\{V_{\lambda}[J_m(\lambda)]\}=r,
$$

and conversely. Also,

$$
d\{V_{f(\lambda)}[f(J_m(\lambda))]\} - d\{V_{\lambda}[J_m(\lambda)]\} = m - 1
$$

if, and only if, $f'(\lambda) = f''(\lambda) = \ldots = f^{m-1}(\lambda) = 0.$

Proof. If $f'(\lambda) = f''(\lambda) = \ldots = f^{m-1}(\lambda) = 0$.
 Proof. If $f'(\lambda) = f''(\lambda) = \ldots = f^{(r)}(\lambda) = 0$, but $f^{(r+1)}(\lambda) \neq 0$, it follows that the rank of the matrix $f(J_m(\lambda)) - f(\lambda)I$ is $m - (r+1)$, as may be observed by noting the nonzero minor of order $m - (r + 1)$ in the upper right-hand corner of the matrix. Thus the nullity of $f(J_m(\lambda)) - f(\lambda)I$ is $r+1$. If the first $m-1$ derivatives of $f(x)$ vanish at $x = \lambda$, then the nullity of $f(J_m(\lambda)) - f(\lambda)I$ is *m*. In a similar fashion one finds that the matrix $J_m(\lambda) - \lambda I$ has nullity equal to 1. This establishes the lemma.

Corollary. The matrices $J_m(\lambda)$ and $f(J_m(\lambda))$ have identical eigenvectors if, and only if, $f'(\lambda) \neq 0$. It is to be noted that in this case $V_{f(\lambda)}[f(J_m(\lambda))]$

 2 J. B. M. Wedderburn, Lectures on Matrices, (Am. Math. Soc., Colloquium Pub. vol. 17, New York, N. Y., 1934). , C. C. MacDuffee, An Introduction to Abstract Algebra (John Wiley & Eons, New York, N. Y., 1940).

and $V_{\lambda}[J_m(\lambda)]$ are each spanned by the single column vector $[1,0, \ldots, 0]^T$.

At this point it will be convenient to introduce the language of elementary divisors. Each block in the Jordan canonical form of a matrix *A* corresponds to an elementary divisor $(x-\lambda)^m$, and conversely. Each such block is called the hypercompanion matrix $J_m(\lambda)$ of the polynomial $(x-\lambda)^m$.

Suppose the nonlinear elementary divisors of the matrix A corresponding to the eigenvalue λ the matrix A corresponding to the eigenvalue λ
are of the form $(x-\lambda)^{m_{\lambda}^{(1)}}, (x-\lambda)^{m_{\lambda}^{(2)}}, \ldots, (x-\lambda)^{m_{\lambda}^{(k_{\lambda})}},$ are of the form $(x-\lambda)^{m_{\lambda}}$, $(x-\lambda)^{m_{\lambda}}$, ..., $(x-\lambda)^{m_{\lambda}}$,
where $m_{\lambda}^{(i)}$, $(i=1,2, \ldots, k_{\lambda})$ are integers such that $\lim_{\substack{\alpha\\ \lambda}} m_{\lambda}^{(2)} > n_{\lambda}^{(2)} > \ldots > m_{\lambda}^{(k_{\lambda})} > 1.$ Furthermore, suppose that $(x - \lambda)^{m_{\lambda}^{(i)}}$ appears as an elementary divisor $n_{\lambda}^{(i)}$ times. Let $p_{\lambda} = \sum_{i=1}^{k_{\lambda}} n_{\lambda}^{(i)}$ denote the total number of nonlinear elementary divisors of *A* corresponding to the eigenvalue λ . Denote by n_{λ} the number of linear elementary divisors of *A* corresponding to the eigenvalue λ . Further, denote by K_{λ} the direct sum of the hypercompanion matrices of the elementary divisors corresponding to λ . Set

$$
d_{\lambda} = d\{V_{f(\lambda)}[f(K_{\lambda})]\} - d\{V_{\lambda}[K_{\lambda}]\}.
$$

Lemma 5. If the first $m_{\lambda}^{(1)} - 1$ *derivatives of* $f(x)$ *vanish at* $x = \lambda$, *then* $d_{\lambda} = \sum_{i=1}^{k_{\lambda}} n_{\lambda}^{(i)} (m_{\lambda}^{(i)} - 1)$; *whereas*, *if the first* $r < m_{\lambda}^{(1)} - 1$ *derivatives* of $f(x)$ *vanish at* $x = \lambda$, *the first* $r < m_{\lambda}^{(1)} - 1$ *derivatives of* $f(x)$ *vanish at* $x = \lambda$, *but* $f^{(\tau+1)}(\lambda) \neq 0$, then $d_{\lambda} = \sum_{i=1}^{\infty} n_{\lambda}^{(i)} r + \sum_{i=l}^{\infty} n_{\lambda}^{(i)} (m_{\lambda}^{(i)} - 1)$, *where* $m_\lambda^{(l)}$ *is the largest of the integers* $m_\lambda^{(i)}$ $(i=1,2,...,k_\lambda)$ *such that* $m_{\lambda}^{(l)} \leq r$.
Proof. This follows from lemma 4, the fact that

the nullity of $K_{\lambda} - \lambda I$ is the sum of the nullities of the characteristic matrices of the hypercompanion matrices of the individual elementary divisors corresponding to the eigenvalue λ and a similar statement about the nullity of $f(K_{\lambda})-f(\lambda)I$.

Corollary. The matrices \tilde{K}_{λ} and $f(K_{\lambda})$ have identical *eigenvectors if, and only if,* $f'(\lambda) \neq 0$ *.*

Proof. This follows from the fact that $d_{\lambda}=0$.

The Jordan canonical form $J = diag [K_{\alpha}, K_{\beta}, \ldots, K_{\tau}]$ of *A* is a direct sum of matrices K_{λ} , where $\lambda = \alpha, \beta, ...$ runs through the distinct eigenvalues of *A*. The subsequent theorems of this paper involve the following main conditions:

Condition 1. $f'(\lambda) \neq 0$ *for all eigenvalues* λ *of the matrix A corresponding to nonlinear elementary*

 $divisors.$
Condition 2. The values $f(\mu)$ are distinct for all $eigenvalues \mu$ of the matrix \tilde{A} corresponding to linear

elementary divisors.
The first theorem concerns the case where condition 1 docs not hold, whether condition 2 holds or not .

Theorem 1. *If condition* 1 *does not hold, then*

$$
d\{V[f(A)]\} - d\{V[A]\} = \sum_{\lambda} d_{\lambda},
$$

where A *varies through all distinct eigenvalues of A*

d, is computed as in lemma 5. Proof. One notes first that

and

$$
V[f(J)] = V_{f(\alpha)}[f(J)] + V_{f(\beta)}[f(J)] + \ldots + V_{f(\pi)}[f(J)].
$$

 $V[J] = V_{\alpha}[J] + V_{\beta}[J] + \ldots + V_{\pi}[J],$

If $f(\alpha)$, $f(\beta)$, ..., $f(\pi)$ are distinct, for a fixed eigenvalue λ , the nullity of $J - \lambda I$ is the same as the nullity of $K_{\lambda} - \lambda I$, and the nullity of $f(J) - f(\lambda)I$ is the same as the nullity of $f(K_\lambda) - f(\lambda)I$. It follows that

$$
d\{V[\mathbf{f}(\mathbf{A})[f(\mathbf{J})]]\} - d\{V_{\lambda}[\mathbf{J}]\} = d_{\lambda}.
$$

Summing over distinct eigenvalues, one obtains

$$
d\{V[f(J)]\} - d\{V[J]\} = \sum_{\lambda} d_{\lambda}.
$$

By the statement following the proof of lemma 1 it follows that

$$
d\{V[f(A)]\} - d\{V[A]\} = \sum_{\lambda} d_{\lambda}.
$$

If $f(\alpha)=f(\beta)=... =f(\rho)$, then the nullity of $f(J) - f(\alpha)I$ minus the sum of the nullities of $J - \alpha I$, $J - \beta I$, ..., and $J - \rho I$ is $d_{\alpha} + d_{\beta} + \ldots + d_{\rho}$ and

$$
d\{V_{f(\alpha)}[f(J)]\} - d\{V_{\alpha}[J]\} - d\{V_{\beta}[J]\} - \ldots - d\{V_{\rho}[J]\}
$$

= $d_{\alpha} + d_{\beta} + \ldots + d_{\rho}.$

Summing, one obtains in either casc

$$
d\{V[f(A)]\} - d\{V[A]\} = \sum_{\lambda} d_{\lambda},
$$

where λ runs through all the distinct eigenvalues of *A* corresponding to nonlinear elementary divisors.

The next theorem concerns the case in which condition 1 holds but condition 2 does not.

Theorem 2. If condition 1 holds, than $V[A] = V[f(A)]$.
In this case $\sum d_{\lambda} = 0$, where λ varies over all dis-

tinct eigenvalues corresponding to nonlinear elemen-
tary divisors.

If $f(\alpha) = f(\beta) = \ldots = f(\rho)$, suppose that

$$
d\{V_{f(\alpha)}[f(\boldsymbol{J})]\} = d\{V_{\alpha}[\boldsymbol{J}]\}
$$

$$
+d\{V_{\beta}[J]\}+\ldots+ d\{V_{\rho}[J]\}=s.
$$

Then as in lemma 2 the s-dimensional space $V_{\alpha}[J] + V_{\beta}[J] + \ldots + V_{\rho}[J]$ contains vectors that are not eigenvectors of *J*, but $V_{f(\alpha)}[f(\mathbf{J})]$ consists solely of eigenvectors of $f(\mathbf{J})$ corresponding to $f(\alpha)$.

Corollary. If $f(\alpha) = f(\beta) = \ldots = f(\rho)$, then

$$
d\{V_{f(\alpha)}[f(A)]\}-d\{V_{\alpha}[A]\}=\sum_{\lambda}d_{\lambda}+(p_{\lambda}+n_{\lambda}),
$$

corresponding to nonlinear elementary divisors, and \which correspond to nonlinear elementary divisors and where λ *runs over all eigenvalues among* α , β , ..., ρ

where $p_{\lambda} + n_{\lambda}$ *is the total number of elementary divisors (nonlinear and linear) corresponding to* λ .

r-

Finally, the next result covers the case in which conditions 1 and 2 both hold.

Theorem 3. The matrices A and $f(A)$ have identical
eigenvectors if, and only if $(1) f'(\lambda) \neq 0$ for all eigen-
values λ of the matrix A corresponding to nonlinear *elementary divisors, and (2) the values* $f(\mu)$ *are distinct for all eigenvalues* μ *of the matrix A corresponding to linear elementary divisors.*

Remark 1. It may readily be seen that $V[J]$ and $V[f(\mathbf{J})]$ each can be generated by a set of linearly independent vectors, each of which has a 1 in a single component and 0 in all the remaining components. component and 0 in all the remaining components.
Thus if $J = P^{-1} A P$ is the Jordan canonical form of A, than $V[f(A)]$ can be generated by a subset of the column vectors of P.

Remark 2. A simple application of the foregoing theory shows that if A is a 2×2 matrix, then A and $f(A)$ have the same eigenvectors unless either (1) A is diagonable and has distinct eigenvalues α , β for which $f(\alpha) = f(\beta)$, or (2) *A* is nondiagonable and $f(x) = k(x)(x-\alpha)^2 + c$, where α is the eigenvalue of *A*, $k(x)$ is an arbitrary polynomial, and *c* is an arbitrary constant.

The following example is given as an illustration:

Let
$$
A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & -1 & -1 & -2 & -1 \\ -1 & 0 & 1 & 1 & 0 & -1 & 0 \end{bmatrix}
$$

and $f(x) = x^6 + x^5 - x^4 - x^3 + 2$.
For $P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$

it may be verified that

$$
P^{-1} = \left[\begin{array}{ccccc|ccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & -1 & -1 & -1 & -1 & -1 & 1 \end{array}\right]
$$

and that the Jordan canonical form of A is

$$
J = P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix},
$$

where

$$
K_1 = J_1(1) = [1],
$$

\n
$$
K_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, J_3(0) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, J_1(0) = [0],
$$

\n
$$
K_{-\underline{1}} = J_2(-1) = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}.
$$

Since

$$
\begin{cases}\nf(0) = f(1) = f(-1) = 2, \\
f'(0) = f'(-1) = 0, \quad f'(1) \neq 0, \\
f''(0) = 0,\n\end{cases}
$$

it follows that

$$
f(J) = J^6 + J^5 - J^4 - J^3 + 2I = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}
$$

It is readily seen that $V_1[J]$ is generated by $[1,0,0,0,0,0,0]^T$, $V_0[J]$ is generated by $[0,1,0,0,0,0,0]^T$ $\text{and} \quad [0,0,0,0,1,0,0]^T, \quad \text{and} \quad \text{V}_{-1}[J] \quad \text{is} \quad \text{generated} \quad \text{by} \ [0,0,0,0,0,1,0]^T. \quad \text{Since} \quad V[J] = V_1[J] + V_0[J] + V_{-1}[J],$ it follows that $d\{V[J]\} = 4$. Since $f[J]$ is a scalar matrix, $d\{V[f(J)]\} = 7.$ Hence $d\{[f(\tilde{A})]\} - d\{V[A]\} = 3.$ The same result is arrived at by the use of theorem 1, where $\sum d_{\lambda}$ is calculated as in lemma 5. Since $f'(0)=0, f''(0)=0,$ and $f'(-1)=0$, where $0, -1$ are the eigenvalues corresponding to nonlinear elementary divisors, it follows that

and

$$
d_0=n_0^{(1)}(m_0^{(1)}-1)=1\cdot 2=2
$$

$$
d_{-1}=n_1^{(1)}r=1\cdot 1=1
$$

35

and

$$
\sum_{\lambda}d_{\lambda}\!=\!d_0\!+\!d_{-1}\!=\!2\!+\!1\!=\!3,
$$

as before. By the corollary following theorem 2 , $d\{V_2[f(A)]\} - d\{V_1[A]\} = d_0 + d_{-1} + p_0 + p_{-1} + n_0 + n_{-1}$ $= 2+1+1+1+1+0=6,$

which checks with the observed results above.

From a glance at the above eigenvectors generating $V[J]$, it is clear that $V[A]$ is generated by the first, second, fifth, and sixth-column vectors of P. Since $f(A)$ is a scalar, $V[f(A)]$ is generated by all seven column vectors of P .

,/ "

The author thanks A. H. Clifford, O. Taussky, and N. Wiegmann for their helpful suggestions.

on de

WASHINGTON, December 1, 1952.