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On Methods for Obtaining Solutions of Fixed End-Point
Problems in the Calculus of Variations'

Marvin L. Stein?

Two methods for constructing solutions to the problem of minimizing an integral in a

certain class of arcs joining a pair of fixed points are proposed.
a generalization of Newton’s method, while the other is a ‘“‘gradient’” method.

One of these procedures is
Conditions

for convergence to a strong relative minimum are given in both cases.

1. Introduction

In this paper we consider methods for effectively
constructing solutions to the problem of minimizing
an integral

16)= [ ’ f(ey ) de (1)

in a certain class of ares y:(z), (¢<x<b; i=1,2,
. . ., n) joining the two fixed points (zx=a, y(a)=
p) (z=b, y(b)=0c). Asis well known, the minimum
must necessarily satisfy the Euler equations

d .
Zli_ifyi'(xy:l/;y/):fl/;(xr?/yy/) (/L: 1,2,... ,71).

Thus in any particular case the solution of these
equations becomes of prime importance. The two
methods to be proposed below enable us to compute
arcs that satisfy the Euler equations subject to
boundary conditions at two distinet points. For
both methods an initial estimate of the solution is
made. From this estimate a new estimate is ob-
tained in a definite way, and so forth. These pro-
cedures have the advantage of giving estimates that
satisfy the boundary conditions at each step, and
their iterative nature makes them adaptable to auto-
matic computation.

The first method of obtaining new estimates that
will be discussed is a generalization of Newton’s
method for functions of a single real variable. This
method is described in section 2 where it is actually
applied to a more general class of systems of differen-
tial equations than the Euler equations, namely
those systems of the form

% g i(m ,!Z/; 1//): h 1($,h/,i7_//> (Z =1 3i2J!' ety ’Il).

To construct the convergence proof, we make the
class of functions under consideration into a Banach
space and regard the system of differential equations

1 The preparation [of this paper was sponsored (in part) by the Office of
Naval Research.

3 Present address, Consolidated-Vultee Aircraft Corporation, San Diego,
California.
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as an operator 7 on the space into itself. The neces-
sary Banach space tools are developed in sections 3,
4, and 5. Sections 6, 7, and 8 are devoted to an
analysis of the properties of 7" and of its first varia-
tion. The results obtained in these sections are used
in section 9 to show that under simple conditions on
the initial estimate the sequence of estimates derived
from the first method will converge quadratically to
an admissible function that satisfies the system of
differential equations and the two-point boundary
conditions. In fact, it is demonstrated in section 9
that convergence will occur if the initial estimate has
nonconjugate end points (see definition 5) and is con-
tained in some neighborhood on which the norm of 7°
is bounded by a suitable constant. These conditions
are shown to be satisfied if a solution exists and has
nonconjugate end points. In this case there will
exist a neighborhood of the solution such that the
sequence of estimates will converge for any initial
estimate chosen from this neighborhood. In the
special case of the Euler equations, considered in
section 11, it 1s shown that the limit function not only
satisfies the differential equations but under the
proper conditions also affords a strong relative mini-
mum to /(y). Section 10 concerns itself with an
imteresting lemma about conjugate points, that
proves useful in section 11.

While not having as large a range of applicability
as the first method, the second of the two methods of
choosing new estimates that will be discussed has the
advantage of being simpler to handle at each itera-
tion. This method is described in section 12, where
it 1s shown to be particularly useful for the solution
of the Euler equations arising from an integral whose
integrand is quadratic in i and 7’. In this case the
integral itself, instead of the differential equations, is
considered; and it is shown that under suitable hy-
pothesis the sequence of estimates converges to an
arc that affords a strong relative minimum to /().
In fact, convergence will occur if / has a lower
bound on the class of admissible functions and the
second variation is positive.

Neither of the methods to be described below is
presented as a quick computational procedure for a
desk computer. However, they are processes that
might well be carried out on automatic computing
machinery. Numerical examples are to be found
in section 13.



2. An Iterative Method for Solving Certain
Systems of Second Order Differential
Equations

In the following pages we shall be concerned with
constructing solutions for systems of the form

d :
779y yN=h(z,y,y")  (=1,2,...,m)

(2)
Y:i(b) =0

Here y=(y,,%2,. . .,4») denotes an arc defined on the
interval a<z<bh and p, ¢ denote arbitrary constant
vectors. By formal integration of (2) it is found
that an arc y that satisfies these equations must
also satisfy

Ti(z;y) Ef[gf(t, Y, y’)—f: hi(s,y, y’)d8] dt
—‘ff [m(t,y y)— J hi(s,y, y’)dSJdt—

yz(b) =0

Conversely, any arc without corners that satisfies
(3) must also satisfy (2). For reasons that will be
clarified below, we prefer to make use of the differ-
ential eq (2) in their integral form (3). Accordingly,
let us examine some of the properties of the function
Ti(xz:y).

That

T'i(a; y)=Ti(b; y)=0

yi(a) =py,

yi(@) =pi, (=112 o o il

(=152 ) (1)

independent of the arc y is immediately apparent.

One recalls that a function of one or more vari-
ables is said to be of class C*, n.>0, in its arguments
on its domain of definition if it is continuous on that
domain together with all of its (partial) derivatives
up to and including those of order n. An arc
Y= 1,2, . Ya) is of class C™ if all of its compo-
nents, y;, have this property. From further inspec-
tion of the definition of 7',(z;y) it is evident that if
g and A are of class C"~* and v is of class C¥ for some
kon 0<k<n, then T,(z;y), considered as a function
of z, is also of class C* that is, T(x;y) belongs to the
same class of arcs as y, provided g and A have proper
differentiability properties. Let a primed variable
signify differentiation of that variable with respect
to . Then it will be noted that the arc 7"/ (z;y),
which when set equal to zero merely presents the
differential eq (2) in their usual form, does not pos-
sess the property of belonging to the same class to
which y belongs. In fact, even if 7 is of class C?,
T’ (z;y) may only belong to class C”.

Before describing an iterative procedure for con-
structing arcs that satisfy (3), one must first introduce

the functions

894z, y;m)=gu, (@, Y,y )nstgu @, y, ¥ )n;
(5)

5h1($, Y; n)Ehiui'ni—{—hill/n; (,L:jz 16 Yt b 772’)

and
z 14
6T (x,y; n)Ef I:ﬁgf(f,y; n)—f dha(s,y; n)d8] dt
—a Y t .
—_—aJ [5gi—f 6hids] dt B=1% o o o)k
(6)

In (5), (6), and elsewhere in this paper, unless other-
wise noted, the tensor convention of summing on
repeated indices is utilized. The arc 7 is taken to
be such that it vanishes at the end points of « <z <b.

The function 67,(x,y;m) can be obtained from
Ti(x;y) as

6Ti(w,y,n)— = Tu(@;y+an)la=o

and is often referred to as the ‘“variation” of 7.
It has properties similar to those of 7. For example,
6T, considered as a function of z belongs to the
same class as the function », provided that g, A, and
y have sufficient difterentiability. This fact follows
from a small bit of reflection on (6) as does the fact
that

6T (ayym) =o6T:(b,y;m) =0 -3 1),(7)

regardless of the choice of ¥ and ». It is seen that
these properties do not hold for the variation of the
differential equations (2) taken in their usual form.

In the iteration process to be discussed here, it is
assumed that the 7** estimate y(“ of an arc satlsfymg
(3) has been obtained. An “improved estlmate
ytD is then found as follows. Determine a ‘‘varia-
tion”” # by solving the system

R

Tj(x;y(i)) +6Tj<x)ym;77) =0 (]z Ues o e ;n)

75(@) =n,(b)=0. 8)
The function 5%+ is then chosen to be
YD =y O f 9)

y® is replaced by %+, and the steps just described
are repeated.

This method may be justified heuristically by
observing that wupon expanding 7 (x;y+n) by
Taylor’s theorem one gets

Tyt n) =TT eym)t. .
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Thus it is reasonable to assume that a good approxi-
mation to a solution of

Ty(x;y+n)=0

for a known function y might be obtained by solving

Ti(x;y)+oT (2,y;m) =0

for 5. The analogy between this procedure and
Newton’s method for a function of a single real
variable is ckear. Consequently, it will henceforth
be referred to as Newton’s method.

As one sees by setting g.(z,y,y") =y (1=1,2,. . .,n),
the differential equations (2) contain the 1mp0rtant
class of equations

(F=ls 25 )

G=12,. ..,n) (10)

y:lzhi(.’l),y,:l],) (i:172; N ) (11)
as a special case. By setting
gi(ryy)y/) Ejy{ (Iy?/yy,) (b= 0 o )n)
. (12)
}li(»l‘,?/,?/') Efl/,(rvy}y/) (%: ])2J o oo )n)
(2) can also be made to assume the form
a .
Hfﬂ{:fy (?’:1)21' "?n)
(13)
yi(a)=p;, Yi(b) =0,

These are the Euler equations associated with the
integral (1), and their solution is the chief applica-
tion of Newton’s method which we wish to make in
this paper. The functions 7', and 67’ associated
with (13) are, respectively,

2= [ [ 1| fy,.ds] di—

and

& 't
6T (a,y; 7I)=J ’ l:wnif—~J w,,i(l-s’:l dt—
_— b t
zTZf [w,,':—f w,,ids](lt,

where «,; and w,, are derivatives of the quadratic
form

2w(x,y; 77) :fuw, (15;'.‘/:3/,)7717]]'"’ 2fuw,-’"li’7;' ‘|‘fu,<’u;"l: 77:‘

@I=120 )"

A deeper insight into Newton’s method as applied
to (13) may be acquired by applying Taylor’s
theorem to the integrand f(z;y-+=,9" +7"). The
expansion results in

f(xyy+77yy’ +’) :f(z;yyy’) +fﬂ;(x7yyy,)7li +fv,—'(z7y:y,)77-"
- %fnl/{’lﬁ"j_}_fv,u;"lt"; = %.fﬂ{v,"’h‘,ﬂ; A
:f(x)y)y’) +fvi(x7y7y’)77£+fv,~"'7: +olzym+ ¢ .-

Let us drop the higher order terms and consider the
problem of minimizing

J (y+n)=f: [F(,y,y") Hfumitfumi +w(@,y;m)lde,

where ¥ is a known function and 7 is variable. The
Euler equations with respect to 5 of this integral are

=0 @=12,...m).

d d
%fui_fu{"}'a_x'wn,-’”"wn

This last system of differential equations is formally
equivalent to (10). Thus Newton’s method con-
sists of repeatedly replacing f(z,y,y") with an inte-
grand that is quadratic and minimizing the new
integral so obtained. Consequently, if the original
integrand is quadratic, Newton’s method should
vield a solution in a single step independently of the
choice of the initial estimate. That this actually
occurs is readily verifiable.

Finally, we note that although the Euler equations
often have an equivalent formulation as a system
of type (11), Newton’s method may not necessarily
be the same for both forms of the problem. This 1s
due to the fact that in general 67" is not invariant
under a transformation of 7" to an equivalent form.
For example, the two differential equations

d . 2
7z W) =1+2y",
and

I—H/’2
/I= o
g Y

are equivalent for 7 >0. In the first case

7=l —yal— [ [ +2ys a

—=t i or—v@i- [ [ a+zyias]a,

and

Ty =y@n@—4 [ [ ywas |

+iza). [ vvas]a.
In the second case

1=y -y~ [ [ (”; V) Jar
s [ (oo
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and

sT@ym=n— [7| [[(3Lr

1—{—7/

>d9:| dt
,2
1;1/ : n>ds:| dt.

It is seen that the two variations are not the same.
Since the convergence theory to be developed below
will be“general enough to include either (11) or (13),
one will be free to use Whlchever system of differential
equations seems to be simpler in any given problem.

’

3. Preliminaries

There are several definitions and known results
of 'general analysis to which there will be frequent
occasion to refer. It will be convenient to have
these collected in one section. Accordingly, the next
few pages are devoted to this end. The reader who
wishes more detail about what is to follow in this
section is advised to consult a paper of Graves and
Hildebrandt [1].> The treatment he will find there
is more general and couched in somewhat different
terminology.

Functions defined on a linear subspace U of a
Banach space Y into itself are dealt with here.
These functions may depend, in addition, upon a
parameter chosen from Y or a region of Y. When
the arguments are indicated, the parameter will
always appear first and be denoted by a lower case
y perhaps bearing a superscript. It will be set off
from the independent variables, which will be denoted
by Greek letters », ¢, £ etc., bv a semicolon.

Derinttion 1. F(y;n) is said to be continuous in
y at y O wuniformly relative to n if given e >0 there
exists 6 >0 such that

[ Fy;n)—FyQ;m)[|<ellnl| (14)

for all % in (y@); and every n in U. Here and else-
where (©); and similar notations denote the §-neigh-
borhood of y©.

The extension of definition 1 to the case of a func-
tion F(y;m,¢,. . ., &) of several independent variables
is clear. The only essential change is made in re-
placing eq (14) by
. ;E)_F(y(m; 77:?7 ¢ o

1E ;.85 ol

Ze|lnll-[¢]]. ..

All of the definitions that follow may be generalized
to functions of several variables in a similar way.

DeriNirion 2. Let Yy be a region of Y. F(y;n)
is said to be wniformly continwous in y on Y, uni-
Sormly with respect to 7 if for every e >0 there exists
a 6 >0 such that

IF@®;m)—FEy®;m)[[<elll]

? Figures in brackets indicate the literature references at the end of this paper.

|1l].

for all y©, y® in Y, that satisfy ||y®—y®|[ <6 and
all yin U.

DeriNirioNn 3. F(y©@;q) is said to be bounded at
Yy wuniformly with respect to n if there exists a con-
stant M >0 such that

1FQ@;m) || < Mifal
for all nel/. If some M >0 holds for all y belonging
to some neighborhood (y©),, F is said to be wuni-
Sormly bounded on (y@)a uniformly with respect to n.

For the sake of brevity the words ‘‘uniformly with
respect to 5", that appear in the above definitions
and that should appear in the concluding definition
(4) of this section, will henceforth be omitted. The
reader, however, should supply them for himself in
all of the necessary places.

The following lemma is an easv (OHSLquence of
the definitions.

Levma 1. If F (y;n) to Uis continuous in y at y®
and bounded at y @, there exists a neighborhood of y©®
such that I' s umformly bounded on this neighborhood.

The conclusion follows from the inequality

[1Fy;m)|| < |IFQ@ ||+ |1 Flym—Fy®m|l.

DeriNtrion 4. F(y;n) to U is said to be of class
Ciny umformly on Y, in case there exists a function
dF(y;m,¢) on Y UU to U having the following proper-
ties:

(1) dF is uniformly continuous in y on Y.

(2) dF is linear in ¢ and uniformly bounded on Y.

(3) the function R(y@;y®;n) defined by

F(y@ i) —Fy® i) —dF(y® iny@ —y®)
=R@y@y®mlly®—y®ll, y®=y?,
Ry®;y®m=06 (15)
is such that given e >0 there exists § >0 such that

Ry ) [[<Zelll]

for all y@ @ in Y, satisfying ||y®—y®|| <é and all 9
in U.

Here and elsewhere 6 rvefers to the zero of the
space Y.

Lemma 2. If Fis of class O in y uniformly on Y,
there exist nonnegative constants o and M such that for
every y© and y® of Y, for which ||ly®—y®|| <a it is
true that

M.y ® .
’y )

IFG® ;) —Fy® ;)| < Mly®—y@|[- [l
for all nin U.

The conclusion of this lemma follows from an
application of (2) and (3) of definition 4 to eq (15).

Finally, we state a lemma that corresponds to
lemma 16.3 of Graves [1].

Lemma 3. Let F (y;m) to U be bounded at y and
linear in n for each 1y of the region Y,. In addition let
¥ be a point of Yy and let I have a bounded inverse

280



F=(y @) with respect to u, and be of class C' in y
uniformly on Y,. Then there exists a constant a such
that for each iy in (Y@)a, F~'(ym) exists and is of class
C" in y uniformly on (Y @)q.

4. A Convergence Theorem

In section 2 an iterative method for constracting
solutions of the Euler equations was described.
However, no mention was made of conditions of
convergence. In this section we will describe and
give conditions for the convergence of a similar
procedure that can be applied to a large class of
functions. Later the process of section 2 will be
considered as a special case of that to be given here,
and it will be shown that under simple assumptions
the special process satisfies the hypothesis of the
convergence theorem of this section.

Let S(y) be a continuous function not identically
zero defined on a region Y, of a Banach space Y to a
subspace /. The problem of interest is that of
obtaming solutions of the equation

S(y)=o. (16)
Toward this end one introduces a linear operator
K(ym) on U to U, which depends in addition on
some parameter taken from Y. It is assumed that
K(y;n) is nonsingular in 5. Let the 7th estimate
7@ of the solution to (16) be known. The i 1st
estimate 1s constructed as follows. A function »®
is determined by solving

S®)+K@y@;m) =6 (17)
and the function y“*" is chosen to be
YD =y @) (18)

The process is then repeated.

In order to simplify the statement of the con-
vergence theorem, several conditions will now be
introduced on the function S(y) and on K~*(y;3), the
inverse with respect to 5 of K(y;n).

(I). The arc y@ of Yy, the constant v >0, and the
operator K*(y;n) are such that there exists a positive
constant M for which

K7 @Om) — K y®m) || < M|ly®—y®||-[]nl]  (19)
JSor all nin U and all y®, y@ in (y),. Furthermore,
there exists B>0 such that

[[K~* () || < Bl ]| (20)

for all y in (), and all nin U.

From (19) it is clear that K~' is continuous in ¥
at y@. Therefore by lemma 1 one sees that in order
for (20) to hold on some neighborhood of ¥, which
is also a subneighborhood of (y©),, it is sufficient to
assume that K '(y;n) is bounded at y©@. The
remaining part of (I) is, of course, undisturbed on a
subneighborhood of (y©),.

In the next two conditions certain non-negative

constants /7, L, and N appear. These are taken to

be such that they satisfy
H=B-L+M-N<1. (21)
(ILD), For all y©, y® in (y©), the inequality
HK(y‘”;y‘”—y‘”)—S(y“))+S(y“"))llSLI!y‘”—y”’l(l‘Z‘))

8 true.

This condition asserts that A is an approximate
differential of S on the neighborhood (y©),.
(III). There exists a constant C such that 0<O0<y

and
[1SG™|<(1—H)(/B,

[ISWII<N

(23)
while
(24)

for all other y in (y©),.

TaeoreEM 1. Let the initial estimate y© and the
positive constant v be such that (I), (I1), (IIT) are
valid.  Then the sequence of estimates determined by

(18) converges to a unique element iy of (y®),. The
arc 7 1is the unique solution of eq(16) in (y©,.
First we prove that
Iy =y SHAA=E0, v i 21,
25)

In order to construct the proof by induction con-
sider the inequality

=y ®l|=ly -+ K-~ So) —y|
<B[|S@)||<(1—H)C<¥.

This last follows from (23) and establishes (25) for

1=1. Assume that (25) is true for all 2<m—1.

By this assumption in conjunction with (19), (22),
and (24) one may write

|ly™ —y == [lymD+ Ky ;—S(y™ D))
K=y 25— Sy )|l
—K7y™ ;8@ ™)
+E 7y S| IK
Sy™=) =K'y "8 ) ||
<|[K- @™ Ky™;
Yy —y D) =Sy )+ Sy )|l
+M|ly =0 —y || [SEG )|
<B|[K(y"V;y "t —y ") =Sy )+ S )|l
+ My —y LS|
SB-L+M-N)|ly"—y"=2|
<H.-H"*(1—H)C.

(m=2) __
-y

S Hy(m—l) _y(m—ﬁ.’)
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This establishes the first assertion of (25) for i=m
The rest of the proof of (25) follows from the in-
equality

Hy""’—y“”ll:llg(y“’—y““’)llSglly“’—y“‘” |

m
<2 H'(1—-H)O=Q1—H")C<y.
=1
(26)
If a sequence {y'”} in a Banach space is such that
the series =||y'? —y | is convergent, it has a unique

limit. Therefore, by (25) there exists a unique ele-
ment 7 of Y that ‘satisfies

lim ||y —y||=0. (27)

It follows from (26) and (27), that 7 must belong to
Y.

Upon passing to the limit in the expression
Y=y I—E ;S )),

and recalling the fact that A~ and S are continuous,
one obtains

K~'(y;S8(y))=¢.

This implies S(7)=6.

To see that 7 is the unique solution of (16) in
(y©), let y* be another element of this neighbor-
hood satisfying (16). Then by (20) and (22)

T—y*|=lly—y*— K@ S@)+ K7 Sy*)|

=K @; K@;y—y*)—S@) + Sy
<B|K(@;y—y*)—S@)+SEy*)l|
<BL[[y—y*||.

Since (21) implies that BL<1,7=y*.

It is possible to modify the method of obtaining
iterated estimates by always holding y in K(y;n)
fixed at the initial estimate . This is equivalent
to originally introducing an operator K(»), which
depends only on functions from {J. In this case, of
course, the convergence theorem may be simplified.
Condition (I) clearly no longer applies, and condition
(I1I) may be modified so that (24) is eliminated.
The resulting theorem may be stated in the following
way.

TueorEM 2. Let K(y) be a nonsingular linear
operator. Let K '(n) be bounded and let the positive
constant L be such that ||K7||L<1. Then if the
i;zitial estimate y© and the positive constant « are such
that

1) for all y®, y® in (Y)e

K@D —y®)—8S@y*)+SEy®)|| < Llly®—y®||

(2) for some C, 0< O< a

© A—||KY|-L)C

the sequence of estimates {y® } will convergeto a unique
element J of (Y)a. The arc y will satisfy eq (16)
uniquely in (y©),.

Thus when K is independent of 7, only an initial
approximation to the solution at one point and an
approximate differential of S are required to insure
convergence. Consequently, this last theorem is
seen to be just the classical implicit function theorem
in general analysis. One notes that in this case the
continuity of S is not required.

This section will be completed by establishing
conditions under which the sequence of estimates
will converge quadratically.

(IV). Let y© be an element of Y and let v and L’
be constants such that

K@ ®; yo—y®) —SE) +5¢2)|

SL|ly®—y®|}F (28)
for all y®, y® in (y©),.

We may now state the following theorem.

TuarorEM 3. Let the initial estimate y© and the
positive constant vy be such that (1), (I11), and (IV)
are valid. Then the sequence of estimates determined
by (18) converges quadratically to a unique element
of some neighborhood (y*)a, a<vy. The arcy is the
unique solution of eq (16) in (Y©)q.

To see that (IV) 1mphes (II) on Y9)a a<ly
merely take o small enough so that L’||y® —y®|| < <L
for all y©, @ in (y©),. As (I) and (III) are undis-
turbed on the smaller nelghborhood all conclusions
but that of quadratic convergence follow at once
from theorem 1. The quadratic nature of the con-
vergence can be established by the following calcula-
tions. From (17) and (18) it follows that
—S@*)).

YO —y-D = K1 (-0, (29)
Y

Therefore,
Ky, y®—
Thus by (28)

yon) = —S(yD).

IS || L[|y —y“PI.
Making use of this last result in (29) one obtains
Iy —y D] S BL/|lys- —y -2

This establishes theorem 3.

5. Some Properties of 67'(x, ;)

In this section some properties of the function
6T, which was defined in section 2, are developed
with an eye toward applyving the considerations of
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section 4 to Newton’s method. First, however, the
space Y to which the arcs y belong must be more
precisely defined. The space } is chosen to be the
collection (y,(x)) of all n-tuples of real valued funec-
tions that are of class €’ on the interval a <z <b.
Addition of elements in Y and multiplication of
elements of Y by real scalars are defined in the usual
manner. Under these definitions of addition and
multiplication 1" forms a linear vector space over the
real numbers.

For any y in Y let
va(x)|=<ii‘, lys (x)l“’>*-

Then a topology may be introduced into Y by
defining a norm

llyll =as<ggbiy ()| Vugggb ly’(2)]. (30)

-~ The fact that (30) satisfies the properties of a norm
is easily verified as is the fact that ||y —y»®|| has all
of the properties of a metric. It is also not difficult
to establish that any Cauchy sequence of elements
of ¥ must converge in the sense of the norm to an
element of Y. In fact, convergence in } implies
uniform convergence in the ordinary sense of the
sequence of first derivatives. Thus in the topology
specified by (30) Y is a Banach space.

The subclass of arcs in Y that have the property

y(a)=y(b)=0 (31)

will be denoted by the symbol 7. 1t is clear that U
is a linear subspace of Y.

In order to eliminate repetition when discussing
certain properties of the norms of elements of Y/, it is
convenient to have the following simple lemma
available for reference.

Lemma 4. Lety,n, and Q(z,y;m) belong to Y. Let
there correspond to each component Q; of Q) a non-nega-
tive number C? such that

sup |Q:(z,y;m) | < C®|[n]].
z
Also let there correspond to each component Q! of Q', the

first derivative with respect to x of @, a non-negative
number C97 such that

sup |QF @,y 5m) | < O |[n]].
Then there exists C>0 such that
|QG,y;m)|| < Olnl].
By (30) either

l[Q(w,.?/;n)sttIlp (; iin“’)*S

n

2 sup [Qi{S§O(‘)H"7H7

1=1
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or
Qs )l =sup (2 1€ ) <
>3 sup Q<33 0[]l

Obviously € can be chosen to be the greater of the
n n
numbers >3 C® and 37 O,

i=1 =1

In addition to defining the space of functions under
consideration, it is desirable at this point to state
some assumptions that will hold throughout the
remainder of the paper. Unless otherwise noted, it
is assumed that the functions ¢(z,y,y) and h(z,y,y’)
are of class C?in aregion R of Euclidean 271 —space.
Any arc of Y, all of whose elements (z,5(z),y’ (z)) are
in 12 ,will be termed admissible. At least one admis-
sible arc is required to exist. This implies the exist-
ence of a subregion Y, all of whose elements are
admissible. It is also assumed that the determinant
|9 i (z,9,")| never vanishes in 2. In the case of the
Euler equations, that is, when ¢ and A are given by
(12), the above assumptions imply that the deriva-
tives f, and f,, of the integrand f(z,5,5") must be of
class (5, in R.

In eq (6), which defines the function 67 (x,y;1),
let the parameter 7 range over Y, and the variable
n range over [J. The following result is then valid.

Lemya 5. For each vy belonging to Y, the transfor-
mation 6T (xym)=6T:;, . . ., 671,) 18 on Y, U to U
and is linear in n and bounded at y.

The fact that 67" is an element of {7 follows from
the considerations of section 2. The linearity in 5
is a consequence of the corresponding property of eq
(5) and of the operation of integration.

To simplify the proof of the boundedness we
introduce a lemma that will be found useful in what
follows.

Lemva 6. Let q(z;1) be given by

q(@;y) =a;@)y;@)+b,@)y; (),

where a;(x), by(x) (=1, 2, . . .,n) are continuous on
a<z<b and y is in Y. Then there exists a constant
C>0 such that for each y in Y

suplq(e; )| < Ollyll (32)

and

(33)

L dty)dt <6 —a)Clly]|.

sup
z

On recalling that sup|y:| <||y|| and sup|y/| <||y|| for

all (1=1,2,...,n) one quickly obtains the inequality

Slxlpl ()| S(]_Z‘,sgplajl)l yl| +(j2sgp|bjl)l lyl|=Cllyll.



The second statement follows from the first by
means of the inequality

fq ty)di< fabl qt;y)|dt < Lbsypl q(t;y)|dt.

sup
z

Upon noting that dg; and 6k, are of the same type
as q(z;y) and applying lemma (6) one obtains the
inequality

[67;| <supléT;|
z

z t
z—a [

Bgi—

=sup
z

t
5}111(18
a

b t
21 [6g:— f ohds|dt
t
f&hidsq at

Thus the conclu-

b
S2f I:SUPlégil+sgp
<0®|nll, C®2>o0.

A similar result follows for [677].
sion follows from lemma 4.

6. An Existence Lemma

In section 7 the existence of an arc n in U that
satisfies

(i;y;n)EJj [6gi—f16hids:| =
= “J [6g1 fah ds] dt

=l(z), @= o (34)

for an arbitrary function I(z) in U will be discussed.
To facilitate this discussion it is convenient to have
available the following lemma.

Levmya 7. For each admissible arc y and every
n=tuple of functions m(x) continuous on a< x<b
the system

6gi(z,y;n)—f&hi(t,y;n)dt=mi(w) (t=1,2,...m)
(35)

has a wunique solution n(x) which s of class C" and
satisfies m(a)=40.

An alternate form for (35) to which known
methods of proof used in constructing standard
existence theorems can be directly applied will be
introduced. Let

§'1E5gi:giu,ﬂj+gw;~’7; (t=L2, .. .n). (36)

Because by hypothesis the (letelmmant lgw;| is

never zero, eq (36) can be solved for n/. The solu-
tion is
771{:7"1‘(1:;7];.() (7':1; 2) coe ey n) <37)

where 7; is a linear and homogeneous function of 5,
and ¢, By use of (37) 6h; may be expressed as

ahi:hiujnf+hi!/£ Tj(%’?yf);

a linear and homogeneous function in 5, and ¢,
Therefore, any pair », 9" satisfying (35) are trans-
formed by (36) into a pair 5, ¢ satisfying

L“L [hiyjﬂj+hiy;ﬂj(t,n,()]dtzmi(x) (:=1,2,...,n)

ni— [I“i(t;ﬂ;f)dtzo (i=1,2,...,n). (38)

The last = equations of (38) are obtained by inte-
grating (37) and recalling that »;(a)=0.

Conversely, assume 7,0 satisfy (38) the second
condition of that set implies (37). Inverting this last
system of equations, one obtains (36), and by substi-
tation in the first condition of (38) eq (35) result.
Thus instead of seeking a solution of (35) which is of
class 7 one may equivalently seek a continuous
solution of (38).

The system (38) has the form

e f A O Odt TR G=12,...20)

(39)

where A,;, m,; are all continuous on a <z <b. From
well known methods of proof which have been used
by Bliss [2, p. 274-278] and others for systems of
differential equations which can be obtained by
formally differentiating (39) it can be shown that
(39) has a unique continuous solution satisfying
vi(a)=m;(a). Since

Yas1(@) =n,(a)=0 (¢=1,2,...n)

the lemma is proved.

7. Existence of an Inverse of 67(x,y,7)

In this section the existence of a linear bounded
inverse in n for the function 47'(z,y;7) is discussed.
An idea that plays a leading role in this discussion
is that of conjugate points.

DeriNiTioN 5. A point P; is said to be conjugate
to the point P; on an arc joining P, and P, if there
exists a solution of

(=1%o o o7D)

(40)

d . [—
% 6gi(x: Y 77)—5hi(1, Y; 77)_0
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along this arc, which vanishes at P, and P; but is not
identically zero between P; and P;.

A consequence of definition 5 that will be apropos
to our present purpose is stated in the following
Jlemma.

LEMMA 8.

Let 9 (1,7=1,2, . . .,n) be solutions of

Lin)=bgi— j “Shidt=5y, 18(6)=0

(=31 (41)

Then x=b s conjugate to x=a if, and only if, the de-
terminant |pf (b)| is zero.

By lemma 7 the 2% (z) described in the hypothesis
exist and are of class 7. In addition to satisfy-
ing (41), the % are n linearly independent solutions
of (40). Thus the n-parameter family of solutions

of (40) which, vanish at z=a is given by
17,-(1:,01,02, .o .,Cn

Eni(j> (IE) CJ (L7]21;2: .. n)

7 (42)

Setting 7,(b)=0 in (42), one obtains the system of
linear algebraic equations

2 () ;=0 =111, o o o) (43)
In order for z=0b to be conjugate to z=a, the system
(43) must have a nontrivial solution. This is pos-
sible if, and only if, [/ (b)|=0.

Levya 9. For each admissible y in Y whose end
points are not conjugate 61 (x,y;m) s a 1—1 mapping
U onto itself.

By lemma 5, 6 7(z,,7) is an element of U for each 7
in U and any admissible function . It remains to
be demonstrated that the system (34) has a unique
solution 5 in U for each I(z) in U provided that the
end points of 77 are not conjugate. By lemma 7, there
exists a unique 7 (z) of class €7 which satisfies

bg.— [ ohedt=ti@), F(@=0 ).

Let 7% be the functions mentioned in lemma 8.
Then by lemma 8 there always exists a unique set
{C;} =1,2, ...,n) such that

72.0)+7P 0)C;=0  (G=12,...,n).
Consequently, by (41),
7:@) =7:@)+2 @C;  (=12,...,n) (44)
is a solution of
agi—fzah,(ltzlf+0i (i=1,2,...,n) (45)

which vanishes at z=a and z=6. That n(z) is of
class O is apparent. That 5(z) is unique follows

from the condition of nonconjugate end points. For
if 7 and 2® both satisfy (45) and the boundary
conditions, their difference must satisfy (40) and
vanish at both end points of ¢ <z<h, that is, their
difference must be identically zero.

By integration of (45) it follows that n(z) must
satisfy

.Lb[égr— J: Bh,-ds:ldt— Oz —a)=1(z)

(i=1,2,...,0). (46)
Letting z=b in (46) one sees that
t
fz[ﬁgi_f Bhids]dl—oi(b-—a):l,(b):o
=152 n):
Therefore,
1 > - :
CFF‘f [6y,~—f ah,ds] & (=1,2,...n).
—a,Ja a

Consequently, y(z) satisfies (34).

We conclude with a lemma that states the result
we have been pointing at in this and the preceding
section.

Lemyma 10, For each admissible v in Y whose end
points are not conjugate the inverse of 671 (x,1;n) exists
and s linear and bounded at .

By lemma 5, and lemma 9, 67(z,57;7) 1s a bounded
linear transformation mapping a Banach space in a
1—1 manner onto itself. As is shown in Hille [3,
p. 28-29], a transformation having the above prop-
erties must possess a bounded inverse.

The inverse of a linear transformation is linear.

8. Differentiability Properties of 7'(x,7;7)

In this section two lemmas that will be useful in
establishing the fact that 67" is one of the class of
operators that was denoted by K(y;1) in section 4
are proved. The first lemma will help to show that
6T satisfies condition (I) of section 4, whereas the
second relates to conditions (II) and (IV) of the
same section. First, however, we present a lemma
that will considerably simplify the statement of the
proofs of our two principal ones.

Lemma 11. Let p(x,y,y’ m,8) be of the form

P @Y,y mE) =@y, )nis+ by (xy,y )né; +

cij(x;yyy,>"7; E; (70.7: 1,. .. :n): (47)
where ay;, by, ¢y, are all continuous functions on the
same region R on which g and h are defined, vy is an
admissible element of Y, and n, & are elements of U.
Let 4@ be any admissible element of Y and 6 >0 be
such that the closure of (y©)s contains only admissible
arcs. Then given e >0 it follows that there exists d_>0

such that

.

lp @,y @y m,8) —p @y ® Y@ m,) [ellnll-|[€]]  (48)
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Sfor all y®, y@ in (y@);, which satisfy ||y®—y@||<d
and all 9,£ wm U. Furthermore, there exists a constant
C>0 such that

sup Ip@,y,y’ m,E)| < Ollnl|-|1]], (49)

and

sgp’f:p(w,y,y'm,f)dx’S(b—a)OHnHﬂfll (50)

for y in the closure of (y@)s, n, £ in U.

Statements (49) and (50) follow from a simple
extension of lemma 6.

In order to establish the remaining part of the
lemma, let

p(x,y®,y® 9,8).

Then ¢ is a continuous function on the closed and
bounded set S:a<z<b, y©, y® in the closure of
W), |nll=|lel|=1. That it is sufficient to merely
consider 5, £ on the unit sphere follows from the
bilinearity of p. It is clear that ¢=0 on the subset
of S for which y®=y®. Thus |¢|< e on a neighbor-
hood of this set, that is, on a<z<b, ¥, y® in
@), ly®—y®|<d, [ln]|=]|¢ll=1 for d Sufﬁmen‘dy
small. This proves lemma 11.

Lemva 12, For each admissible y© in Y there
exists a constant 6 >0 such that 67T (x,1;7) 1s of elass C’
an y uniformly on (y©)s.

Let 8%;(x,y;n,8) and 8%h(x,7;9,£) be defined by

894=0u,u,(®, Y, Y )05+ Guuy(x, ¥, Y Ins 8+

giu}uk"?; &+ giu}u,;"]'i & (51)
and

8h Ehiuiuk(xy Y, ?/')m&—#hw,-u,;mfk-l-
hiu,‘uk’?:‘fk’}‘hiu;y,’cﬂ;'f;c (52)

where 7 is some admissible element of Y and 7, ¢ are
arcs in . Then the function d(67) mentioned in
definition 4 can be defined as

AT =5T (,y; n, = f I[ézgi-— f : azh,ds]dt

oo b t
_’g_Zf [5291_f azmds]dt G122 ).

By reasoning similar to that used in considering 7’
it follows that 6?7 is on Y,UU to U. That 6°7 is
bilinear in n and £ is obvious. To complete the
proof of the lemma conditions (1), (2), and (3) of
definition 4 must be established.

(1) For every admissible y© in Y and every finite
6 >0 such that the closure of (y©®); contains only

admassible arcs 8*T(x,y;7,§) 1s continuous in y Uni-

formly on (y©@)s.
Let F(z,y,5"1,¢) be any function defined on ¥ and

U. Then we define
AF(1;2) EF(I;?/“),?/(”'5’7,$)‘F(%y(z);y(?)’m,f)-
Keeping this convention in mind, one may write

sup |27 (2, y®;1,8)—8 T (x,y®; n,8)|
b

fz I:Aézgt (1,2)——ftA62hi(1,2)ds:| at

b t
g A62g1(1,2)—f Aa?hiu,z)ds]dtl (53)

=sup
z

b
Aazgi(l,2)——ftA62hi(1,2)ds dt
b b o
ng |A52gi(1,2)]dt+2(b~a)f 1As2ha (1, 2)dt.

Examination of (51) and (52) reveals that both &%,
and 6%h; are of the type p(z,y,y’,m, ¢ defined in
lemma 11. Thus application of lemma 11 to (53)
vields the conclusion

SUp BT,y %3, ) — T, 730, < el ]

for all @, ¥® in (y@); which satisfy a condition of
the form l|y(”—y(2’H<d The same result can be
established when &°7'; is replaced by §*77. There-
fore, (1) follows at once from lemma 4.

(2) For every admissible y© in Y there exists a
6 >0 such that &1 (z,y;m,€) is uniformly bounded on
s

From an application of (49) and (50) of lemma 11
the inequality

b i
sup]62T,(9c,y‘°’;n,g)[§2f \agf—f shids
- 4 a a

b t
SZf I:sup [6g:|+sup f ohids ] dt
a t t a

<COnll-|gll, €20 (54)

dt

is obtained. From analogous considerations the
existence of 0%’ >0 such that

YO, )| S O[] |- |8l

(55)

can be demonstrated. Because of lemma 4, in-
equalities (54) and (55) imply that 67 is bounded
in y at y». By (1) 87" is continuous in y at y©.
Thus by lemma 1 there exists 5 >0 such that 32T is
uniformly bounded in % on (y)s.

(3) For each admissible y in Y and each JSinate
6 >0 which is such that the closure of (y©); contains
only admissible arcs, the function R (y®@ YP5n) de-
fined by replacing F by 6T and dF by 2T in (4) s
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such that given e >0 there exists d_>0 for which

IRG®,y®m)|<elln]
Jor all y®, y® in (y ) satisfying |y®—y®|<d

and all nin U
Consider

z
T (g Vim) =0T (ay @ 5m)= [ 3w, (1,200,

&
00, (1,2m— [ (@i, (1,2, 8l (1, 2)0))ds) e
— *h
— 5= 0,124 201, 200]

— | @h, (0,20, b (1 DN 56)

Applying the law of the mean to a typical A-symbol
in (56), one obtains

A, (1,2) =gy, (2,995 D) (D —1, @)
@y DY) G ),

0<u<1.

Thus by applying the law of the mean to the remain-
ing A-symbols and taking note of (51) and (52), we
may write

where
yO=y®+uly® —y®),

8T (x,yV;n)—o6T(2,y®;n)— 8T i(2,y ;9,90 —y?®)

R r—a [
:Ja D(w,y,ﬂr‘f)dl—b‘_—‘& .L Ddt:

where
D=Ag4,,,3, )0y — 1) FAG 1,03, Dms(y" — y)
+Agil/1-’1/k(3;1)"l;<?/l£1) - ?//éZ))_i'Af/iI/;y,;(Sy Dn; (v —y&")

4
— [ 1y, (3, 1m0 —Yi2) Ay (3, 1)m X
| W —y")
+ Ay, (3, )i (¥ — 1)+ Ahiygy (3, 1) X
WP —y@")ds.

- Of course, the 3 appearing in the arguments of the
~various A-symbols does not always refer to the same
value of u.
(1)

The function gy 4,7,(y" —y), that is typical of

the functions to which the A operation is applied in
(57), is of the type considered in lemma 11. Thus
it readily follows from that lemma that,

(57)

sup |6 T2,y ®;9)—oTi(x,y®;n)—6*Ti(,y®; n,y® —
F 4

vz [} [D= [ Dadsji<ellnll-lly®~y|

for all y@©, y@ in (y@); such that ||y®—y@||<d. A
similar result holds if 47; and 4*7’; are replaced by
their derivatives. Therefore, by lemma 4 it is true
that

RGPyl ly =y )]
=Ty ®;m) =T (xy®;m) — 8T @,y ;n,y® —y®)||
Zellnl[ly® —y || (58)

forall y@, y® in (y©); that are close enough together.
Statement (3) follows at once from (58).

By choosing the 6’s of (1) and (3) to be equal to
each other and less than the 6 mentioned in (2),
one obtains a ¢ that is suitable to be used in lemma
12.

LevmMa 13, For any admissable y© in Y there
exist constants « >0, L' >0 such that

16T (e, y® sy D —y @) —T'(a;y ™)+ T'(x;y@) ||
SL’H?/(I)_?/(Z)”2

f()?’ all ?/(1), y(Z)in y(O))m

Consider

Ty )—Tz;y™)

:LIAgi(2,1)—LtAhi(z,l)dS:ldt_

—a (Y 't
’g:ZJ [:A{/i(2,1)—ja Ahi(2,1)ds:|(lt.

By the law of the mean

Agi(2,1) =gu, @y @y @) (i —yi¥) +
Ju," @y®y®) P —y®)
where
YO=yV+u@y®@—yv), 0<u<l.

As a similar result holds for Ak, we may write
8T (x,y®;y P —y®) =T (x;y )+ Ti(x;y?)—
7 . b
(26 y3m, 900=3 |z,
Ja —QJa
where
Z=0gu;(1,3)(y" —y) A0 (1,3) Yy —y ) —
t
[k, (1,30 =) +8hy(1,3) G0 — 2 s,
a : |

Of course, the 3 appearing in the arguments of Ag,
and Ah; does not always refer to the same value of .
Application of the law of the mean to a typical term
of Z yields

Agiy;(1,3) =iy, @y Ly P —yP) (0 —y® )
+ 90, @Y YD) WP —y2) YL —yP ) u,
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where
yO=yOHary—y®), 0t

It will be noted that Agy,/(1,3) is of the same form
as the functions considered in lemma 11. Let « be
chosen small enough so that for any ¥y, y® in (y©),,
y® lies in some fixed neighborhood (y®). whose
closure contains only admissible functions. Then
because of our previous hypothesis on the class of
h; and ¢;, we may apply lemma 11 from which the
existence of C® >0 such that

sup ]5Ti (x,y“) ;y(l) _y(z)) — Ti(x,y“)) + Ti (vT;?/(Z))i
: <Oly»—y|

follows. As similar considerations are valid when
6T, T, are replaced by 6777, respectively, the con-
clusion of lemma 13 follows from lemma 4.

9. Convergence of the Sequence of
Estimates Derived by Newton's Method

The main theorem on the convergence of the se-
quence of estimates derived from Newton’s method
is the following.

TreoreMm 4.  Let y© be an admissible element of Y
having nonconjugate end points.  Then if there exists a
sufficrently small constant D™>0 such that || T(x,y)||<D,
the sequence of estimates derived from Newton’s method
will converge quadratically to a unique arc 7 of class C*?
which lies within a predetermined neighborhood of y©
and satisfies T(x;) = 0,5 (a) =y (a),y (0) =y (b).

By lemma 12, there exists a constant ;>0 such
that 67'(2,y;7) is of class C” in y uniformly on (y©).,.
By lemma 10, 67 *(z,y;7) exists, and is linear and
bounded at . By lemma 5,67 is on (y)., U to U
and is bounded in 7 and linear in . Therefore, by
lemma 3, there exists « such that 67! exists on
), and is of class €7 in y uniformly on (y©)a,.
Thus by lemma 2, there exist nonnegative constants
a; and M such that for y@, y® in (y©)., and
[ly®—y®|| <4 it follows that

6T @,y ® s m) =T @y ® s ) [| S My D —y @[]

7]|.
Consequently, if we choose as= a3/2, a part of condi-

tion (I) of section 4 is satisfied on (y*)a,.

By an argument similar to that applied in section
4, it can be shown that there exist nonnegative
constants «;, B such that

1167 (5 m) || < Bl[nl| (59)
for all y in ()., and all in U. If a4 is taken to be
less than or equal inf (ay,e;), and such that (y©),,

contains only admissible arcs, the part of condition

(I) previously proved and inequality (59) are still valid

on (y?).,, that is, condition (I) holds on (¥©),.
The existence of nonnegative constants H L, N,
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which along with the nonnegative constants B, M
already determined in this section satisfy relation
(21) is clear. By lemma 13 there also exist a; and L’
such that

|[8T (e, y ;P —y @) —T(z;y V) + T(z; y2)[| <
Lyt

for all y®, y® in (y@).,. That is, condition (IV)
of section 4 is valid on (y®).,. Thus we may choose

as<a; such that conditions (I) and (IV) both hold
on (y?)a,. By continuity there exists oy such that
[T <D on (y©)e,. Let C be such
0<0<int (ag,ay). Then if the constant ) is less
than or equal to the smaller of N and (1—H)C/B,
condition (III) is satisfied on (y®),. Conse-
quently, if the positive constant v in theorem 3 is
defined to be the inf (ag,a5), we may conclude by that
theorem that Newton’s method converges quadratic-
ally to a unique element 7 of ()., a<y, which
1s such that (3) is satisfied. That

y(b)=y® (b)

follows at once from the fact that all the variations
7® vanish at z=a and x=b.

The arc 7 is of class €’ by virtue of being in Y.
To see that ¥ is actually of class C® consider the
equations in (z,)

y(@)=y(a),

@iz, 0)m= g ety T(), 0)— f “ht, 70, 7 O)di—
b
pea . o5, 7~

I:hi(s,g_/(s),ﬂ/(s))ds]dtzo 12 ) 060)

By what has just been proved the point (z,%’(z)) is
a particular solution of (60) for each z on a<z<b.
Since for each such z, (z,7(z),7’(z)) is an interior
point of the region /2 in which g and /4 are of class €2,
G (z,v) is of the same class in a neighborhood of each
point (x,7’(z)). By hypothesis the Jacobian

IGivjl:]gw,'- #0

in the region £. Thus the implicit function theorem
(see Bliss [2, p. 269]) is applicable. This theorem
tells us that 7'(z) is of the same class as G(x,»),
that is, 7 (z) is of class C°®.

The following theorem gives further conditions
under which the conclusions of theorem 4 will be
valid.

TaEOREM 5.  Let y* be an admissible arc with non-
conjugate end points such that T(x;y*)=0. Then there
exists a constant o >0 such that for any inatial estimate
y“’l{ }faken from (y*)a the conclusions of theorem 4 are
valid.

that -



By reasoning similar to that employed in the
proof of theorem 4 there exists >0 such that condi-
tions (I) and (IT) and (IV) are satisfied on (y*)s.
By continuity g may be made to have the additional
property that ||[7(y)|| <N for all y in (y*)s. Let «
be such that 0<a<g/2. Then for any y© belonging
to (y*)q it follows that (y©)g, is contained in (y*)s.
Thus (I), (IT), (IV), and the inequality ||7'(y)|| <N
hold on (y©)g,,. Let C be such that 0<C<g/2.
Then by continuity « may be taken so small that for
all @ in (y*). || T(y®)||<(1-H)C/B. This says con-
dition (IIT) also holds on the (8/2)-neighborhood of
any @ taken from (y*),. Wenow invoke theorem 3
and the remainder of the proof follows as in theorem

"If one wishes, he may hold y© fixed in 67'(z,y;7)
throughout the entire process. Theorem 2 is ap-
plicable in this simplified case, and with its help all

of the previous results can be shown to be true for
the simplified Newton’s method. -

10. A Lemma Concerning Conjugate Points

It is easily seen that the equation
z t
ST, )= f [agxt,y; - j oha(s,ymds | di—

00—

6h ds]dt—

(@—1 2, (61)
and eq (40) of definition 5 are equivalent. Thus in
the considerations of this section it will be assumed
that (40) has been replaced by (61) in the definition
of conjugate points.

If » is an arc such that 67 '(z,y,n), the inverse
with respect to 5 of 67 (x,y;n), exists for all y in U,
then y has nonconjugate end points, because the
unique element of U/ which 67'(z,77;9) maps into 6 is 8
itself. In lemma 9 it was shown that if ¥ has non-
conjugate end points, 677 (z,y;n) exists. Thus a
necessary and sufficient condition for 8T (z,y;n) to
exist for all 9 in U is that y have nonconjugate end
points. However, by lemma 3, if 57" exists at y©
1t must exist in some nmghborhood of y@. There-
fore, the following lemma may be looked upon as a
corollary of lemma 3.

Levma 14, Let y9 be an admissible element of Y
having nonconjugate end points. Then there exists
6 >0 such that no elements of (y©)s have conjugate end
points.

In this section we wish to give an alternate proof
of lemma 14, which depends directly on the proper-
ties of functions with Lebesgue square integrable
derivatives rather than on the Banach space theory
of section 3.

To construct a proof of lemma 14 by contradiction,
assume that there exists no neighborhood of #© in
which all elements have nonconjugate end points.
Then in every neighborhood of #© there exists at least
one function y such that (61) has a nontrivial solution
along  which vanishesatz=aandz=5b. Consequent-

ly, from consideration of the 7 /g-neighborhoods of 37
for g=1,2, . . . one obtains the sequences {y @}, {»@},
which are such that

Y9 (z)—y@(x) uniformly on a <z <b,

(=2 )
(62)
y@'(@)—y@'(z) uniformly on a <z <b,
=1%o 0 o)
Ty m@)=0  (¢=12, . . )
} (63)
79(@)=920®)=0 (¢=L2, .. .).

Since all arcs 7 under consideration belong to the
space U they must certainly belong to the class of the
totality of arcs in (z, ny, . . . , ,)-space defined by
a set of n real valued functions

7:(x) (e<z<h; 1=12, .. .n)
that are absolutely continuous and have integrable
square derivatives 7’(z) on a<z<b. Henceforth,
we will think of the »’s as belonging to this class.

Without loss of generality one can choose n@ such
that

(no sum on q).
(64)

b
r 79 9@ 'dz=1 (¢=1,2,...)

Ja

Equations (64) imply the existence of a subsequence
{n%"}, which converges weakly in L* to some element
@', We can assume that this subsequence is the
same as our original sequence. The weak conver-
gence in L? of the sequence {7’} implies

72 —9® uniformlyon a<z<b (1=1,2,...n)

weakly in L? @=152500 0 5 70):

@’ ©’
N —n;

It 1s also true that

b .
f "7.‘(0
Ja

A proof of this last fact has been given by McShane
[4, p. 355].

Inequality (66) will be used in the proof of the
following lemma.

Levmva 15, Let {99’} be a sequence in L* such
that (64) and (65) are satisfied and let ASY (x), B (x)
(1,7=1,2, . . . , m) be continuous funcmons for almost
all q such that

72 'dz <lim inf 259 dx

g—® Ja

(no sum on q).
(66)

AP —-AL uniformly on a <z <b

(iyj:112’ s o 7n)
(67)
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B2 —-B? uniformly on a <z <b
(@: 1, 2) 7")
Then if
z
W)= [ (Ag a0 +Bg 20N (4=1,2,...,
1=1,2,...,n) (nosum on ¢),

it follows that

W2—-W® uniformly on a <z <b
(l = 1: 2) )n)
(68)
W' -W®" weakly in L?
(Z o 1: 2; )n)
Consider

(We(z)— W (@)=
| f (A9 9@ —AD @)+ (BY @' —

[cagap—
[[@ar -
a

The first of the four terms on the right of the sign of
inequality satisfies

2 b
[dgre—agra< [ 145—
a a

<(b—a)max |AQP —

BY 7] dt] <

A+ (Ao —ag i+

By ,<a>’>dt\+” <B;?)n:w'—B;?’n;m’)dt"

A o de

A(O)J |1I]a)|

By (67) max | AP — A [—0 for each (i,j=1,2,...,n).
By (65) |7/ is umformly bounded for all J q
under consideration. Thus the first term goes uni-
formly to zero on @ < # < b. The second term on
the right satisfies

(Apno—APaP)| < [ 1A | aio a0

a

< max| A [ |ao =l
a

This goes uniformly to zero by (65). For the third

term we have

z *d
(B>~ B 02| < [ 1B — B ||nfo e
a a

b
S T
a

By the Schwartz inequality and (64)

(Lb [’7"‘“'ld‘)ZS(b—a)Lbn;“>’2dt3(b—a)

(=20 o ok

Thusf [n{’|dtisuniformly bounded for (j=1,2,...,n)

(¢q=1,2,...). Consequently, one may conclude
from (67) that the third term goes uniformly to zero
ona<z<b.

Only the fourth term remains to be discussed. Let
7 be temporarily held fixed. As is well known there
exists for each arbitrary ¢ >0 a polynomial P(z) such
that

f (BY (2)— P(a)dz < i; (69)

By (64),
true that

([ e —nprpac) <
([[mora)+([(aerar) <z qo

Thus by use of Schwarz’ inequality, (69), and(70)
one obtains

(66), and the Minkowski inequality it is

l[ B (n(q) (0))'dt f P(t)(n(q)_n(o)) dti
<([[wo—pra)([Tme—apra) @
b 4 9 ’ ¥ €
<( [ wy—pra)( | @e—npde) <

for all z on a<x<b. Integration by parts yields

fIP(t)(n P—aPYdt
=P@ e —19)— [POGE—2P)dt

Therefore, it follows from the uniform convergence
of (@ —n®) to zero that

UIP(f)(n,‘”)'—n‘O)')dt| e

3 uniformly on e <z <b

(72)

for ¢ sufficiently large.

Formulas (71) and (72)
imply that

1f B (n@ —n@)dt|~>0 [uniformly on a<z<b.

This completes the proof of the first statement of (68).
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Let [ be any element of L? and consider

] U” W<«>'zdx—fa”W<°>'zdx|g

| [7(Agn

0 — AYyP)ldal+| [ (BY 9@ —BY 0 ids]
a
< max ﬂ!{fb]AE’fn(a) AQn®|dz+
e

} blb’“’)(n‘“" © )dx‘

By a repetition of the arguments already given above
the terms multiplied by max [l| go to zero. The
factor / may be lumped with B without changing the
reasoning used in analyzing ‘term four. Thus the
second statement of (68) is seen to be true.

The following corollary is a direct result of lemma
15.

CoROLLARY 1.
hold and let

Let the hypothesis of lemma 15

U@ (2)=W @ (2)— V(a)(b) (73)
Vo(a)= f W (di— f Wo@dt. (74)
Then,
UP -U? uniformlyona<z<b (1=1,2, 1)
V@ -V® uniformlyona<e<bd (i=1,2, 1)
U —-U?" weakly in L? (1=1,2,...,n)
VE'—-V® uniformlyona<z<b (1=1,2 7).
Let
' z—a :
ui(ac,y;n)EJ 6gi(lt——bja f 6gidt (1=1,2,...,n)
RZ t
vi(x,y;n)zj (f 6hids> dt—
w=@ [V 7 [~ :
s J (f amu) @ G=12,,..,n)

Then » and » are elements of U satisfying

0T (x,y ) =ui—0; (=12 5 5 » G0 (75)

Since f:&_qi(t,y(q’;r;(“’)dt and fazéhi(t,y(q);ﬂ(Q))dt are

functions of the type W (z) defined in lemma 15 for
each admissible @ in Y and 7@ in L2 w,(z,y'?;7@)
Cand vy(z,y @9 @) are respectively of the types (73)
and (74). Consequently, if we take {7 }and {7}
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to be the sequences which result from contradicting
lemma 14, the hypotheses of lemma 15 will be fulfilled
because of (62) and (65), and corollary 1 will then

imply

u(@,y @5 @) >ulx,y@;n®)
uniformly on e <z<b (1=1,2,...,n) (76)
0y O30 D)0,y 5 )
uniformly on a<z<b (1=1,2,...m) (77)
(2, @30 @)=l (z,y @ @)
woakly in L? (t=1,2,...,m) (78)
0@,y @5 @)= 0i(a,yVm )
uniformly on a <2z <b (1=1,2,...,n). (79)

In view of (63), formulas (76) and (77) yield the
result

8T (x,y @ ;7)) =9. (80)

The limit function 2@ (z) is clearly a continuous
function on a <z <b satisfying

7®(@) = ) =o.

To show that 2 is of class ¢’ that is @ is in U,
observe that by differentiation of (80)

(0) o __
Giy;Mi +.(/iu}"7i =

z b t
f&hidt-}-b_%f I:(Sgi—-f Bhi(ls:ldt. (81)

Since [giy|#0, (81) can be solved for n®.  As all
other quantities involved in (81) are continuous, "
must have the same property.

By the hypothesis of nonconjugate end points the
only element of [ satisfying (80) is the zero element.
Therefore @ =6 and (78) and (79) may be amended
to read

w(x,y @50 )@, y@;9?)

=0 weakly in L2 (:=1,2,...,n). (82)
(e, 4959 @) i,y 052 )
=0 uniformly on e<z<b (i=1,2,...,n). (83)
Consider
llm( 0T (x,y?;7)T (x,y?;n?P)dx
g—®,)
. .b ’ ’ ’ ’ ’ ( ' 4
=lim | 42 u® —2u® v@ 42 2 )dx. (84)
¢—xJda

Although we have not previously defined all the
notations in (84) their meanings are obvious. By
(82) and (83) the terms involving #; may be disre-



garded. By lemma 15

b
lIim | v@'u® dx=

g—oJa

) b 1 b b
};Ig[ﬂ 899869 dx —de(L 6g}")dx)<ﬁ 6g{°’dx>]

b
=lim | 6969 du.

g—wd a

Multiplying out, one obtains after dropping the
superscript (¢) from the derivatives of g,.

b
lim | é6g:6g.dx

g—oJa
b ) @ ) @’
el ( ¢
=lm | (g, G0 +290,m gy +
q— a
0¥/ @'
G Gy )dx
1i v @' (q)’d =i bG(q) @’ (q)’d
=lm | G, Jiy,m;" M AT =M ik M- Me A%
g—oJ a g—oJa

since all terms involving @ go to zero.
Let (Ay) denote the transpose of the matrix
(Ay). Then (since by hypothesis det (!7.-(33.) #0).

p—

det (G9)=det (9.5 ) det (9.4 ) =[det (9:5)]">0.

Hence @GP is a real, symmetric, positive definite
matrix for each ¢=1,2, . . .. Therefore, it follows

that
b
lim 5T;(Z,jl/(m;n(Q))5T,-,(Z,y(4);‘n(Q))(l.l‘z
q—woo a
- b ’ ’
lim | G@ 92 9% dx>C>0.
g—od a

However, (63) implies that this last limit is identi-
cally zero. Consequently, our assumption leads to
a contradiction. Therefore there must exist at least
one neighborhood of #® in which all elements have
nonconjugate end points.

11. A Solution of the Fixed End Point Problem

To conclude the discussion of Newton’s method,
we wish to point out that with certain additional
hypothesis we can make use of our previous results
to obtain a solution of the fixed end point problem
of the Calculus of Variations.

Let f(z,y,9”) be the integrand of the integral (1). A
strengthened Legendre condition is said to hold in the
region R if

fll,-'u’i (x)yyy/) 7ri7r1>0 (85)
for all (z,7,9’) in R 'and all (7)0. This implies
that the determinant|f,, |0 in R and is thus

stronger than our previous condition that the
determinant |g,,| never vanishes in R.

The following terminology is well known and will
be helpful. An arc y is said to satisfy a strengthenea -
Jacobi condition if it has nonconjugate end points
and has no subare defined on ¢ <2< {¢<’b which has
conjugate end points.

Let (2) be replaced by the Euler equation (13).
Let the region R be convex in y” and let the strength-
ened Legendre condition hold everywhere in R.
The following theorem is then true.

TurEorREM 6. Let y© be an admissible element of
Y having nonconjugate end points. Then if there
exists a sufficiently small constant D>0 such that
[T (z,y@)|| <D, the sequence of estimates derived from
Newton’s method will converge quadratically to a
unique arc 7 of class ¢ which lies within a predeter-
mined neighborhood of y©, joins the end joints of
y O and satisfies the FEuler equations. Moreover, if v
18 such that no interior point of a <z <b is conjugate to
x=a, y will afford a strong relative minimum to 1(y).

By theorem 4, Newton’s method converges quad-
ratically to an arc 7 of class ¢}, which joins the end
points of ¥@ and satisfies the Euler equations. The
arc y also has the property of nonconjugate end ,
points. This follows from lemma 14, which implies
that the constant «z mentioned in the proof of
theorem 4 can be chosen to have the additional
property that no element of (3/(0))"3 has conjugate
end points. Since by hypothesis no subarc of 7 with
initial point at z=a has conjugate end points, a
strengthened Jacobi condition 1s satisfied along 7.
As it has also been assumed that a strengthened
Legendre condition holds throughout R and that R
is convex in ¥/, we may conclude (see Bliss [2, p. 42,
corollary 16.1]) that 7 affords a strong relative
minimum to 1(y).

The following theorem gives further criteria that
insure the convergence of the sequence of estimates
derived from Newton’s method to a solution of the
fixed end point problem.

TaroreM 7. Let a minimum y* exist and have
nonconjugate end points. Then there exists a constant
a >0 such that for any initial estimate y© taken from
(y*)a the conclusions of theorem 6 hold.

Upon recalling that a necessary condition for »*
to be a minimum is 7'(z;y*)=6, one proceeds with
the proof just as in theorem 5.

12. A Second Method for the Effective Solu-
tion of the Fixed End Point Problem

In section 2 it was remarked that in the application
of Newton’s method, one must solve the Euler
equations of each term of a sequence of integrals
whose integrands are quadratic in y and y’. Thus
it 1s not inappropriate to introduce at this point a
second method for solving fixed end point problems
which will prove to be particularly applicable to the
case of a quadratic integrand. In an actual compu-
tation a combination of Newton’s method, and the
method to be presented below, might prove to
be advantageous.
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Henceforth the symbol Y will denote the class of
n-tuples of real valued functions on ¢ <z <b which
have Lebesgue square integrable derivatives. Use
was made of this class of functions in section 10.
The symbol U will again denote the subeclass of
elements of ¥, which vanish at the end points of
a<z<b. Throughout the remainder of the paper
we assume that all functions of ¥ are admissible and
that the underlying region R is convex in 7 and 3’.
Our previous assumptions as to the nature of the
integrand f(z,y,y’) are retained. Moreover, we
assume that f and its derivatives are integrable
along ares in Y.

Assume that after starting from some initial
estimate ¥ in Y one has obtained an ‘“improved”
estimate of a solution to the Kuler equations 3
also in Y. He then chooses the 7--1st estimate to be

Yy =y®_— g q® (no sum on 1), (86)

where n® is an element of U/ determined by the
equation

7=y ). (87)
Here 7 is formed for the Euler equations as illus-
trated in section 2, and a; is a real number.

A procedure similar to that just described has
been announced by L. V. Kantorovitch [5] for the
case of an integral whose integrand is quadratic in y
and 7. However, his paper presents no proofs,
Curry [6] has described an analogous process that
can be used to minimize a function of n real variables.
Other references may be found in the last paper cited.

In order to consider the convergence of the
sequence defined by (86) it is helpful to examine the

expression [(y)—I(y—an). We may state the
following lemma.

Lemma 16, Let y be an element of Y and let n be
gwen by (87).  Then,

1)~ Iy—an)=a [ ninide—a [ Wdz (8)
where
W =Aynim;+2Bynim;+Cunin;
A”:L](1—u)fuiyi(w,y—aumy'—aun’)d#
and By, Cy are obtained from the formula for A by

replacing fy,y, by fy,0; and fy,; respectively.
An application of Taylor’s theorem results in

I —I(y=an)
== afab [fw,-(%?/:l/')m+fy;($,y,1/')n{]dx—aQLb Wdzx.

By integration by parts

Jvab funida= ___J‘ab [Jvar Su di+ C,-] nide;

and since

[} Contda=Cilni(B)=n @) =0,

the choice of C,is arbitrary.

1 [ t
Ci=g— L I:fyl(t,y,y’)~ L fyi(s,y,y’)dSJ dt.

Accordingly, we choose

Thus one may write

I(y)——](y—an):afab T,-’n{dx——azfab Wdz

b b
:af n{n{dx—azf Wd.
a a

The next lemma follows directly from formula (88).

Lemma 17, Assume that for every number v there
exists @ number K >0 and a number o« such that if
1(y) <v and O< a<a™* then

f: Wdz <K f’ inid. (89)

Then in case I(y)<v and O<a<a* one has the
relation

1)—I(y—an)> a(1—aK) [ ninida.  (90)

Formula (90) helps to prove the following theorem.

Turorem 8. Let there exist finite numbers v,
K >0, o* such that iof 1(y)<v and 0<a<a*, formula
(89) holds. — Let y© be such that I(y®)<v and let
a and @ be chosen so that 0<a<a<I/K. Then if
1(y) is bounded below on the class of arcs in Y joining
the end points of y©, the sequence of estimates {y®}
defined by (86) and (87) is such that {I(y®)} s

convergent. Furthermore,
T(x;y®@)—6 uniformly on a<r<b (91)
T (x,y®)—0 in L2 (92)

That « may be chosen as specified in the hypoth-
esis is a consequence of the fact that A is finite. As
a result of such a choice of «, one obtains the
inequality

Iy >I(y O —am®@)=1(y(?)

from (90) by setting y=y“, a=a,. Since I(y®)<»,
the argument can be repeated provided »® 6.
Hence a sequence {y®} such that

I(y®)>I(y“*P) (1=0, 1,2, . . .)
is constructed. Due to the hypothesis that 7(y) is

bounded below the sequence of definite integrals
converges.
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By (90) and the way {a;} is chosen

1) =12 al—ak) [ 0 0 da
S (93)
>a(1—K sup ai)J e ()

where here and in similar expressions that occur
below there is no sum on the index that denotes
which step of the iteration process we are considering.
As the left-hand side of (93) can be made as small as
desired by choosing ¢ sufficiently large, we may
conclude that

b
}im(f X <~dx> 0- (94)

Conclusion (92) follows at once from (94). Since
(91) is a consequence of (92), the theorem is proved.

The problem of determining general conditions
under which an assumption of the type made in
lemma 17 is valid seems to be a difficult one. How-
ever, special cases may be considered in which K is
independent of » and «* is arbitrary. A rather
trivial example of this occurs when the integrand is
given by

f@yy)=g@V1+y?
If 2K>|g(xz)| on @ <x<b, we have

fudx~fj(1—#) (,j(ﬂf_) -

g(x) > 0.

- dudz

<Kf n*dx-

A much more important case is that in which the
integrand is quadratic, that is,

f(%?/yy’):Aij(x)yiyj‘*‘2]?ij(z)1/i?/;+Cij(x)?lf?/:{+
Di(z)y+Ey(x)y;+Fi(x). (95)

For f(z,y,y’) given by (95) we obtain upon integrating
out u

b b
fa Wia= [+ B’ s+ Coaminilds
Ja "
SKJnMﬂI

for a suitably chosen constant K provided 7;(a)=
7:(0)=0. This last result follows from the Schwarz
inequality and the fact that the integrand is a
quadratic form in % and 7’ having continuous
coefficients.

By setting y=y©, 7=y—y®, a=—1 in the
computations emplovod to establish lemma 16, one
obtains the formula

b b
Iy)=1(y )+ f T{(w;y“”)n{dx+f Wdz, (96)

which is true for all 7 in ¥ which join the end points
of y©. This equation is helpful in the proofs to be
given below.

LeMmMA 18, Let there exist a constant k>0 such that -

fu dx>kj pinid 97)

for all v in U and all y in Y. Then I (y) is bounded
below on the class of elements of Y joining the end
points of some arbitrary fized y© in Y. Furthermore,
given a constant v there exists a constant M such that
for each y in Y joining the end points of y© for which
I(y)<v

b
f ninide < M. (98)

In (98) we have n=y—y©.
By Schwarz’ inequality

b
| ECTRNE
(J T!(z;y ®)T(z; w)dx) (j il ) _

=i ([ winida)"
Thus by (96) and (97) .

b 1 *h
12 1)~ ([ ainide )+ [iaida
h? 2
=16~ gpH 5 (¢ [ ninia=)' |

h?
> 1(y ") —1p

provided ¥ joins the end points of ¥®. This proves
that Z(y) is bounded below on the class of functions
joining the end points of ¥®. The remainder of the
lemma is also a ready consequence of this last
inequality.

Condition (97) does not seem to be very widely
applicable. However, in case the integrand 1is
quadratic the strengthened Jacobi condition in con-
junction with the strengthened Legendre condition
imblies the existence of a constant & >0 such that
(97) holds.

Levma 19.  Let {y@} be a sequence in Y such that
y@ —7y,; uniformly on a<z<b, (i=1,2,...,n)
(99)
y@'—y! almost uniformly @=1,2,...,n)
(100)
Ti(x;y?)—0 almost uniformly @=1,2,...,n).
(101}
Then

Ti(xz;7)=0 almost everywhere (1=1,2,...,n).

(102)
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Let I denote the interval a <z <b. Since y’ is in
17 it is summable and hence finite almost everywhere.
Hence given ¢>0 there exists by (100) a set S; of
measure less than ¢/2 such that y@ —%! uniformly
on I—S, for (1=1,2,. . .n). Of course, S; must con-
tain all the infinites of 7. The summability of 7’
also implies the existence of a set S, of measure less
than /4 such that 7/ is bounded on I—S, for
(1=1,2,. . .n). Therefore, if S; is an open set of
measure less than e containing S,+ S5, the following
statements are valid:

(a) I—S;1s closed and bounded,

(b) 7! is bounded on I—S; (1=1,2,. . ..n),
(¢) y;'2—=y,; uniformly on I—S; (i=1,2,. . .n),
(d) y@' =yl uniformly on I—S; (1=1,2,. . .,n).

By (a) through (d) it can be concluded that

Jue,y @y @)= f,(x,7,%) uniformly on I— S,

and similarly for f, . Hence it readily is verified that
T (z; y @) >T (x, 7/) uniformly on I—S; for (1=
1,2,. . .n), that is, almost umformly and thus almost
ovcrywhue Conclusion (102) is then obtainable
from (101).

If one wishes, he may express (102) in the form

T(x;y)=6. This follows directly by integration.
Levmma 20, Let y be an element of Y satisfying
(102).  Then if there exists k>0 such that (97) holds,

Y affords a wunique minimum to I1(y) on the class of
Junctions in Y which join the end points of 7.

Let y be any element of Y joining the end points
of 7. By (96)

1)~ 1= [} i@ —ihde+ [ Wda.

By hypothesis 77 (x;7)=0 almost everywhere and
y:;—y: 1s in L2,  Thus the first integral on the right
1s zero by Holder’s inequality. Therefore, if y#7,

1) —IG)= [ Wda >k [ (i~ T —Fdz>0.

Consequently,

I(y)>1(Y). (103)

Assume that y also satisfies (102). Then by revers-
ing the roles of ¥ and % one obtains I(y)>1(y).
This contradicts (103), and so implies that the as-
sumption that y#¥y satisfies (102) 1s false. Hence y
cannot be a minimum.

TaEOREM 9. Let there exist finite numbers v, K >0,
a* such that of T (y) <v and 0<a<a*<1/K, formula
(89) holds. Let y© be such that I(y®)<v and let «
and a« be chosen so that 0<a<a<a*. Then if there
exists a constant k>0 such that (97) is satisfied, the
conclusions of theorem 8 are satisfied. Furthermore,
there exists a function Yy such that for the sequence

{y®} described in theorem 8 we have

y“—y uniformly on a <z <b

y@" =y’ in the mean of order 2.
The limit § affords a unique minimum to I(y) on the
class of functions in Y joining the end points of 3.
By lemma 18, I(y) is bounded below on the class
of 7 in ¥ joining the end points of @, Since all of
the other hypotheses of theorem 8 have been as-
sumed, the conclusions of that theorem must be valid.
As the sequence {y®} of theorem 8 is such that
each @ joins the end points of y©® and

I(y™)<Iy) <»

formula (98) of lemma 18 is applicable to each term.
This formula implies the existence of M >0 such that

for all n, m
< [ (n m)’ (n.m)'dm>% SM}

where n ™™ =y™ —yt - For n>m, I(y™)—I(y™)
is negative. Thus from substitution in the main
formula of the proof of lemma 18 it follows that

b b H
Oskf 775'""”)’712"'m>l(1xShm<f ,’](in,m)’n('_n,m)'dx) ’
Ja Ja

n_>m,

G=1,2, . . .,

(104)

where

m—> o,

" )
B E(J T; (z;y™) T (=; y“’”)dx) -0,

Consequently, the existence of 7 such that y®’—y’
in the mean of order 2 follows from 104. This last
result 1mplies y“—7% uniformly on a<z<b. By
recalling (92) and taking subsequences one finally
obtains a subsequence {y@} such that

y@—7% uniformly on a <z <b

@ =7y’  almost uniformly

T (z;y@)—6 almost uniformly.

Consequently (by lemma 19) 7 satisfies (102). That
7 is unique is a consequence of lemma 20. Hence the
theorem is proved. It is not difficult to show that
Y (x) is of class ¢’

It 1s clear that these results apply to the case when

f1s a polynomial of degree two in 7.

13. An Example of Numerical Computation

Consider the problem of minimizing the integral

I(y)=frzy\/f%?édx, y >0,
%1
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whose Euler equation is

Pl

. (105)

Y

To apply Newton’s method write (105) as

T=14+y"—yy”=0.

0T=2y"n"—y" " n—yn",

Then

and the differential equation 7467=0 can be put
into the form
1" =An+Bn'4C,
" ’

a=Y¥, p=2V,
Yy Y Y

where

C=——A1 +y/2—y”.

The general solution of (105) is given by

y=" cosh ﬂ;—“- (106)

Given two points (z;,7;) and (2,,7,) three cases can
occur.

(1) Two catenaries (106) join the given points.
In this case one will be minimizing and the other will
not.

(2) One catenary (106) joins the given points.
This catenary is not mlnlmlzmg

(3) No catenary (106) joins the given points.
The examples for computation were selected with
this in mind.

ExamprE I:

The points (21, 11), (¥, ¥2) are respectively
(—2, 3.086) and (2, 3.086). The solutions are

%
y=2 cosh§

y=1.404 cosh —— i 404

where the first is minimizing and the second is not.
The results of computation are presented below in
tables 1, 2, and 3. In these tables as well in tables
4, 5, y denotes the exact solution, ¥ @ the initial ap-
proximation, and ¥ the approximation at the ith
step. The symbol ¢; denotes the value of

1+y'2_y,,
y

along the curve y®. Along a solution of (105) we
have ¢=0. The function »; found in tables 2 to 5 is
a solution of the equation é¢=0, which results from
taking the variation of the equation ¢,=0. The
evaluation of », can be arranged to be a by-product
of the computation of y“*V. It follows from the
theory of conjugate points that y will be a minimizing
arc if for ¢, sufficiently small »; does not vanish more
than once. If »; vanishes twice, ¥ is not minimizing.

cC=

It is of interest to note that convergence to a solu-
tion of the Euler equations that was not a minimum
was obtained. This shows the necessity of making
additional assumptions (as was done in section 11)
in order to insure convergence to a minimum.

Exampre 11:
The points (@, ¥1), (x5, ¥2), are, respectively,
(0, 2.5894) and (5, 5.9284). The solutions are

=1,
2

y=2 cosh z

+—1.5806

== 1.8883 cosh TS@@?'

The first arc is minimizing and the second is not.
It will be noticed that although the two solutions
are quite close to each other convergence to each one
was obtained.

Examprr I11:

The points (21,7;) and (xy,,) are, respectively,
(0,2), (5,3). In this case there is no solution After
an initial estimate consisting of the line joining (0,2)
and (5,3), the second iteration resulted in points
(x,) lying outside of the domain in which 3 >0.

The material in this section was supplied to the
author by M. R. Hestenes, under whose auspices the
computations were carried out.

TaBLE 1
y=2 cosh z/2, y(© =3.086 (—2<zL2)
T gy |y | y@ | y® | y@ Y ey €1 c2 c3 €4
0 |3.086 |2.138 |2.132 |2. 016 [1.994 (2.000 || .324 | .086 | .018 | .002 . 000
+.2 |3.086 |2.447 |2.140 |2. 026 |2.004 [2.010 || .324 | .087 | .019 | .002 . 000
+.4 |3.086 |2.464 |2.167 2. 056 [2.034 (2.040 || .324 | .087 | .020 | .003 . 000
+.6 |3.086 (2.497 [2.213 (2.106 |2.085 |2.090 || .324 | .092 [ .021 | .003 | .000
+.8 (3.086 |2.542 |2.277 |2.177 (2,157 [2.162 || .324 | .096 | .023 | .003 | .000
+1.0 |3.086 (2.600 (2.360 |2.269 |2.251 |2.255 || .324 | .101 | .025 | .004 . 000
+1.2 |3.086 [2.672 [2.463 (2.383 (2.307 (2.371 || .324 | .107 | .028 | .004 . 000
+1.4 (3.086 [2.756 |2.586 |2.320 |2.007 |2.510 || .324 | .114 | .031 | .005 . 009
=+1.6 [3.086 (2.853 |2.730 |2. 682 |2.673 [2.675 || .324 | .121 | .034 | .006 . 000
+1.8 [3.086 |2.963 |2.897 |2. 870 |2.865 [2.866 || .324 | .128 | .038 | .006 . 000
2.0 |3.086 |3.086 |3.086 |3. 086 |3.086 |3.086 || .324 | 136 | .042 | .007 | .000
|
TABLE 2
y=2 ccsh (z/2), y(© =1.886+.3r2 (—<zL2)

z y© y y @) Y co c1 C2 ”n
0 1.886 | 2.053 2.003 2.000 || —.070 . 010 . 001 1. 000
=02 1. 898 2.063 2.013 2.010 || —.066 . 010 . 001 8995
=+. 4 1.934 2.092 2.043 2.040 || —.053 .010 . 001 . 981
=+. 6 1.994 | 2.140 2.093 2.091 || —.034 . 009 . 001 . 957
+.8 2.078 2. 208 2.165 2.162 || —.008 . 009 . 001 .923
+1.0 2.186 2.297 2. 258 2.255 || —.022 . 008 .001 877
=+1.2 2.318 2. 407 2.373 2.371 . 055 . 007 . 001 . 818
+1.4 2.474 2. 540 2.512 2.510 . 089 . 006 . 001 L7465
=E1%6 2. 654 2. 696 2.676 2.675 .124 . 005 . 001 . 656
==1. 8 2. 858 2.878 2.867 2. 866 . 158 . 003 . 001 . 548
+2.0 3. 086 3. 086 3.086 | 3.086 .191 . 002 . 001 .419
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TaBLE 3

y=1.401 cosh 1%04, YO =1.986+.452 (—2<r<2)
z y @ y® y® ‘o 1 €2 n
0 1.286 | 1.367 | 1.407 | 1.404 || —.123 010 | .000 1.000
+.2 | 1.304 | 1.381 | 1.421 | 1.418 || —. 108 | .010 | .000 . 989
+.4 || 1.358 | 1.425 | 1.464 | 1.462 || —. 068 | .010 | .000 . 957
+.6 || 1448 | 1.499 | 1.537 | 1.534 || —.008 | .009 | .000 . 900
+.8 || 1.574 | 1.604 | 1.640 | 1.638 065 | .008 | .000 .816
+1.0 || 1.736 | 1.744 | 1.778 | 1.776 143 | .007 | .001 . 697
+1.2 || 1.934 | 1.921 | 1.951 | 1.949 220 | .006 | .001 . 542
+1.4 || 2,168 | 2.138 | 2,163 | 2.162 0203 [ .005 | .001 .337
+1.6 || 2438 | 20401 | 2,420 | 2.419 361 | 006 | .001 .073
+1.8 || 2744 | 2715 | 2.725| 2.725 421 .009 | 001 | —.265
+2.0 || 3.086 | 3.086 | 3.086 | 3.086 174 | .017 | .001 || —.693
TABLE 4 TABLE 5
y=2 cosh’_;'s’ v =2.5804— 832204302 (0<r<5) y=1.ssscosh";—;'8‘f—l Y0 =2.5894—1.2322¢+ 382 (0<2<5)
2 y((‘) y(l) y(Z) y(:!) Y co ¢ c2 3 ‘ 7 z y(o) y(l) _1/(?) y(a) ’ U co ‘ c1 ) g 2
0| 2.589| 2.580 2.580 2580 2 589’ 054,012 . 004 .001‘ . 000 0f| 2.58)| 2580 2.580| 2.580| 2.589 -212‘ -002) .009 . 002 .000
‘2| 5435 2.468 o 449 2439 2438 019 011 .004| 001 189 22| 2,358/ 2,375 2.403| 2.414] 2,416 .159—.008| .008 001} .185
.|| 2.304| 2,368 2.331| 2.313| 2.310|—.014| .011 .004| .001|| .357 -4/l 2.157| 2,194 2.245| 2.267) 2.270,| .103,—.003| .007| .00Lj| .344
|| 2,198 2.287| 2,235 2210/ 2.206/|—. 044/ .011| .003 .001|| .507 -6/l 1.987) 2,044 2.114] 2.145 2.149)| .046/ .003| .006| .001| .479
8| 2116 2.226) 2,160 2128 2.124 | —. 069 010, .003| .001| .642 -8|| 1.847| 1.923( 2.009| 2.047| 2.052/|—.008| .008 .005 .001| .595
1.0l 2.057| 2,184/ 2.106| 2.068 2.062|—.088 .010| .003| .001|| .762 1.0f| 1.737| 1.828| 1.927| 1.927| 1.978|—.056/ .012| .005 .001j| .693
12| 202 2160 2072 2 029 D} 0'_;2} Zlooa om0 Coos| Coon| Cs7 1.2)| 1.658| 1.758 1.8¢9 1.920 1.927]|—.095/ .016/ .004) .001)} .777
14| 200120 2154 2,057 2010 2.002/|—. 103 005 002 000/ 970 L4/l 1.609| 1.712( 1.833| 1.889) 1.897—.121 .019| .003 .001| .847
1.6/[ 2.026] 2167 2.061 2.010 2. or)z‘ —.098 .009| 002 000/ 1.058 L6|| 1501 1.690 1819 1.880 1888|131/ .021 .003| .00 3(;;
18| 2.063] 2.198 2085 2031 2 022/|—.086 .009 .002 .oooi 1.138 1.8|| 1.603| 1.690| 1.827| 1.892| 1.901||—.124| .022| .002| .001
2.0[| 2,125 2.248 2,129 2.072 2.062|—. 066 .009| .002| .000!/| 1.209 2.0[| 1.645 1.714| 1.857| 1.926| 1.935| —.IQZ . 022 .O()? . 001 989
2.2 2.211| 2.316| 2.192| 2. 1;&3 o ]2’4 _‘04‘[; L009 . 002 _()()()‘ 1. 272 2.2/ 1.718) 1.761| 1.910{ 1.981 1.99()' —. 065 .021 .l)l)g L0011 0‘15
24| 2,320 2404 2,277 2,215/ 2.206/|—. 010, .009| .002| .000| 1.328 2.4/ 1.821) 1.831| 1.986| 2.059| 2.068/|—.018/ .019| .002) .001) 1.030
2.6/ 2454 2513 2383 2.320 2.310| 023 009 .002| .000)| 1.374 2.6/ 1.954 1927 2085 2160 2170 .035 .017| 002 001 1833
2.8|| 2.611| 2.€43 2. 511| 2448 2.438/| .058 .008| .002 .ooo‘ 1. 412 2. 8| 2.118| 2.049| 2.210{ 2.285| 2.205/ .091 .015 .002] .001| 1
; : | 2313 ; 00
2.0/ 2,793 2,795 2.663| 2.599| 2.590,| .093 .008| .002| .000| 1.441 3.0/ 2,313 2,198 2.361) 2.437| 2.447| .147| .012 .003| .001|| 1.00
32| 2098 2.970 2840 2777 o 768/ .128| .008| .002 000/ 1.459 3.2\ 2.538 2.378| 2,541 2.616) 2.626/| .201| .009| .003| .00 .960
3.4/l 32210 3171 3.043 2982 2.972| .162 .007 .002 .001]| 1.464 3.4/ 2.793 2,500 2751 2.824 2.834| .252/ .006 004 001 .900
3.6/ 3,482/ 3.308 3.276| 3.217 3.208| .194 .007| .002 .000| 1456 3.6/ 3.078/ 2.839| 2.995 3.065 3.074) .300| .005 .004] .00 Sig
3.8|| 3.750| 3.654| 3.539| 3.483| 3.474|| .224) .007| .002| .001|| 1.431 3.8/ 3.304| 3.126| 3.274| 3.340| 3.349|| .342| .004| .005 .091|| .7
4.0(| 4.061| 3.941| 3.836| 3.785| 3.776/| .252 .008| .003| .001| 1.388 4.0, 3.741) 3.456 3.503 3.654| 3.662| .381) .006/ .006| .001]| .57
4.2(| 4.386) 4.261) 4.169) 4.124 46| 277 009 003 [001| I.323 4.2| 4.117) 3834 3.955 4.003| 4.015| .416| .009 .006| 001/ .394
4.4/ 4.736| 4.616) 4541 4.503 4.428 300 011 .004 .001| 1.932 4.4/ 4.524) 4,261 4.364) 4.408) 4.414]| .447 016/ 007 .001|| .174
4.6/| 5109 5011 4.955 4.928 4.924/ .323) .013| .004| .001| 1.111 4.6/ 4.962 4.752 4.826| 4.858 4.862| 474 025/ .007 .001 —.ggg
4.8(| 5.507| 5.447| 5.416) 5.401| 5400, .343| .017| .004| .001|| .956 4.8/| 5.430] 5.305 5.345| 5.363 5.365| .499) .038| .008| .002|—.42
5.0/ 5.928 5928 5928 5928 5.928| .361 .022 .005 .001‘ 760 5. 0‘ 5.925 5.928) 5.928 5928 5. 923‘ .521 .953] .008 002‘ —.826
| |
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