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On the Numerical Solution of
Parabolic Partial Differential Equations'

Gertrude Blanch

The numerical results presented here relate to a two-dimensional parabolic partial
differential equation containing a nonlinear term. Denoting the independent variables by
t and z, a lattice is introduced, with intervals & and h in the {~and az-directions, respectively.
Much attention has been devoted recently to the study of the conditions on the mesh ratio,
k/h?, under which an approximation by a difference equation converges to the solution of the
differential equation for sufficiently small . Some known results are summarized in sections
1 and 2, and three approximation formulas are given, one of order two, and two of order four.
The feasibility of using approximation formulas of order higher than the differential equation
is studied in later sections. The primary objective of this paper is to seek the most economical
mesh ratio for a given approximation formula, that is, of all mesh ratios that will lead to a
preassigned upper bound of error in the approximation, to choose that mesh ratio that will
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lead to the least amount of work. It is shown in section 3 that the largest admissible mesh
ratio is not necessarily the most economical one and that a great deal depends on the form
of the differential system and the boundary conditions.

In section 4 a generalization is given of the method of Hartree and Womersley (1937)
for improving a solution from two difference approximations. The method is shown to be

very effective for suitable boundary conditions.

Five numerical examples are presented and

analyzed in section 5.  An appendix, with detailed derivations of the formulas used, is given
for the benefit of those who may want to apply the formulas to specific studies.

1. Definitions; Basic formulas

Once the existence of a unique solution to a dif-
ferential equation has been established, and an
approximating function has been found that con-
verges to the solution under suitable conditions, there
remains the problem of providing an effective numeri-
cal treatment of the approximation. Our study
concerns itself with one phase of this problem, for
the case when the approximating function is ex-
pressed by a difference equation. We shall further
limit the discussion to a specific type of differential
equation, namely,

2,
WY | fatu) 0<w<z; 0<I<hy (1)

with given initial and boundary conditions. Let us
introduce a lattice covering the region, at intervals
h in the z-direction and k in the t¢-direction. Let
N=Fk/h* be the mesh ratio. 1t is a trivial restriction
to assume that z,=sh, where s is an integer.

Norarron. For the sake of brevity, we shall write
W2, t) = Uy o, if (2,t) 1s a lattice point.
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where ¢ is any function under consideration. Fur-
thermore, following the usual convention for even
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central differences, we define,

6217 &P 1 »+w 27) 2
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The point in the z,t-plane with coordinates z=mh,
t=mnk will be denoted by (m,n).

Let w be regular at (m,n). Then for k sufficiently
small there is a Taylor series in ¢ around (m,n)

= k? d%u,, ,

um,n-{—lqu'm,n"}“pzl'p! - ot? : (3)

If in (3) terms involving p>2 are dropped, and if
ou/ot is replaced by the right-hand side of (1), with
0%u/0x* approximated by central differences, we get
the well-known approximation to u:

Vm,n+1— Dm,n'+ x6;?,.n +kfm,n
:(1_2)\)1’% 1L+)\(Um,—l,n+ Um+l,n)+kfm,n- (4)

Similarly, if terms through p=2 are retained, we
obtain,
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+(%—%) (Dm—2,n+Um+2,n)+k§0m,n, (5)



where
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Formulas (4) and (5) need modification at the bound-
ary to satisfy given initial and boundary conditions
to a required accuracy. This modification can, in
general, be made. In the present study we shall
assume that all required derivatives exist and are
eontinuous. For parabolic equations this is not a
serious restriction, for let us assume that we have
generated values of » for a given t. From (4) and
(5) it is clear that these serve as boundary values in a
subdomain for generating the set of values for the
next ¢ in the lattice. In imposing the continuity
restrictions, we therefore merely imply that regions
close to the given boundary, which may have “cor-
ners’” or other discontinuities, will be treated sepa-
rately. This in fact must usually be done in practice,
either by choosing a lattice that is much finer than
that required over the major portion of the region or
by special approximations that are appropriate for
the particular problem. Our main concern here is
with the choice of the mesh ratio, N, for the major
portion of the domain where the function is presumed
to be regular. The manner in which an error (or
variation) in the boundary conditions is propagated
over the rest of the domain must, of course, be ex-
amined; but this problem is no different at the
boundary of the given domain than at any of the
subdomains (that 1s, at the successive values of ¢ in
the lattice). This problem will not be considered
here.

Truncation terms. lLiet o, =y, ,—
be verified that corresponding to (4),

It can
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Another form for 7%, , is given below:
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Corresponding to (5),
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where two expressions for 7 ,, , are given below.

auﬁl n
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(9b)
where
DY 1
]l/[(x)——ﬁ——ﬁ-}—%- (10)

In the above 6, and 6, depend on f and its derivatives;
if /=0, then 6,=6,=0. Further, 0f/0u and 0¢/ou
imply evaluation of these functions at (m,n) corre-
sponding to a value of % intermediate between u,, ,
and v, ,. Again, (6), (7), (8), and (9) need modifica-
tion in the immediate vicinity of the boundary.

Derintrion. 7, ,,, will be said to be of order 7 if
it contains A" as a factor, but not A",

2. Stability Considerations; Bounds for the
Errors in the Approximations

Derintrron.  The solution »(zt) of an approxi-
mating difference equation will be defined as stable
if it is bounded for all finite ¢, independently of /.

Consider the special case when f(ztu)=0, and
wu(x,0)=A(x) 1s defined and bounded for — o << o,
It will be convenient to refer to the differential eq (1)
under these special conditions as the basic homo-
geneous equation. Lt this basic homogeneous
equation be approximated by a difference equation of
order 2p, so that we can write,

y P
L‘m. n+1 — Zobu;a‘?w@’m, n = EO(I u'rmﬁ-u‘, ny (1 1)
w= w=

where the coeflicients b, and a,, are suitable constants.
It is easy to show that 2a,=1; in general, the
coefficients a,, will be functions of \. ILet ¢ be an
upper bound of |A(xz)|. If it is possible to choose \
so that all the coefficients @, are nonnegative, we
shall have, from (11),

[0 m51] L2 |Vmt0,0] < Zan=4,

and by induction on 7 we can establish that |v,, ,|<q¢
for all m,n; hence »(z,) is stable. The condition
that all @, be nonnegative is therefore a sufficient,
though not a necessary condition ? for the stability
of »(zt) in the case of the basic, homogeneous

2 Theabove definition of stability and the uvbservation that (11) isstable when all

the cocmci(;ms aw are nom;egatiw were mentioned by F. John in seminar talks
at the Institute for Numerical Analysis.
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equation.  We shall refer to the range of X for which
the basic, homogeneous equation is stable as the
“admissible” range of N. In what follows X\ will
always be chosen to lie within the admissible range;
this may not guarantee that the solution »(z,t) will
be stable for arbitrary boundary conditions and func-
tions f(xt,u). However, the choice of N within this
range usually simplifies the error analysis for any
set of boundary conditions, even when (1) is not
homogeneous.

Turning now to the first approximation formula
defined by (4), it is clear that the admissible range of
s 0<)\<‘ The corresponding equations f()l T
are given in (6). Let 7 be an upper bound of |75, ./
and let » be an upper bound of |0f/oul, this upp( r
bound to be independent of A. If ¢, ,=0, eq (6)
vields, for a wide range of initial and boundary
conditions, o, 1< kr. Since N\ is in the admissible
-ange, we have further

‘,am.n ]A_‘o_m n| (1—7 /lw) -f ]LT

Now (1+kw)¥<e'*, where t=Nk; hence at time ¢,

|om, | <tre'e (12)
Boundary conditions may impose modification of
(12). If the conditions are such that no negative
power of A is added as a factor to the right-hand side
of the inequality (12), then it can be shown from the
form of 7, ,,. ., that an upper bound of 7 can be found
that has A% as a factor. It follows then from (12)
that v, ,—>Un, » as h—0.

Let us now consider the second approxima-
tion formula, defined by (5). The coeflicients of
Dprwnl =w=0,1,2] in (5) will all be positive if 0<N <2,
The approximalmn v(z,t) to the basic homogeneous
equation will therefore be stable for this range of X\,
and by the same analysis as before, we can show
that »(x,t) approaches wu(z,1) as h approaches zero, for
a wide range of boundary conditions.

3. Criteria for the Choice of a Suitable
Mesh Ratio

The error g, , 1s a function of ,\, and of the bound-
ary conditions associated with the differential equa-
tion. Given an upper bound of error that can be
tolerated in the solution, the problem involves choos-
ing & and X\ (the latter within the admissible range)
s0 as to meet requirements with the least amount of
work. We shall assume that for a given approxima-
tion scheme, the work is proportional to the number
of lattice points at which w, , must be evaluated.
This is not strictly true. For let us define a profile
as a set of values of v, , for a fixed n, and all m <s.
If, for example, successive profiles are generated from
preceding ones on an IBM machine such as the card
progmmmod aleulator, then merging operations
may be required at the end of a pmhlv which may
consume some time. Thus a grid of 10 points in the

a-direction and 100 points in the ¢-direction may take
more time to generate than a grid of 20 points in the
z-direction and 50 points in the t-direction. Never-
theless, the assumption that the work is proportional
to the number of lattice points is close enough to
reality to be useful. Of course, the complexity of the
programming must be considered; thus an approxi-
mation formula of order four may take more machine
cycles (hence more time) than one of order two.
However, for the same approximation scheme, the
choice of X\ does not change the amount of work
radically. Let N=sh be the range of x and t,= Nk
the range of 2. The number of lattice points in the
region 18 Ns= (XNt,/hk)= Xt,/N?.  As Xt is fixed,
the work required for a given approximation scheme
is therefore inversely proportional to M.*

If the exact solution for o, , were known, it would
be theoretically possible to study the magnitude of
the error for various choices of N and A corresponding
to a given approximation scheme. The precise
s()lutl()n o .18 not easy to find. However, from (1"),
it is clear that an upper bound which can be approxi-
mated has |7, ,,,| as a factor. We shall, therefore,
aim to choose N\ and % in such a manner as to make
T, .., small.  Moreover, for both approximation
formulas (4) and (5), the successive terms of A*7', ,,
involve A7 707 7y /ox 7 and A 70" 7 f/dxt7. We shall
require that for all choices of the interval A be
sufficiently small so as to satisfy

)\!

o7t Pu >elortr i, p>0, 0<e<1,  (13)

From the known relations con-
differences, it is clear that

almost everywhere.
necting derivatives with

(13) implies that successive terms of 7, , will be
numerically smaller than preceding ones.  The
phrase “almost everywhere” for the condition (13)

needs explanation. It may happen that in a region
where 6"77u changes sign, a few entries of ""”u may
be numerically smaller than corresponding entries
in the higher differences. Such a case may also arise
near critical points. In particular the condition (13)
shall be satisfied by the nitially given values and
f(z,0,u). In practice one often requires that ¢ be {4 or
L. For one powerful check on the accuracy of com-
puted values is obtained from the pattern of succes-
sive differences of the entries. Hence, even if the
criterion (13) were unnecessary from the viewpoint
of estimating an upper bound of error in the solution,
it would still be a desirable condition to impose, in
order to insure that the computed values difference
with reasonable ease. We shall further require that
the term of 7, , involving the lowest power of &
shall approximate the magnitude of 7', ,, , to within a
factor of two. The fact that a restriction is thereby
imposed on & must be clearly kept in mind. In
general a value of & small enough to satisfy (13) will
not necessarily make |7} ,,,| small enough to meet
requirements for a given upper bound of error in

3 1t is no serious restriction to consider the range 73as an integral multiple of A.
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the solution. In the instance when it does not, the
problem posed is to choose N and & judiciously, so
as to bring the truncating error within permissible
bounds with the least amount of work. But if the
required accuracy is rather low, it may well happen
that after h is chosen small enough to satisfy (13),
the error measured by 7, ,, may already be small
enough to meet all requirements. In that case the
largest N within the admissible range will, of course,
lead to the least amount of work.

With these observations we shall now attempt to
study the dependance of the truncation term on \
and on h. Ideally, it would be desirable to classify
differential equations into several types, according to
the value of N which is appropriate for equations
belonging to the type in question. A complete
classification is difficult to set down, but an attempt
in this direction is made by considering two types:

Tyrr I. This type is characterized by the follow-
ing conditions:

df
dt

(]zf_d;f¥
(lwzu(]x“_o' e

+

When (14) holds, it follows that

o'u_ d'u.

‘w. o' o
o ouxt’

o ozt

It can be shown that for systems belonging to type I,
the terms of 7’ ,, ., <4, do not involve f(z,tu) orits
derivatives. The basic homogenous equation belongs
to this type.

Typr II. This type is characterized by the con-
dition that successive derivatives of w(z,t) with re-
spect to £ are known to be much smaller than corre-
sponding derivatives with respect to x (usually of
twice the order) with which they are associated in
truncation terms such as (7b) and (9b). It is quite
easy to find systems belonging to this type; the
numerical illustration given in section 5 belongs to
type I1.

Consider differential systems of type I, and let us
start with the case when formula (4) is used. The
corresponding truncation term, 7%, . is given by
(7a). It has been observed by Milne, as well as by
Thomas and others, that if X is chosen as &, then the
leading term of 7} , ., vanishes, so that the order of
T, ..» becomes four. With A=1 and kb small enough
to satisfy the conditions for an upper bound of
| T5, 1, n|—enough to meet the requirements for a given
upper bound of error in the solution—a certain
amount of work will be done, which we shall measure
in units of Z=1/N\A?, as it has been shown that for
a rectangular lattice the work is proportional to Z,
approximately. If another N and A were chosen,
then we shall ask whether, for the same amount of
work, and using the same formula (4), greater ac-
curacy can be obtained in the solution, assuming
that accuracy to be measured by the magnitude of
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the truncation term. In other words, we shall com-
pare various choices of X and 7, for a constant Z. It
can be readily shown that for equations belonging to
type I, no other choice of h and \, keeping Z constant,
will be as good. In this sense it is correct to state
that A=1% 1s the best choice for formula (4). How-
ever, one important point has been overlooked. We
have seen that A is not completely free, for A must be
small enough to meet the minimum conditions im-
posed by (13). It may happen that after 4 has been
taken small enough to insure that (13) is satisfied,
the conditions for an upper bound of error in the
solution can be satisfied with some range of N >1.
In that case, we would certainly get a more accurate
solution by choosing A=2%, but that would be more
accuracy that required, and work could be saved by
choosing a larger N. We conclude that even for
equations of type I, the choice of A=21 will be best
only if a relatively high accuracy is required in the
solution. Moreover, in practice the differences of
u(x,t) can usually be judged only from the initially
given profile, at the time when X and A are chosen,
so that a safe interval A (rather than the maximum
permissible for the given profile) is often chosen, and
it may happen that the value of & considered neces-
sary may, as stated, bring the error within the
tolerance limits for all choices of .

Still considering systems that belong to type I, let
us now examine approximations of order four. The
expression for the truncation term 7% ,, , is given in
(9a) and the term of order four is

Jes
6 12

1\ O®*m,n__ 74
90) o7 =h*M(N)

U, .

WA, t,N) =h St

+

It can be readily verified that M(N) is positive for all
choices of \, hence the leading term of 7 ,, , cannot
be eliminated completely, as in the case of the
simpler approximation of order two. However, we
may seek that value of X which will make the unit of
work, Z=1/N?, a minimum, subject to a given
permissible upper bound of |7}, .. By hypothesis,
h is small enough so that A*A.(z,\) approximates
the magnitude of |7} ,, »|; hence if C'is the permissible
tolerance of |7} ,, .|, we wish to satisfy

6,
MGt [ =HL ) 3

<C, (15)

Since [0%/0x%| is independent of the choice of
parameters b and X\, the inequality expressed in (15)
can be satisfied by taking

6,
MM =C;; 0130/]—2;% - (16)

Thus we seek to determine £ and N\, which minimize Z,



subject to the condition

h*MN)=C,. (17
From (17), h=C,/[M(N)]:. Substituting this value
of hinto Z and differentiating the resulting expression
of Z with respect to N\, we obtain the following condi-
tion for a minimum of Z:

F=3\M’(\) —4M ()) =0,
or
60N>+ 15N—8=0. (18)
The positive root of (18) is N\, =0.26095 ., and 1t
can be verified that #7(\,) is positive, so that 7 is
indeed a minimum for this value of X\.  Since X lies
within the admissible range, it can be used for the
mesh ratio, in conjunction with a suitable value of 4
which satisfies (18). In practice, A=0.25 will
normally be used, because an irrational value of X\ is
inconvenient.

It will be instructive to examine the following
schedule, which gives M(XN), h, and the work unit 7
for a constant value of h*M(N), and various values of X
within the admissible range, in units of the corre-
sponding quantities when N=13.

IR s

N MO (u 12+90) ‘ h | Z=1/(%)
% 0. 001851 1. 565, 0. 782%

| A 001111 1. 778 . 4447
14 . 000694 | 2.000h . 252
3o 001111 1. 778h L2974
| 001851 1. 5680 . 3917
3% . 003299 | 1.354m . 95362
i 011111 I .
% . 029630 0. 783h, 1. 5652,

Compared with a unit of work Z; for the case N=3,
only 17, is required when N=7%. The largest admis-
sible value of X is the poorest of all, from the view-
point of the amount of work required. Again, a
word of caution is required. For the same magnitude
of the error in the leading term of 7 ,, , and different
choices of N\, the above schedule shows that with
A=1% h can be chosen twice as large as that required
when A=2%. If & is made twice as large, the eighth
difference in the a-direction is multiplied by about 2%,
and the differences must be reexamined to see whether
this larger value of the eighth difference still satisfies
the fundamental conditions imposed by (13) namely
that successive differences in the z-direction beyond
the fourth be numerically smaller than preceding
ones.  Moreover, it has been pointed out before
that the maximum £ corresponding to which (13)
is satisfied may already be such that 7, , i1s within
the required tolerance for all admissible values of \.
In that case it is of course best to choose =3 or one
close to it.

The following question arises: since the simpler
approximation (4) has a truncating error of order
four when \=1% and 7}, , is also of order four, is
there any gain in using the approximation formula of
higher order? The answer to this question is com-
plicated by the fact that the time required to gener-
ate a profile corresponding to the higher approxima-
tion may be considerably longer than that for the
simpler approximation. Much will depend not only
on the computing instrument which will be used, but
also on the complexity of the boundary conditions.
If the IBM card programmed calculator is to be
used, and the boundary conditions are not too com-
plex, the simpler approximation (4) can perbaps be
generated in only two-thirds of the time per profile,
compared with the more elaborate fourth order ap-
proximation given in (5). There are, however, com-
pensating factors which make the higher approxima-
tion worth considering. Let us assume we are dealing
with a case where the “best” values of N are used in
the approximation of order two and the one of order
four. For the same A used in both cases, the number
of lattice points is inversely proportional to N. Hence,
we shall use only two-thirds the number of lattice
points when the higher approximation is used. This
would about compensate for the longer time it may
take to generate each profile. There is, however, a
gain in accuracy when the higher approximation is
used. For the coeflicient of A*(0%/0z") in (9a), cor-
responding to the simpler approximation, is 1/540
when A=1%. On the other hand, the coeflicient of the
corresponding term in the higher approximation with
A=11s only 0.000694 ; or less than three-cighths that
of the simpler approximation. Furthermore, in
cases where the maximum permissible 4 is such that
Ty 1s already within the required tolerance limit
for all values of X\, we may be able to take N=%, or
close to it, when the higher approximation is used.
Such a choice of N would cut the number of lattice
points to % that required for the simpler approxima-
tion, with A=1%, and that might more than compen-
sate for the greater difficulty in generating »(z,t) by
the higher approximation.

Let us now consider differential systems that be-
long to type II. Since, by hypothesis, the deriva-
tives in the f-direction are negligible compared with
those in the z-direction, (7b) shows that the leading
term in 7%, , 1s practically independent of X\, and
this term cannot be eliminated by any choice of \.
Hence, it is reasonable to take the maximum admis-
sible X, or one close to it. Similarly, the leading
term of 7', , 1s complex in structure, and there is
no optimum X\ that stands out as suitable for all
functions falling under this type. For a given prob-
lem, it may be possible to compute estimates of the
various terms that contribute to the truncation error.
Or if the problem involves a family of parameters,
in the boundary condition, then available results for
some members of the family may lead to an optimum
choice of X and % for the remaining ones.

347



For equations falling under type II the higher
approximation formula usually has distinet advan-
tages over the simpler one of order two. For in this
case the truncation term is necessarily of a lower
order of magnitude in the higher approximation
formula than in the simpler one; moreover, a larger
mesh ratio, namely, 2, can be taken. Whenever the
boundary conditions are such that the coding prob-
lem is manageable, the higher approximation formula
18 to be recommended.

It might be well to remark that in some cases the
solution may be an oscillating function of # but not
of £.  Such functions may fall under type II, and a
Fourier approximation may actually be better than
a finite difference approximation. However, there
is no reason to expect that all, or even a good portion
of funections belonging to tvpo 11, can be most simply
treated by Fourier approximations. A finite differ-
ence apploxnnatmn such as (4) or (5) is often pre-
ferred, because of its simplicity, to other types of
approximations (by Fourier series or perhaps ‘“im-
plicit” difference approximations). Our concern
here, as stated before, is to study the dependence of
the solution on the choice of N\, after either (4) or (5)
has been selected as the approximation formula.

4. Method of Improving the Solution from
Two Difference Approximations

The method to be explained below has been
presented in [1]* by Hartree and Womersley, who
ascribe the idea to L. F. Richardson [5]. In [1] the
method is applied to a somewhat different type of
approximation—a  mixed  differenc ifferential
scheme, suitable for computation by a differential
analyzer. The results will here be extended to
difference approximations of any other.

Let us suppose that values of v, , have been gen-
erated by an approximation formula, corresponding
to a true solution u, ,, and let us assume that it is
possible to write

Tmn=—UWUmn—Vm,n
s 2 8

=WC,(z, t, N)+hTCri(x, t, N+ ... , (19)
where the functions C;(z,t,\) are independent of A.
It can be shown that corresponding to a wide range
of boundary conditions the expression for o, , does
assume the form (19) for both approximation
formulas (4) and (5).

Consider now the case when v, , has been gen-
erated by the use of an interval £, in the 2-direction
and a mesh-ratio \. Let these values of v, , be
designated by v, (k). Now let another computa-
tion be made, based on the same mesh ratio \, but
at an interval hy in 2, where ho=ph;, 0<p<1. These
values will be designated® by v,, ,(hy). It is presumed
that the same approximation formula will be used in

4 Figures in brackets indicate the literature references at the end of this paper.

5 In the subsequent discussions we shall write »(h2), or »(hi,hs) to indicate
&m,n(h2) or vm,n(h1,h2), when no ambiguity is likely to arise.

both cases. Clearly,

Vi, o) =Vm,0(ha) =Um,0; Vg n(h1) =05 n (o) =1 p.
By hypothesis, we have from (19)
Ui, n—0m,n (h1) =R C,+-h 1O, 1y

+r*2C 2 . . (20)

Similarly, remembering that h,=ph, and that ; is
1ndependent of h,

W, n—Vm,n(Pg) = p"RAC,+p" R 71Oy
+pr+2h;+2 /TT2+ o (21>
Multiply (20) by p” and subtract from (21). This

gives, after transposing some terms and dividing by
(1 ‘ pr) 9

WUm,n="Vm, n(hhh?)_ p‘(lj_pﬁ hr+l(jr+1

1
1_ 2
—rSZB st (22)
where
1’m,n(h1,h2):vm'"(hQ)l*_—__pp,Um'n(hl) (23)

We shall refer to the process defined in (23) as the
“p™” correction. In [1] it 1s recommended that p be
taken as 5. This i1s a desirable choice for numerical
work, since every other value in the z-direction at the
smaller interval is available at the larger interval.
Similarly, every fourth value in the t-direction will
be available at both intervals. There are many ways
of applying corrections of this type. One way, for
example, 1s to generate four values in the ¢-direction
at the finer interval, then generate the corresponding
values at the larger interval; apply the p” correction
to the last profile, and use these corrected values as
initial data for generating the next profile. Such a
use of the correction scheme would, of course, require
interpolating for values of »(h,h,) for every other
value of z, since we can correct only for those points
that are available at both intervals. The coding of
this method would be complicated. The simplest
way of using the correction scheme is to actually
make two completely separate computations for all
required values of 7, and then to apply the correc-
tion process only to those functional values that are
required. Often the last profile generated is of most
interest, and in that case it may be enough to correct
the values on the last computed profile only.

The process furnishes a powerful check on the con-
vergence rate of the approximations, and since the
work done at the larger interval is one-eighth that
done at the smaller interval if p=1%, the added labor
is not too costly, when the two computations are
carried separately. Moreover, the coding is the same
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for both approximation schemes. For the special
case when 7=2, (22) and (23) reduce to

2137
Um, n=Vm ”(h],}bg)—p h (}'—PQILJCY.‘—‘}— A (24)
' ' 1+p
where
m,n / m,n I _
Zm n(hl,hz) v (1 ) Pfli ,,b> (2;))

=

The “p””” correction has been applied in the numerical
L.\amplos given in section 5 with highly satisfactory
results. In [1] Hartree and Womersley give sufficient
conditions on the nature of the boundary for the
method to be valid; the method can probably be
used over a wider class of functions than those
specified in [1].

If A, is sufficiently small, »(hy,hy) will always be an
improvement over wu(h,), since the truncation term
is of lower order of magnitude in »(h,h,). The
question arises: how small must /4 be to insure that
v(hy,hy) shall be an improvement over u(h,)? lLet
the truncation term, 7%, ., now be identified by
T, .n(h), when associated with an interval £ in the
a directions, and let

G(h],hg) =UuU—

v(h,hy); o) =u=0v(h);

Tr, m, 71,(/01;}1".’): Aﬂﬁ(/ig)l—;pﬁrjii"' N(/I'Q'

(26)

It 1s more difficult to get a good estimate of o than
of T, ., .. Just as in section 3, we shall, therefore,
inquire under what conditions the inequality

l ,1'7, m,n (II’U}"Z)[ <

[r, m, n (/l.’>! (27)
will be satisiied. A numerically smaller truncation
term will usually be associated with a smaller total
error. For the approximation formulas considered
here the truncation term is of the form

T, o nlh) =32 pPh? g, (,1,10).

p=r

Moreover, the condition following eq (13) guarantees
that
Tr, m,n (112 %prhr!jr(-l',t,u)- (28>

But no similar statement was made about 7, ,, (k).
Now from
— 20 (0—pBihtrrg,  (e,i4)
p: =1
(1—p")

—rl’r, m, n(hl;hz)j

If we can satisfy

|hgrsp (@,t0) | <[ 0°Gripr (2,80) (29)

where

pP=1—yp, (30)
then from (27) and (30) it can be shown by summing
the absolute values of the terms of 7%, ,(h; hy) that
(27) 1s satisfied. \\'lwn =1 mul =%, the (ondlllon
(29) implies that p°={. If p=73 and r=4, then p*=13,
or what is equivalent, successive lmms of T, .. at
the larger interval are required to be just smaller
numerically than preceding terms.  Under such con-
ditions »(hy ko) will always be an improvement over
w(hs).

In the foregoing, it has been assumed that »,,, can
be computed exactly by the prescribed formula, and
that all initial and boundary conditions are exact.
This can seldom be realized in practice, and there
will be rounding errors committed at every step of
the computation, due to carrying a fixed number of
decimals or significant figures in the computations.
The cumulative effect of such errors can perhaps be
studied statistically, or upper bounds for errors of
this type [2] can be found. In the numerical examples
given in section 5, the cumulative round-off error
was very small, after 100 steps in 7.

5. Numerical Examples

The problem selected for analysis was the following
one:
ou O "

5 — o2 T/ @)

(31)

At t=0, u=(102*+2*+0.64)% =A(z);

at x=1, wu=(11.64+1)*=B(t).

. s —(3249.5) (1041527
O.L':II#O_O’ il u + u?

This particular form was chosen because it repre-
sents a case in which derivatives with respect to ¢
are much smaller numerically than corresponding
derivatives with respect to z, with which they are
associated in truncation terms such as those of (7bh).
The differential system belongs to type 11 of section
3. It is known that the exact solution to the problem
is

u=(102+23+40.64+1)*

The choice of a nonlinear form of the differential
equation was deliberate. It was made in order to
study the cumulative error in cases where a con-
siderable number of operations, that involve the
approximate values of u, have to be performed at
each step.

The following five sets of solutions were generated :
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ExampLEe 1.
Formula:

vm,n+1:27m,n+ xazvmn+kfm,n; vm,o:A(I);
on=B(); sh=1.

h? h?

D#I,n:vl,n_l_"g[—" =i

or_]:—0 Vo,

Parameters: h=0.05=h,; k=0.00125; A=3.

Range of £: 0<t<0.125.

Number of lattice points: 20<100=2,000.

Initial values and the computed values of »,_ , for the last profile are given in table 1.

TaBrLe 1.  Solution of the difference equation

h3
Um,n+1:vm,n+)\52vm,n+kf(xyu); Z"—1.71:—”""__-9
0,n

At t=0, v(,0)=(1022+234+0.64)%; Atz=1, v(l,t)=(11.64-+¢)%
(10z+1.52%)2

== 1 g 5
f(@,0) = (3va+‘>-§Jr s ; M=% h=0.05; k=.00125
u=+/10x24+23+t+0.64
]
At t=0.125
z v(z,0)
v(x,t) u(x,t) w(z,t) —v(x,t)
0. 00 0. 8000000 | 0. 8720400 0. 8746427 +. 0026027
.05 . 8155520 . 8864322 . 8888897 +. 0024575
.10 . 8608136 . 9285124 . 9305912 +. 0020788
215 . 9318664 . 9950813 . 9966819 +. 0016006
20 1. 0237187 1. 0819105 1. 0830512 +. 0011407
.25 1. 1316470 | 1. 1848335 1. 1855905 +. 0007570
.30 1.2517987 | 1. 3003062 1. 3007690 4. 0004628
.35 1. 3812585 |  1.4255420 1. 4257892 +. 0002472
.40 1. 5178933 1. 5584295 1. 5585249 +. 0000954
.45 1. 6601581 1. 6973964 1. 6973876 —. 0000088
.50 1. 8069311 1. 8412718 1. 8411952 —. 0000766
855 1. 9573898 1. 9891819 1. 9890638 —. 0001181
. 60 2. 1109240 2. 1404665 2. 1403270 —. 0001395
. 65 2.2670741 2. 2946235 2. 2944770 —. 0001465
.70 2. 4254896 2. 4512642 2. 4511221 —. 0001421
.75 2. 5858993 2. 6100866 2. 6099568 —. 0001298
. 80 2. 7480902 2. 7708507 2. 7707399 —. 0001108
.85 2. 9118937 2. 9333664 2. 9332788 —. 0000876
.90 3. 0771740 3. 0974789 3. 0974182 —. 0000607
.95 3. 2438210 3. 2630627 3. 2630315 —. 0000312
1. 00 3. 4117444 3. 4300145 3. 4300145 0

ExampLEe 2.
Formula: The same as in example 1.
Parameters: h=0.1=h;; £=0.005; r=1.
Range of ¢ The same as in example 1.
Number of lattice points: 10 X25=250.
Initial values and the computed values of v, , for the last profile are given in table 2.
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TasrLe 2. Solution of the difference equation described in table 1 and values of v(hi,hs)
Parameters: mh=0.1; £=0.005, A=3%.
0(@,t,ha,h) = 0(hu,he) = [0 (he) — p20(A))/(1—p2); =},

v(hy) given in table 1.

“ At =0825
X | U(.F,()) ‘ T T e
v(x,t) ‘ u(x,t) | ux,t) —ov(,t) v(ha,0s) w(@,t) —v(hi,hy)
S | \ B
|
| |
0.0 | 0. 8000000 0. 8638878 0. 8746427 | +. 0107549 0. 8747574 | —. 0001147
.1 . 8608136 . 9221349 [ . 9305912 ‘ +. 0084563 . 9306382 | —. 0000470
.2 | 1. 0237187 | 1. 0784844 1. 0830512 -+. 0045668 1. 0830525 —. 0000013
.3 1. 2517987 1. 2989434 1. 3007690 | +. 0018256 1. 3007605 | -+. 0000085
.4 1. 5178933 1. 5581507 1. 5585249 +. 0003742 1. 5585224 -+..0000025
‘ . D 1. 8069311 1. 8415191 1. 8411952 —. 0003239 1. 8411893 -+.. 0000059
| -6 2. 1109240 2. 1408939 2. 1403270 —. 0005669 2. 1403240 -+. 0000030
[ - 7 2. 4254896 2. 4517066 2. 4511221 —. 0005845 2. 4511167 +. 0000054
P8 | 2. 7480902 2. 7711921 2. 7707399 —. 0004522 2. 7701369 . 0000030
l -9 3. 0771740 3. 0976676 3. 0974182 —. 0002494 3. 0974160 . 0000022
| |
‘ 1.0 3. 4117444 3. 4300145 3. 4300145 0 0
ExamrLE 3.
Formula: The same as in example 1.
Parameters: h=1/14; k=1/1176; N=21.

Range of £: The same as in example 1.
Number of lattice points: 14 <X 147=2058.
Initial values and the computed values of »,, , for the last profile are given in table 3.

The formula for examples 1 to 3 comes from (4).

TasrLe 3. Solution of the difference equation described in table 1

Parameters: h=1/14, k=1/1176; r=1/6, xz=mh.

‘ At t=0.125
m v(x,0) e ———————————
v(x,t) w(x,t) w(z,t) —o(x,t)
0 0. 8000000 0. 8692554 0. 8746428 +. 0053874
1 . 8314955 . 8987549 . 9035402 -+. 0047853
2 . 9203245 . 9824630 . 9858991 +. 0034361
3 1. 0531018 1. 1087660 1. 1108660 . 0021000 |
4 1. 2164087 1. 2656385 1. 2667479 +. 0011094 ‘
S5 1. 4003800 1. 4438567 1. 4443213 -+. 0004646
6 1. 5985781 1. 6371338 1. 6372086 . 0000748
7 1. 8069311 1. 8413398 1. 8411953 —. 0001445
8 2. 0228433 2. 0537601 ‘ 2. 0535080 —. 0002521
9 2. 2446210 2. 2725815 | 2.2722948 —. 0002867
L 10 2, 4711277 2, 4965649 2, 4962917 —. 0002732 |
11 2. 7015788 2, 7248430 2, 7246151 —. 0002279 [
12 2. 9354176 | 2, 9567941 | 2, 9566326 —. 0001615 ‘
13 3.1722397 | 3.1919624 | 3. 1918811 —. 0000813
14 3. 4117444 3. 4300145 3. 4300145 0
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ExampLE 4.

Formula:
Z'rn'm-l:vm,n'%"x (52_‘“ 64)7)m n+kfm n (32)
3h3 m3h3
S =1,2.
Vem,n=0Um, n+ [ax . =Vm,n 7}0,"’ m l,

It will be convenient to rewrite (32) in the following
form:

z«m,,,“:qiz__zaqum,w,n+kfm,,,, (33)
where
A_s=Ws=—75\; A_1=@=3)\; @=1—2.5\.
Parameters: A=0.0625; £=0.0014; \=0.3584.
Range of t: 0<t<0.1288.

Number of lattice points: 16X 92=1472.

Formula (32) is a modification of (5). It is ob-
tained by dropping the terms of (3) involving p>2.

However, the second derivative with respect to x is

TABLE 4.

U, n+1=0Um, n+ ()\5'7

m>h3

3

af

V—m,n=Um,n

Um,0=Um.o; Vs,n=Us,n;

f(z,v) defined in table 1.

ox z=0

approximated by differences, including the fourth
order. The resulting formula is almost as accurate
as (5) for this problem, since derivatives with respect
to t are very small numerically. In view of the fact
that (5) was modified, it is necessary to examine (33)
to determine the admissible range of X\. It is clear
from (33) that all the coefficients @, cannot be made
positive by any choice of \; hence the stability cri-
teria given earlier do not apply. However, it has
been shown in [2] that if there exists a positive num-
ber M, independent of @ and ¢, such that the coeffi-
cients a, of (33) satisfy

for|y| <=,
(34)

¢ exp (iqy) < exp (—My?),

pr

then the basic homogeneous differential equation,® is
stable. From that result we may then deduce the
stability of (32) or (33).

6 In [2] the theorem applies to a more general case.

Similar results relating to
stability are given in [4].

Solution of the difference equation

O Ar

m3h3

Vo,n

=Um,n—

4,1 n=0%,—2.n; sh=1

Parameters: hy,=0.0625; k£=0.0014;% x=0.3584.
At 1=0.1288 f
x v(x,0)
| v(z,1) % (@) w(@,t) — v(,t)
| | 0..0000 0. 8000000 0. 8767367 0. 8768124 +. 0000757
| . 0625 . 8242006 . 8988926 . 8989475 +. 0000545
. 1250 . 8934221 . 9627974 . 9628100 -+. 0000125
| . 1875 | . 9990767 1. 0615954 1. 0615804 —. 0000150
| .2500 | 1.1316470 1.1872134 | 1. 1871920 —. 0000214
| [ |
| 3125 | 1.2833862 1. 3326403 | 1. 3326211 —. 0000192
‘! . 3750 ‘ 1. 4487872 1. 4925905 1. 4925762 —. 0000143
| .4375 | 1.6241314 1. 6633207 1. 6633105 —. 0000102
| 5000 | 1.8069311 1. 8422337 1. 8422269 —. 0000068
| L5625 | 1.9955052 2. 0275254 2. 0275206 —. 0000048
i L6250 | 2. 1886961 2. 2179277 2. 2179247 —. 0000030
L6875 | 2. 3856893 2. 4125343 2. 4125324 —. 0000019
| 7500 | 2.5858993 2. 6106854 | 2. 6106848 —. 0000006
L8125 2. 7888957 2.8118924 | 2.8118925 -+. 0000001
i L8750 | 2. 9943567 3. 0157864 | 3. 0157871 -+. 0000007
| .9375 | 3.2020364 3.2220847 | 3.2220858 +.0000011 |
3. 4117444 3.4305684 | 3.4305684 0 i

1. 0000
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ExamprLe 5.

Formula: The same as in example 4.
Parameters: £,==0.125; k=0.0056; N\=0.3584.
Range of :  'The same asin example 4.  Results are given in table 5.
Tasre 5. Solution of the difference equation described in table
Parameters: £h;=0.125; £k=0.0056; h=0.3584
v(x, t, hi, ha) = v (i, ho) =[v(h) — p* (0 (M) )/[1—p']; p=13
v(hy) given in table 4
® ——————— —_——————— ——— . = = — = ]
j |
| At 1=0.1288 3
: v(,0) ‘ - —_ |
v(x,t) u(x,t) ‘ w(e,t) —v(x,t) | v(hy,hs) | w (x,t) —v(hi,hs) |
S | S . | I [ R
| O 0. 8000000 0. 8753628 | 0. 8768124 [ +. 0014496 0. 8768282 ~. 0000158
0. 125 . 8934221 . 9623470 . 9628099 +. 0004629 . 9628274 . 0000175
. 250 1. 1316470 1. 1872934 1. 1871920 —. 0001014 1. 1872081 . 0000161
. 375 1. 4487872 1. 4926595 1. 4925762 | —. 0000833 1. 4925859 . 0000097
. 500 1. 8069311 1. 8422296 1. 8422269 ‘ . 0000027 | 1. 8422340 . 0000071
|
J‘ . 625 2. 1886961 2. 2178929 [ 2.2179247 ‘ +. 0000318 2. 2179300 | . 0000053
| . 750 2. 5858993 2. 6106245 [ 2. 6106847 +. 0000602 2. 6106895 1 —. 0000048
‘[ . 875 2. 9943567 3. 0157128 ‘ 3. 0157869 | +. 0000741 3. 0157913 ‘ —. 0000044
! 1. 000 | 3. 4117444 3. 4305684 3. 4305684 0 | 0
| |

In all the above examples, v, ,, %, », and u,, ,—,, »
were generated. Fourth differences were generated
in all the examples, even where the computing for-
mula did not call for them. These fourth differences
were jotted down by the operator of the card pro-
grammed IBM calculator, and any lack of continuity
m the differences was a warning that the machine
was not functioning properly. The operations were
carried out with a board wired to perform eight-
place multiplication. The calculations were carried
to the fullest possible accuracy, that is, to seven
decimals in v, , and to eight decimals in some of the
subsidiary computations for (2, ,,1—2,.). This
accuracy 1s far in excess of the truncation error, for
small values of .

A “p? correction was applied to the values of the
last nvmlablo profile, as explained in section 4, based
on the entries in examples 1 and 2. The results are
given in example 2. Similarly, a p* correction was
applied to the last profile in examples 4 and 5; the
results are given in example 5.

<

S

Observations

(a) The pr Correction Process

It 1s to be noted that in spite of the fact that in the
last profile v, , differs from the true values by 0.0026
in example 1 and by more than 0.01 in example 2,
the values of »(hy,hs) resulting from the p? correction
are correct to within 0.00011 or better. It can be

verified from the tabulated entries that
[u—o(h)]/[u—2(hy)] 22 h3/h3.

It follows that to gain an accuracy comparable to
that of »(hy,h,) without the ‘¢ p’’ correction, an in-
terval of A=0.01 would be m-odo(l, and hence the
amount of work would be 125 times that used in
example 1

The improvement due to the “p*’ correction in
examples 4 and 5 is not quite so striking. However,
even here there is considerable improvement for
small values of x, and it must be remembered that
the formula used does include an A* term in the trun-
cation error, which is not eliminated by the p* cor-
rection, although the error from this term is somewhat
lessened. However, for z larger than %, »(h,) in
example 4 is closer to the true value than »(h.h,).
An explanation for this may come from the following

6 4

considerations: Assume
u—(ha)=3 p?+hP+2 () 1. (35)
p=0
then it follows that
21/2(‘) 1
U—l‘(hlyhz):pl_l%pz-‘F "(+ ) h3Cs
X1=0) pso—. ... (36)
="
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It is to be noticed that the terms involving % and A*
are numerically smaller in (36) than in (35). How-
ever, the term involving A° is somewhat larger, if
p=13%, and all subsequent terms will be larger. In
fact, it can be readily verified that if a “p™” correc-
tion is applied, then compared with a telm involving
p? TR, in (35), there is the corresponding term
[—p"(1—p?)/(1—p")AP*"C, ., in [u—v(hy,hy)], which is,
of course, numerically larger; but usually the leading
term after the elimination is smaller than the term
eliminated, namely, A7p’C;. The “p*” approximation,
as applied in examples 4 and 5, is mthel unusual in
that a very small term of order two is left. If all the
terms of (35) are small numerically, it may happen
that the combination of the leading terms in|u—
2(h1,hs)| may be somewhat larger than in ju—w»(h,)|.
In such cases, however, the difference between »(hy,h,)
and »(h,) will itself be small; hence, although it may
not be known which is the better answer, it is to be
expected that the order of magnitude of the error in
(hy,hs) 1s not greater than [v(hy) —ov(hy,hy)|.

(b) The Rounding Error

The last place of u(z,t) is not guaranteed, hence we
can judge the rounding error only to the extent that
the sixth decimal place is affected. It is to be noticed
that in example 4, which seems to be the most ac-
curate, the difference w,, ,—v,, , 1s systematic as far
as sign is concerned. This is evidence of the fact
that no large rounding-off error accumulated, after
100 steps in £, even though a nonlinear differential
equation was used, and a considerable number of
arithmetic operations were performed at each step.

(c) The Effect of Varying A

Let us compare the error pattern in example 1,
where N=1, with that of example 3, where A\=4.
In spite of the fact that somewhat more work was
performed in generating values in example 3, the
results are not as good—although the error in both
examples is in the same decimal place; but the error
in example 3 is about twice as large. This, in fact, is
precisely what was to be expected. For as observed
n section 3, in cases coming under type 11, where
derivatives with respect to ¢ are relatively small, the
error is not appreciably affected by \; hence, it is
almost proportional to 2. The ratio of the two values
of A? is (20/14)’~2.04. The numerical illustration
verifies the observation that N=7% is not necessarily
the best mesh ratio for the formula given in (4).
The boundary conditions and the form of f(xtu)
determine the type that the differential system be-
longs to, and it is only after the problem is studied
from this viewpoint that a suitable choice of N can
be made.

In connection with example 3 corresponding to

=1 it was not desirable to generate values at double
the interval in the z-direction, for purposes of apply-
ing a ‘“p?”’ correction. For if the formula given in
(4) were use(l to compute v_; 1, we would get a nega-
tive value of (vo,—wp0). Even if the true answer
were not known, a knowledge of the more accurate
values of »,, , from the smaller value of # would warn
us that a negative value of (z,,—w,,0) 1S incorrect.
It will be instructive to write down the differences
of »,, (the known initial profile) at double the
interval used in example 3, and to use a value »_;
computed from formula (4). The values of »,, , and
some of the differences are given below:

h=1%; t=0.
B e et e i —— e o o= e e — ~= f;
m | Vim0 52 & | ot 6%
|
} \
— 1l 0. 9166802 1
0 . 8000000 2370047 1
1 - 9203245 DTrszEaTl IS0 e I (20 e
| 2 1. 2164087 . 0860852 - 0439892 +. 0456851 T 0197723
i 3 1. 5985781 . 0420958 0180766 +. 0259128 -
‘ 4 2. 0228433 . 0240192 ; !
5 2. 4711277 ‘
L S S —

The fourth differences are not numerically smaller
than the third differences, and the first ontl\ in the
fifth-difference column is very much larger numeri-
cally than the second one in the same column. Such
a pattern is a w arning that the interval is too large.

{d) The Effect of Using a Higher-Order Approximation Formula

Let us compare the results in examples 1 and 4.
The coding for example 4 is somewhat more compli-
cated than that for example 1, but since only 1,472
lattice points were used in example 4 compared with

2,000 in example 1, the over-all amount of work is
about the same in both cases. The result after 100
steps shows that the higher approximation formula
gives very much better results. To secure a maxi-
mum error of 0.00008 in »,, , with the approximation
used in example 1, it would have been necessary to
use an interval & of about 0.009; hence 170 times the
amount of work would have been necessary. How-
ever, if the p? correction were applied, the compara-
tive results would not be quite so unfavorable to the
simpler approximation. Assuming that a p* correc-
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tion were applied to two computations by the simpler
approximation, and a p* correction to results of the
modified fourth-order approximation, the latter
would still give significantly better results—one
additional decimal place, in fact. To secure com-
parable accuracy by the simpler approximation, it
would be necessary to multiply the amount of work
by the factor” 10. The conclusion is inescapable
that the higher approximation is worth while, in
cases where the boundary conditions do not introduce
singularities in the higher derivatives, and when the
coding problem is manageable.

The author acknowledges gratefully the many
constructive suggestions which were given by Dr.
Fritz John dmmv the progress of the study.
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7. Appendix
Derintrion.  We define 2z (m,M;n,N) to be a region in the

x,t-plane, which contains the region

(m—M)h<zx<(m+Mh; nk<t<(n+ N)k.

7.1. Expressions for Derivatives® in Terms of
Differences
o1 1 1 b Ofuz
= 2__ 5t —_ 56 S O
oc h2|:<5 125+s)05>“’"'":| 560 ozt = (37
O . n 7 O%zpn  R2 OVu, ,
ort h4[(5 —‘5>“'" "]H' 240 ozt 4200 ozl ]
(38)
OUpm.n 1 . N 10%z,n  Th? OWuy ., h4ORu, .
B TR [1"'5}3 T720 oxl0 fgmé:l
(39)

where the points (z;,nk) are in Z(m,3;n,0), j=1,2,. . .,6.

7 This is on the assumption that after the p? correction, the leading term of
am,» has the factor k8. Since the work is inversely proportional to A3 for the same
A\, improving the entries by a factor of M means doing M times the amount of

rk.
8 See chapter VII, reference [3].

If & is sufficiently small, successive terms of (37), (38), and
(39) are of a lower order of magnitude than preceding ones,
and if terms involving A in the numerator are dropped, then
the truncation error is of the order of magnitude of the first
term neglected.

7.2. Relations Between Derivatives in the #- and
z-Directions

By differentiating (1) we can establish:

PP @R

b=t L (41)
B Foer Pt
RPN W S

In the above, Py and Py, are functions of z and ¢ Where not
otherwise specified, they will be understood to correspond to-
r=mh, t=nk. If f(z,t,u) involves u, the derivatives of f may
involve various derivatives of w with respect to x. It will be
convenient in this section to change the notation introduced
previously, and to define f,=0f/or, with t,u held fixed; f;=
of/ot, withr,u held fixed; f,=0f/Ou, with z,t held fixed with sim-
ilar definitions forf,,,,f,‘,,, ete. Thcﬂc derivatives will usually
be required at x=0 and t=nk; hence evaluation of the deriva-
tives at (0,nk) will be implied unless otherwise specified, or
readily understood from the context of the analysis.

7.3. The Boundary Conditions at x=O0 for the
Examples in Section 5

Since 1, o has not been defined by the differential system,
the expression (47) must be modified when m=0, or what is
equivalent to it, u—; , must be defined. Similarly u—; , and
u—y , must be defined for (5) and (32). Consider the condi-
tion (Oug, ./0x)=0. It implies

OPUg,n
2 0, p22. (44)
Now from (41) and (44)
O%uy, n_ Q%Up, n
0=tz = oxs T7*
Hence o
Uy, n__ =
— 4
o S (45)
Similarly, from (6.23) and (6.30)
__ O%Ug,n_ O%Uon | 1
0=3roz — oz P,
where
(l3j df
d.r3 dxdt_lo.,

If f involves u, Ps will involve 02u/dxz2. An explicit’ ex-
pression for Pz in terms of partial derivatives will therefore
be useful. It is given below.

o%u
P31:fzzz+4fz.uﬁ+f'fx.u'—f:'f +fxt
_4fzu0u0n DuOn

+G =220 (46)
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where

Gﬂ=fzzz+f‘fz,u—fz'fu+fz.t- (47)
Using (45) the Maclaurin series around (0, nk) yields
- m2h2 Q%ug,, m3h3 S mPh? OPuy
Umn =Wt g o 6 T E TR o (4B)

If weset m=1, 2 and use (46), we can obtain 027w, ,/0x?? to
an accuracy comparable to approximations used over the
rest of the region. The same results are obtained if we use
(48), to solve for w—; . and u—, . (if the latter is needed).
This artificial extension of the region to negative values of
m is convenient for numerical treatment, and is justifiable
wherever (48) exists and the required derivatives are bounded.
Thus we can write

—u +m“‘h‘" _ mhP O%ug
Uomn=Um T g 260 gt

=500 (49)

If h is sufficiently small, and terms involving powers of
h3t» p>0 are neglected in (49), the truncation error for
U—m o is of order h5. Thus T, . defined in (7a), has a
term in A3,

The third term on the right-hand side of (49) was also
dropped in example 4, since its magnitude would have
affected only the fifth decimal place at any point. This
term could have been obtained, if desired, by using (46)
and (37), and then setting m=1 and m=2 in (49), to obtain
three linear equations for the unknowns u—,,u—,, and h305u/dx5.

7.4. The Boundary Condition at the Terminal
Points (z,, 1)

The difference equation defined in (4) needs no special
treatment for the boundary conditions at z,, where a=sm,
since (s—1,n) is the last lattice point at which v,, , is gen-
erated, and &%,,,, is fully defined. However, when the
fourth order approximation is used, as in (5), an expression
is required for vyi; ,, or for 8%u, ,. Since wu(z,t)=B(t) and
all its derivatives in the ¢-direction are assumed to be known,
the differential eq (1) can be used to obtain the second
partial derivative in the z-direction, in terms of Ow/0t and
f(z,u). The relations between derivatives and differences can
then be used to obtain &u,,. In examples 4 and 5, the
fourth difference in the z-direction was essentially zero at
7,; hence the last fourth difference was replaced by 8w, 1 »-

Los AxceLEs, CALIFORNIA, September 18, 1951.
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