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Torsion of Anisotropic Elastic Cylinders by
Forces Applied on the Lateral Surface’

Harold Luxenberg?

The classical Saint-Venant theory of torsion presents a method for the determination
of the elastic behavior of an orthotropic elastic beam of uniform arbitrary cross section

twisted by forces applied on the end sections, with the lateral surface free of stress.

In the

present paper the theory is extended to include a more generally anisotropic beam (possessing
only a single plane of elastic symmetry, rather than three mutually orthogonal planes of
elastic symmetry, as in the case of orthotropic materials) built in at one end and twisted by
forces uniformly distributed along the lateral surface.

The stresses in a beam of elliptic cross section twisted by constant tangential traction

are obtained as an application of the theory.

1. Introduction

The classical Saint-Venant theory of torsion
presents a method for the determination of the
elastic behavior of an orthotropic elastic beam of
uniform arbitrary cross section twisted by forces
applied on the end sections, with the lateral surface
free of stress. In the present paper the theory is
extended to include a more generally anisotropic
cylinder (possessing only a single plane of elastic
symmetry, rather than three mutually orthogonal
planes of elastic symmetry, as in orthotropic ma-
terials) built in at one end and twisted by forces
uniformly distributed along the lateral surface.

The extension of the Saimnt-Venant theory of tor-
sion of cylinders by forces applied on the end sections
to anisotropic cylinders was made by Lechnitzky
(3, 4]% in 1939;

The torsion of isotropic cylinders by forces applied
on the lateral surface has been considered by Filon
[1] in 1902, Timpe [11] in 1912, and Zwolinsky and
Riz [12] in 1939,

Filon and Timpe showed that the stresses and dis-
placements in an isotropic circular cylinder twisted
by forces applied on the lateral surface are derivable
from a biharmonic stress function. Zwolinsky and
Riz treated the problem of the isotropic cylinder of
arbitrary cross section twisted by constant tangential
forces, and showed that, in this case, the stresses and
displacements are derivable from two stress func-
tions, one biharmonic, the other harmonic. For a
circular cylinder the harmonic stress function van-
ishes, and the Filon-Timpe solution is obtained as a
special case of the Zwolinsky-Riz solution.

The results obtained here are more general than
those given by Zwolinsky and Riz in two important
respects. First, the applied forces assumed in the
present treatment are not necessarily constant or
tangential to the lateral surface; and second, the
results are applicable to a wider range of elastic
materials, including wood, which is orthotropie, and
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certain crystalline media [5, p. 155 to 160], which
possess a single plane of elastic symmetry.

It will be noted that no mention has been made of
the distribution of stresses over the built-in end of
the cylinder. This distribution will, in general,
depend on the mode of clamping. If these stresses
are prescribed the exact solution of the problem
presents considerable difficulty because of the com-
plicated boundary conditions.

In 1855 Saint-Venant stated as a principle of
elasticity that two statically equivalent systems of
forces applied to a portion of the surface of a medium
will produce essentially the same stresses at point
of the body not too near the region of application of
the forces.

If this principle is accepted, and if it is borne in
mind that in most applications only the resultant of
the stresses on the end of the cylinder is known, it is
seen that a solution of practical usefulness may be
obtained by “relaxing” the boundary conditions, and
specifying only the resultant stress on the end section.

The extra freedom allowed by the relaxation of the
boundary conditions permits us to obtain a solution
by the so-called semi-inverse method of Saint-
Venant, which consists in making certain assump-
tions about the stress distributions, while still
leaving enough arbitrariness in the assumed stresses
to satisfy all the conditions of the problem.

By the use of this method it is shown that the
stresses in the twisted cylinder are derivable from
two stress functions, ¢(z,77) and ¢ (z,y), which satisfy
the differential equations.
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in the region R corresponding to the interior of the
cylinder, and the conditions
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on the bounding curve € of each cross section. The
parameters [, m, n, b; and b; appearing in these
equations are functions of the 13 efastlc constants of
the material, NV and 7" are the normal and tangential
components ‘of the applied surface tractions per unit
area, » designates the unit normal vector to C, and
a is given by

f (@Y —yX)ds
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In eq (3), X and Y are the z and ¥ components of
the applied surface traction, and the contour integral
is the applied twisting moment per unit length. The
surface integral is proportional to the torsional rigid-
ity of the cylinder.

In the case of an isotropic beam the differential
equations (1), simplify to

Vig=0, V=0, (4)

the boundary conditions (2) become
(%g—y> cos (z, v)+<g—;+ x) cos (y,»)=0
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and « is given by

f(xY yX)ds

It is shown, from energy considerations, that the
boundary-value problems posed above possess a
unique solution, and several methods of solution are
discussed.

As an illustration of the method, the stresses in a
cylinder of elliptic cross section twisted by constant
tangential traction are obtained.

(6)

2. General theory

The first fundamental boundary-value problem of
elasticity may be stated as follows [8, p. 72]:

Determine the distribution of stress and the dis-
placements in the interior of an elastic body in
equilibrium when the body forces are prescribed and
the distribution of the forces acting on the surface of
the body is known.

The second fundamental problem is similar, except
that in this case the surface displacements rather than
the forces acting on the surface are prescribed, and in
the third, or mixed, boundary-value problem the
forces are prescribed over a portion of the surface and
the displacements over the remainder.

The problem of the cylinder that we are considering
is of the first kind, where body forces are absent.

In the following paragraphs we shall review certain
basic elements of the mathematical theory of elastic-
ity and present the mathematical formulation of the
first fundamental boundary-value problem.

The state of stress in an elastic medium is char-
acterized by the six components 7., 7y, Tz Tyzy, Tezs
72y, OF the stress tensor. The components of stress,
X,, Y., Z,, on an element of surface whose normal
has the direction ¥ are given in terms of the stress
tensor by the relations [8, p. 40]

X,=1z, cos(z,v)+ 7., cos(y,»)+ 7., cos(z,v)
Y, =7, cos(z,y)+7,, cos(y,v)+7,. cos(z,) (7)

2y ="y cos(x,v)+71,, cos(y,»)+ 7., cos(z,v).

The relations (7) may be regarded as defining the
SIX components, 7,., 7,5, . . ., 7z, Of the stress tensor.
If we let the vector 7 take on the directions of the
three coordinate axes in eq (7), we obtain the usual
definition of the stress tensor,

‘Yz =Trzy Y: =Ty Zx =T

_ Z - ”
‘Yu =Tzyy b v=Tyys Zy =Tyz (8)
2= Tzzy Yz = Tyzy Zz =Tz
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From considerations of static equilibrium it can be
shown that
A=, =2, V= 9)
and that the defining relations (8) are self-consistent.
For any material in static equilibrium under a
prescribed system of surface loading X,, V,, Z,, and
free of body forces, the stress tensor must satisfy the
equilibrium equations

bru_i_ bT,,,_*_ D‘ru ’
_arrl,_*_ arw+ CTW L (10)
OT” ?Il/f 3722

+ oy + 4

in the interior of the medium, and the conditions (7)
on the surface, where we now regard X, V,, Z, as the
prescribed surface tractions.

The strain tensor, €., €, €.z, €y:, €2z, €4y, 18 defined
in terms of u, », and w, the z, ¥, and z components
of the displacement vector, by the relations

Equations (12) are known as the compatibility
equations and are the integrability conditions for
the system of (11), when the displacements u, v, w
are to be determined from a given strain tensor.

The stress and strain tensors in an elastic medium
are related by the generalized Hooke’s law. If the
elastic constants of the medium are denoted by
g (=il ,6) Hooke’s law for a medium in
which the zy-plane is a plane of elastic symmetry *
may be written in the form [8, p. 62]:

€= Ci1Tzz T CiaTyy—+ C1a7..+ C16Tzy

Cyy— CZITzz"I'" CoaTyy + Co3T22 +C2671u

€2,==C31Tzz T C32Tyy 1 CaaTo+ C36Try

- (13)
ey2:644T,/2+c4572I
€= C54Ty2 + Cs55Tzz
Prz/:('617'11_{’(‘627'1/1/_{"06:5T22_+—(155711/ -
where c¢i3=¢ca, cCis3=cy, C16=C¢1y C23=C3z2, C26=Ce2,

C36="Cg3, C45= Cs4-

For isotropic materials, the number of independ-

ent elastic constants reduces to two,

and Hooke’s
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It may be shown [5, p. 48] that a necessary and

sufficient condition that a given tensor may be con-
sidered as a strain tensor arising from actual physical
displacements in an elastic material is that the
tensor satisfy the conditions
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law has the simpler form

1 o 1 h
e‘”:E’ Tez (rypt722), Cuy:ﬁ Ty
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61/227?7 Tyzy Caz™" 'Ev Tezy Coy= Vol Tzl/’

where #is Young’s modulus and ¢ is Poisson’s ratio
for the material.

We may now reformulate the first fundamental
boundary-value problem of elasticity in mathemat-
ical terms:

Determine a set of six functions, the components
of the stress tensor, which satisfies the equations (10)
in the interior of the elastic medium and the relations
(7) on the surface of the medium, where X, Y,, and
Z, are prescribed functions, and such that the strain
tensor calculated from these functions by the use of
(13) satisfies the compatibility conditions (12).

3. Formulation of the problem

Let the coordinate system be chosen as shown in
figure 1, with the built-in end of the cylinder in the

4 The most general elastic medium is characterized by 21 independent elastic
constants. Here we consider a medium whose elastic properties are identical in
any two directions symmetric with respect to the zy-plane. This type of elastic
symmetry reduces the number of independent elastic constants to 13.

265



plane z=0, and the free end in the plane z=h. The
boundary curve of any cross section will be denoted
by C; the region enclosed by € and the unit normal

to C' will be denoted by R and 7.
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Y

/)_ e
z=h ZR>
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Ficure 1.
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-

The prescribed surface traction 7' (force per unit
area) is assumed to be independent of z, directed
parallel to the (z,7) plane, and such that the result-
ant on any cross section is a twisting moment of
magnitude M (torque per unit length).

This condition requires that the components X
and Y of the applied surface traction satisfy the
relations

fde=o, des=o,
(64 C

In order that the first fundamental boundary
value problem of elasticity may be formulated in
such a way that the solution is unique, it is necessary
that the stresses be prescribed over the entire sur-
face, subject, of course, to the conditions of static
equilibrium. This would require that Z, and Z,, the
components of the clamping stresses on the end
2=0, be prescribed, subject to the conditions

r

JC(xY—yX)ds:M.
(14)

fRz,dS=o, LZWZS:O’ fR(xz,—yz,)dS:Mh.
(15)

In this case the boundary conditions on the end
sections would be of the form:

(a) on the end z=0:

722=0, Tz::Zzy TW=Z1/;
(16)
(b) on the end z=h:
72220, Tzz:O, Tyz=0.

Inasmuch as Z, and Z, are unknown (and depend
upon the mode of clamping), we shall replace the
exact boundary conditions (16) by the relaxed
conditions,

(a) on the end 2=0: )

f TzzdS:f xTzzdS:f yTzzdS:0
R R R

f resdS= [ rdS=0
R I

fR (€72y—Y720)dS=Mb; L (168)
(b) ontheend z=h:
f TS [ EredS= f YradS=0
Jr Jr R
re=0
T — 0% )

These are conditions on the resultant stresses, rather
than on the stress distributions.

The boundary conditions on the lateral surface,
that is, on the curve O, are

Trr €OS (X,v) + 14y cOs (y,y) =X

Tz €OS (x,v)+7,, cos (y,»)=Y (17)
0.

T €OS (2,v) +74; cOS (Y,v)

Our problem, then, is to determine a system of
stresses 7.z, Ty, - - -, T2y Which satisfies the equilibrium
eq (10), the relaxed boundary conditions (16a) and
(17), and for which the strain system calculated by
the use of Hooke’s law (13) satisfies the compatibility
equation (12).

The solution of the problem as thus formulated is,
of course, not unique, but, according to the principle
of Saint-Venant [8, p. 95], the stresses given by any
two solutions will be essentially the same at points
of the cylinder not too near the end sections.

We shall make use of the Saint-Venant semi-inverse
method of solution [8, p. 100]. This consists in
making certain assumptions about the stress distri-
bution, and still leaving sufficient freedom to permit
the satisfaction of the differential equations and the
boundary conditions. If these assumptions are
carefully made, a unique solution (unique under
these assumptions) exists.

It is apparent that the torsional couple trans-
mitted across each cross section is a linear function
of the distance from that cross section to the free
end of the cylinder. Hence, it is natural to assume
that the stresses in the cylinder are given, in part at
least, by a Saint-Venant torsion function.

There is a type of elastic deformation known as
plane strain [7, p. 231], in which the displacements
are of the form

0.

il

u:u(z’y)’ UZU(%Z/); w
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The stresses in this type of deformation are derivable
from an Airy stress function and can be chosen to
satisfy very general boundary conditions of the type
given by (17).

We shall assume that the stress system in the
twisted cylinder may be derived, in part, from a
superposition of the torsionssolution and the plane
strain type solution.

For a deformation to be of plane strain type, it is
necessary that 7,,7#0. Because a variable tension
on the end sections may produce a bending or exten-
sion of the cylinder, we shall further superpose the
bending and tension type solutions.

Thus, if we denote by 7;; any one of the six com-
ponents of the stress tensor, we may write

=13 +23 +7, (18)

where « is a constant to be determined by conditions
< of static equilibrium, 7 is derived from an Airy
stress function, 72 is derived from the Saint-Venant
torsion function, and 7% is required to satisfy the
condition that the end surfaces be free of stresses
that would produce bending moments and extensions.
The stress system 7 may be written [7, p. 231]

~

%Y o

{1y (P (5 DR

Tax = ax.z’ Tw = a:[/
2

ek TP=0, fP=0r  (9)
%y o'y o’y

V) ey b

e pbx2+ bxby+7by2’ ]

where y[=y(z,y)] is the Airy stress function and p,
¢, and 7, are functions of the elastic constants. We
note that the stress system 77 satisfies the equilib-
rium equation (10) 1dentlcallv

The stress system 7% has the form [8, p. 101, 108]

1@ =A+Bz+0y,

@ . @ _ @ __
T =1 =1® = O — 1-‘3’—0,

(20)
where A, B, C' are determined by the three relations

Jpr=dS=0, [ wr.dS=0, [ yr.dS=o,

(21)

which state that the resultant bending couples and
tension vanish on the end sections.

The system 72 is a modlﬁcatlon of the Saint—
Venant stress system 7i;. Sokolnikoff [8, p. 214]
gives the stresses 7/, in an orthotropic beam twisted
by end couples as
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where I, m, n are functions of the elastic constants
and ¢[=¢(z,y)] is the torsion function. Because
we wish the torsional couple to vanish on the face
z=h, we shall set

== (Lo 1 m(2y)}
r)ym (3o}

The third of the equilibrium equations (10) will be
satisfied if ¢(z,y) satisfies the condition

62¢> a2¢

In order that the first two equlhbrmm equations
in the set (10) be satisfied identically, we set

r®—(h— z){l ol

rW=lptgat,  rP=ne—T,

@1
zy 2

To simplify the satisfaction of the compatibility
conditions (12), we choose

:cz——é y*+meo. (25)

T

T = ¢>+9 -TZ—"?/ , (26)
with s and ¢ as yet undetermined.
Our assumed stress system, then, is the following:
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with the constants a, [, m, n, p, q, 7, s, and ¢ as yet
undetermined.

We next determine p, ¢, 7, s, and ¢, in such a way
that e,, will be independent of y¥(z,y) and of the
terms in 2? and %?. The insertion of the stresses
given by (27) into the third of (13) leads to the
following expression for ¢,,:

=
.= (cil+cpn—ca3+c36m)dp+

cu(A+Br+Cy)+
%(CBIm + 358+ Cgem) 2% —

- (28)

1 : 2%
b) (esam —-csgt 4 c3el) Y+ (C3sp— C30) 3712_*-

(€309 +C30) %‘F (cs3r—C31) az;p y
If we set
P=CsfCs3, §=—0C30/C33, T=0C31/Css,
8=— (caym+csn)/cs3, t=—(caom+csel)/czs, (29)

the last five terms in the right-hand member of (28)
will vanish.

If the values for p, ¢, 7, s, and ¢ given in (29) are
substituted in the stress equations (27), and the
strains are then calculated from Hooke’s law (13),
we have the following expressions for the components
of the strain tensor:

1 o'y oY
—@n—b1¢ b1° +b166 dy

—bu ‘”+
2

(bum‘|" blsn)%_(bwl‘l‘ bum)%‘i‘

ci(A+Bz+Cy)
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DEog D o
(bar -+ bagn) 5 — (bl bam) &+
¢u(A-+Bz+Cy)

€::="bg¢+Cs3(A+ Bz +Cy)

: L (30)

;e,,g=(h— z){(c44n—i—c45m) (g—;—i— x)—}—
(caam +cy5l) (%—— y>}

. ex=(h— 2){(0547” +¢55l) (g%"‘ 3/>+

(essn—+c55m) (g?i;'{" -’5)}

62< a
e y? (30)
(bﬁlm+b66n)§_(b66l+b62m)§+ COII.
ces(A+Bz+Cy),
where
— . — |CtiCs goon
bi=b ey /cgg, 1,j=1,2,6

(1)

bi=cul+con—cu+cem, 1=1,2,3,6.

If the components of the train tensor given by (30)
are inserted in the compatibility equations (12), it
is seen that all but the fourth of the compatibility

equations are satisfied by the assumed stresses if /,
m, and 7 can be chosen to satisfy the six equations

cun—csl=0 h
Cysl+cum=0
Ccin+cssm=0
U(essca1) +m (2¢45+c35) +n(CastCaz) =€z
U(ca1) +m(2¢45+C36) +1(2¢44+C30) =C33
1(2ess+ca1) +m (26451 c36) +1(cs2) =C33.
It is easily seen that only three of these six equa-

mons are linearly independent and that the compati-
bility equations are satisfied if we set

l= C33C44/ B,

- (32)

M= —C3C45/B, n=c3¢5/6, (33)

where

B=cu(Cs551 C31) +Cs5(CastC32) — Cs5(2€451C36) .

For convenience in calculation we rewrite the ex-
pressions for s and ¢ given by (29) in terms of the
elastic constants, using the relations (33):

8= (31€55— C35C55) | B, t=(C32Cs5—C36C44) [B.  (34)

The fourth of the compatibility equations (12),
the only one that is dependent on ¢(x,7), requires
that ¢(z,y) satisfy the relation

b22 2 ‘p —3bs = 2 1# +2(b12+b66) S ¢
oYy oy, O° ¢ o’
3b16 axa 3+blla b2 2b6 axay—i_

b, qu;'*‘ bogn— b1l (35)

In the next section we shall consider the boundary
conditions on the functions ¢(z,y) and ¢ (z,y).
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4. Boundary conditions

It has been shown in the previdus section that the
system of stresses given by

2 N
_1" th:Z¢ : ‘p+
1 o m
= Ty =No— %—— y?
lr 032?_\0__% oy Cala¢+
@ E2un Cag 31 C33 bﬁay
C31C45—C36C55 5 C32C45—C36C4s 5

r (36)
A+Bx+Cy

= (h—2) {n ($2 ) +m( 32

L ram(h—2) {1 (32—y J+m( 52+

1 n , L, oY
228 T3 Y T om0y T

-]
)t

7

will satisfy the equilibrium equations (10) if ¢(z,)
satisfies
02¢
bx"’

0%
bxby

%

+nge=0

+2m ; (37)

and will satisfy the compatibility conditions (12),
provided that

l=c33c4/B,
B=cus(Cs5F Ca1) +C55(Cas+C32)

and ¢(xz,y) satisfies the differential equation

o
b 2%~

M= —C33C45/ B, = C33C55/ B
} (38)

—Cy5 (2(’45 +-€3) s

ot
3b265 Il/ +2( 12+b66) 02326?/

3b16 abll/ +bua¢*bzaz¢ 2b6 +

a?
b, a~;§+bo, (39)
where
beg=by= |48 [cgy 1,j=1,2,6,
C3jC33
and
bi:cill+ci2n_ci3+ci6m; i:112;3;6-
(40)

b():bgﬁn— b]ﬁl.

Since both of the functions ¢(z,y) and ¢(z,y)
appear in (39), it is apparent that we must first
determine ¢(z,). Fortunately the third boundary
condition of the set (17) is independent of ¥(x,7),
so that the two boundary value problems are
separable.

If the values of 7,, and 7., given by (36) are
inserted into the third of (17), we see that this
boundary condition will be satisfied if

(ly —mz) cos (z,v)+(my—nzx) cos (y,v) (41)

on C. It is shown by Sokolnikoff [8, p. 215] that the
change of variables
SZ\/ln—m2$, n:y—’,‘;xa

¢/ (£, )= "l” ™ s(tm) (42)

will reduce the systems (37) and (41) to the simpler
system

e (60) ),

& 676, m=n cos (&) & cos (,1)=0 on O,

The problem of determining ¢(z,y) is thus reducible
to a problem of Neumann. Since the right hand
member of the second of equations (43) is a perfect
differential, the determination of ¢’(£7) is possible,
and is unique to within an additive constant.

It should be pointed out that the quantity
(In—m?) 1s positive for all elastic media, since from
the defining relations (33), we observe that

2
ln_m25%§2§ (C44Cs5—Ci5) (44)

and the positiveness of (cucss—cis) is guaranteed by
the positive definite nature of the strain energy form.*
Once the function ¢(z,7) has been determined the
right-hand member of (39) is a known function.

Let us express the surface tractions X and Y in
terms of the tangential traction 7" and the normal
traction NV, by the relations

X=N cos (z,v)— T cos (y,v),

Y=N cos (y,v)+T cos (z,v). (45)

5 See appendix.
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If we make use of the relations (45), the stresses
given by (36), and the relations

dx

cos (z, v)=%%y cos (y, v)= = (46)

the first two equations of (17) may be rewritten in
the form

-(%(%>=<Z¢+—W—L x2—zj> cos (z, »)+ ]

(290 —5Y +m¢+~>coq , »),

(g > (290 =5l —]~m¢-—->cos (z,v)+

(no—By*— Jeos v, ),

> (47)

P

on . Let us denote the right-hand members of
these equations by Fu(z,y) and F(z,y), respectively.
If we can find a particular (single-valued) solution,
Y*(x,y) of (39), we must then solve the homogeneous
system:

bar =3 5 2buat-b) gars—
o'y ¢
3b16 axbyg—l_ 11 5 1 0
- (48)
<a¢>_ X a¢*>+F2(x Y)
oy
a¢*
()= (E)+Faw. |

It is easily deduced from the results given by
Sokolnikof [7, sections 66 and 95] in his discussion of
the theory of anisotropic plates that the system (48)
possesses an essentially unique, single-valued solution
¥ (z, ), provided that (a) the roots of the character-
istic equation

boaN* — 3baeh® +-2 (b2 -+ bes) N —

3615)\+bl1=0 (49)

are all complex, and (b)

f F2d8=0, f F]dS‘:O,
C C

It was shown by Lechnitzky® [3] and [4], through
energy considerations that the roots of eq (49) are
always complex. Thus condition (a) is fulfilled.

We shall test the functions Fi(z, y) and Fy(z, v),
in the first two equations of (50). These equations
become

fc (xFl’—'sz)dS”—_O.
(50)

¢ Lechnitzky considered a similar equation, arising in the study of anisotropic
plates, whose roots are the negatives of the roots of eq (49).

J 5 -3

—_—%{fo{N cos (z,v)—T cos (y,») }ds

n o, U X3 LUy
fC(Qx 2y2+m¢>dy (nd> 2y2>dx

=lj N cos (y, »)+T cos (z, v)ds.
aJe J

—é y2+m¢> dx

- (51)

The right-hand members, by the use of eq (45) are
seen to represent the components of the resultant
force per unit length.

By making use of Green’s theorem,

dey de_f(aN aM)dS
oy

we rewrite the left-hand members of (51) in the forms

L GE)m ()} as
Jn Gs)om ().

Since ¢(z,y) satisfies the differential equation (37)

(52)

62¢ a2¢
lB?_l_z bby+nby =Y

we may rewrite the expressions (53) in the forms

NEICHECIOR

Stm GG
105 b Geyom G-

& fom Gty Ge-0) o

Once more we use Green’s theorem (52), this time on
the expressions (54). These now have the forms

Jor[V32

{ ¢+n ——-my—i—nz} cos (v, v):l ds

(55)
Joligtmss

{ ¢-|—n ————my —l—nm} cos (z, v)] ds.

—ly—{—mz} cos (z, v)+

ly—i—mz} cos (z,v)+
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The expressions in brackets vanish, by (41), and
hence the first two of our integrability equation
(50) become, in this case:

J' Kedheal): f Vdsi p:
c Je

These are the conditions which the prescribed
components X and Y of the applied stress were
assumed to satisfy in section 3, hence the first two
integrability conditions (50) are satisfied.

Let us now consider the third equation of (50).
We express N and 7" in terms of X and Y and see
that we must have

1f(xY—yX>ds

ajc
_($n . L, _ moos
—fC{Z e’y —3 Y+ my¢—rné+5 zy }(lx
+ {% xs—é xz/2+mx¢~yl¢>—% 1/12§dy- (56)

We apply Green’s theorem to the right-hand member
of (56), to obtain

lf (Y —yX)ds
aje

=.L [nx2—2mxy+lg/2+m <m %;i—l—n g—;

26, 08 e
—y<l-a—x+m a—y)]ds. (57)

Now, the left-hand member is proportional to the
twisting moment per unit length, A, that is,

M= f e (58)
C

Let us denote by D’ the expression ”

fol') ¢
’ 2 2 it Sy |
D —fR I:nx 2may+ly*+x (m bx+n °

. (z X im %)] ds. (59)

Then, if « is taken as

a=M/|D’, (60)
the third equation of (50) is satisfied, and a single-
valued solution of (48) exists.

We have satisfied the boundary conditions on the
lateral surface; next we shall consider the relaxed
boundary conditions on the end sections.

On both end sections we require that there be no
resultant forces. Hence we require that

T The quantity D’ is proportional to the Saint-Venant coefficient of torsional
rigidity D, which arises in the theory of torsion by end couples.

ffzzdszo, ffz,dszo, fmdszo.
It JR

The first of these conditions can be satisfied by
adjusting the parameters A, B, and . The second
and third are easily shown to hold by considering
(53) through (55).

On both ends we require that the bending couples,

.

2 z
M, and M,, vanish. These requirements can be
met by adjusting the parameters A, B and (), so that

M= [Ry”zdszo, M,E—fxrzzdszo. 61)
. R

On the end z=0, we require that M,—=M-h and on

2
the end z=h, we must have¥M,=0. The second
condition is easily seen to be satisfied since 7,.=
=10 (0P =l

2
Since M, for z=0 is given by

e oo () on G2)]-
[t G-s)en G

and the integrand is equal to the integrand of (57),
it follows that
(4
M.,=hoaD'=hM. (63)
Thus the stresses given by (36) can be made to
satisfy the boundary conditions (16a) and (17), the
conditions of static equilibrium (10) and the com-
patibility conditions (12) by proper choice of the
constants /, m, and =, and the functions ¢(x,y)
and ¢(z,y).
In the next section we shall specialize the equations
to the isotropic case, and in section 6 we shall
illustrate the use of the method by calculating the

stresses in an elliptic cylinder twisted by constant
tangential traction.

5. Isotropic beam

If the beam is isotropic the differential equations
and boundary conditions are considerably simplified.
In this case the elastic constants ¢;; may be expressed
in terms of /£, the Young’s modulus, and ¢, the
Poisson ratio, as follows.

L )
011=622=¢333=‘E‘
o
Ca3=1C33=0C21=—C12—C13—C31— -

L (64)
140

Cy=C55—=Cg6=— E

C16= Cg1==Ca==Cp2= C34==Cp3 = Cy45=C54=10. J
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The elastic constants [, m, n, b, b; are given by

-~

==

m=0
bu=bp=>1—d*/E
bee=(1+0)/E [ i
bpo=—(c+d)/E

big="by=0

by=b,=—b;=(140)/E

bs=0.

7

The function ¢(z,7) must satisfy the conditions

Vi (2,y)=0
%%=y cos (z,v)—z cos (y, »), on C %
and ¥(z,y) must satisfy
Vi (z,y)=0
£ Lyt
&G (72) cos<w>+<%—%) cos )
(67)

The torsional rigidity D’ is calculated from the
defining equation

=3 [ [ov4e gt

and is related to the Saint-Venant coefficient of
torsional rigidity D) by the relation

—y b¢:| dxdy  (68)

(69)

The stress system in this case has the simpler form,

1o oY j
a ™ 2 oy?
1 ¢ O

R
a 2 Ox?

% = — oV gH(A+BatCy)

bomo ()

5 =2 (52—v)

(70)
Con.
1 1 s O
'a‘ Ty T Z ( )+b:cby’
and the strains are given by
1 140 | oto? az.// 1—o? 0% Y g B
= 3E T E o E op EUTHTY
1 _li—g 1——02021P 0’+0‘ b_\b 7
;ew— S5F o— E + E 3 E(A—%—Bm—f—Oy)
1
—ezz=_1+” 44135 (A+Ba+0y)

16 1+a (hez )(a¢+x>

L=t =2 ()

1, 140 ¥y 14 |
= F oyoz T aE & V) j

(71)

6. Stresses in an elliptic cylinder

As an illustration of the theory developed in the
preceding sections, we shall calculate the stresses in
an anisotropic cylinder of elliptic cross section
twisted by a constant tangential traction 7.

Let the equation of the elliptic boundary, €, of the
cross section of the cylinder be given in the paramet-
ric form

T—w Cos'0; y=>b sin 6. (72)

Then,
cos (z,v):cos (y,v)=0b cos 6:a sin 4. (73)

Let us set
¢(x?y): Z Aljxlyj, 7:,.7‘20, 172' (74)
i+j<2
and
‘P(x,?/)zz Bi]'xiyji i:j=0)1)2;3>&) (75)
i+j<4

and seek to determine the coefficients 4, and B;; in
such a way that (37), (39), (41) and (47) are satisfied.
We first calculate M from the defining relation (58),

= J;(xY—yX)ds. (76)

If we insert in (76) the expressions for Yand X given

by (45), we find that M is given by ®

8 Although N is assumed to be zero in this discussion, we include it in eq (77)
to show that a constant normal traction produces no tw xstmg moment.
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.M=fc{(—yN+xT) cos (z,v)4(yT+zN) cos (y,v) }ds.
(77)

By making use of Green’s theorem (52), we may re-
write (77) i the form

M=2Tf dS=2xabT. (78)
I3

We insert the expression (74) into (37) and (41)
and, after some manipulation obtain

o(x, y)=m {—b*ma*+(bl—a’n)xy + a*my?}
(79)

as the solution of the systems (37) and (41).
Using the value of ¢(z, %) given by (79) in the defin-
ing equation (59) we find that D’ is given by

D,__vraabs(nl——m“’).

- (b2l+a2n) (80)
Hence, from (60), it follows that
_2(b%H-a*n)T (81)

T @b (nl—m?)’

We next insert the expression (75) for ¢(z,y) into
the two equations (47) and after setting z=a cos 6,

y=>b sin 4, and making use of (73), weobtain a pair
of polynomials in sin 6 and cos 8. These are expanded
in Fourier series and the coefficients of the various
terms are equated to zero. We thus find that, in
order to satisfy the boundary conditions, y(x,y)
must be given by the expression

24a*b* (a’n—+-0°1) -y (z,y) =b*(3Imb>*— 5mna®+-~)z* -+

4a°6*(b*m* — a*n®) 'y -+ 2a*b>vyr2y*

+4a*0* (0*1P—a*m?)zy® +a* (5lmb*— 3mna+ )y —
2a*b*(3lmb*— 3mna®+~)x*—

2a'b*(3lmb*—3mna*+ )12,  (82)

where v is a constant, as yet arbitrary.

If the value of ¥(z,7) given by (82) is inserted in
the differential equation (39), it is found that 4 must
satisfy the relation

{3bysb*+202b*(b1o+ bg) +3bpat } -y

=3basb* (5mna’—3lmb?) -+ 9bya*b* (b*m>*— a’n?) -
9b15a°6* (b*— a®m?) + 3bya* (3mna®— 5lmb?) —
6b.a°b*m - 6bga*b? (a*n— b*l) + 6b,a*b*m -

3a’b*(a*n—+b7) (bosn—byl).  (83)

Inserting the values of ¢(z,y), a, and ¥(z,) given
above into (36) we obtain the stress system

~

T (3mna*—3Iimb*—~) (b*z*+3a’y*—a*b?)—6a*b*(In—m>)zy
T 3a*bi(ln—m?)

Ty (3mna*—3lmb*—~) (3b*x*+ a*y*—a’b*)+6a*b*(In—m*)ry

T 3a*b*(ln—m?)

Ty 3(n—m?) (b*2*—a*y")—2(3mna*—3lmb*—~)zy
T 3a2b*(ln—m?)

M__élx(h—z)
7 a?

Ter 4y(h—2)
="

T

where

Tzz=p/x2+qlxy_[_r/y2_!_A_{_Bx+0y, J

r' (84)

b>m A

= 3b%cay(3lm b*— 5mna’+v)—3a’cs(b*m* — a*n®)+d’cay cam —{—c%n+

6 azcgg(bzl + 0/272/)

C33 (Fl +a’n)
b2l)

,__35(b*m* —a*n®) — ¢35y + 3¢ (b — a*m®) 4 3egy(a*n—

3ca3( b2+ a’n)

o b2ca0y— 3 b%cs4(b%* — a*m?) 4 3 a’es (5lm b*— 3mna’-+ 7)+032m +c3l

- (85)

a*m

6b%c33(b*l+a’n)

¢y bUtan .
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To evaluate the parameters A4, B, C, in order
that the conditions

j Sty
R

are satisfied we write

f e f i)
T R

fR(p’x2+q’xy+r’y2+A +Bz+Cy)dxdy=0

Y

fR(p’xs—%— q’2?y+r'zy’+ Ax+ Bz*+Cay) dedy=0

f (p'sy+q 2y +r'y*+ Ay +Bay+0y?) dady=0. |
/i
(86)

If we denote by R, I,, and [, the area and the
moments of inertia of the elliptic section, the system
(86) can be written in the form

p'L,+rI,+AR=0, BI,=0, CIL.=0. (87)
For the ellipse,
R=mnab, I.=" 43“, L,=7r—iﬁ- (88)
Hence the parameters A, B, and C are given by
A=_CPEV poo, 0=0, )

and the proposed problem has been completely solved.
For the isotropic elliptic cylinder the solution may

be simplified by using the relations given in section 5.
The solution for this case is given by:

h2— 3
o(x,y)= 2+b2 Yy
,_ ma*h?
D=5y
4(a®>+b>T
= ap
=0
__b2xy3—a2x3y
lﬁ(wyy)—m‘
22:_2xy
4 b & (90)
w_22Y
9T
foyt b2z?— a2y
T a*b?

e 4x(h—2)

AR

T 4y(h—2) (90)
TRE o P Con.
T 20(a®— by,

5% a*b* J

For an isotropic circular cylinder of radius @ the
results are given by

é(z,9)=0 )
,_mat
Bl 4
R
G =ty
v
. Y= 2%
Yz, y)= 21
)
YETRE
Tw__22Y r (91)
T a2
oy 2'—Y*
7 a?
To 4x(h-—2)
0/2
Tz 4y(h—2)
T a’
v:
T .
T J

7. Methods for obtaining solutions of the
boundary-value problems

The determination of the stresses and displace-
ments in the twisted cylinder has been made to
depend upon the solution of the two linear partial
differential equations,

o%*p % '

and

b OV oty
22 51 a 7i 3626 a +2(bl2+bl6) Ox 2a % 3bll axay3+

bua"’ bf"ﬁ 2”«;; +l>1 +bo, (93)
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together with the appropriate boundary conditions,
(41) and (47).

It was shown in section 4 that (92) can, by a simple

change of variables, be transformed into the form

V¢ (J:a?/) =0, (94)
and the various methods of potential theory are avail-
able for the solution of this problem of Neumann.
An elegant method of solution of the Neumann
problem, due to Muscheligvili, is discussed in
Sokolnikoff [8, p. 170].

The determination of the function y(z,7) is con-
siderably more difficult. An equation similar to (93)
arises in the theory of anisotropic plates and a great
deal of work has been done on the problem of solving
this equation. A series of papers by Green and
Taylor [2] gives a method of solution of the system
(93)-(47) for the special case (corresponding to the
orthotropic beam), where

bzszblezoy (95}

A perturbation method of solving the system (93)-
(47), which consists in expressing the solution as a
series of biharmonic functions, is described by
Sokolnikoft [9]. Another, more elegant method,
essentially due to Muscheligvili, depending on con-
formal mapping is also described by Sokolnikoff
[7, p. 375] and [10].

If the beam is isotropic, (93) has the simple form

Vi (x,y) =0, (96)
and the solution is easily obtained in the form
¥(@y) =RI[f(2)+Z9(2)], (97)

where f(z) and ¢(z) are analytic functions of the com-
plex variable z| =xz-1y], which are chosen so that the
function y¥(z,) given by eq (97) will satisfy the
boundary conditions (47) [10].

8. Summary

The determination of the state of stress and the
displacements in a built-in anisotropic cylinder
twisted by forces uniformly applied along the lateral
surface has been made to depend on the solution of
two boundary-value problems.

The existence of the solutions of the boundary-
value problems has been demonstrated, and several
methods of solution of the boundary-value problems
are indicated.

As an illustration of the method, the stresses in an
anistropic beam of elliptic cross section twisted by
constant tangential traction were obtained by assum-
ing that the stress functions were second- and fourth-
degree polynomials.

In a succeeding paper it is planned to extend the
theory to the case where the applied surface tractions
vary along the length of the cylinder, that is, where
the boundary conditions are given in the form.’

X=f(2)X(s)
Y=g(2)Y(s)
Z==il),

on C. (98)

It is hoped that the theory can be further extended
to the problems of extension, bending, and flexure of
anisotropic cylindrical beams by forces distributed
on the lateral surface.®

The boundary conditions for these problems are:
(a) Extension:

X=0 onC
Y=0 on C,

and Z is prescribed on ' subject to the conditions

de#o, fods:o, J yZds=0. (99)
(8 C (64

(b) Bending:
X=0 onC
i=0moni@?

and Z is prescribed on (' subject to the conditions
f Zds=0, f 2 Zdas0, f yZds=0. (100)
o c Je

(¢) Flexure:
7Z=0 on C,

and X and Y are prescribed on (' subject to the
conditions

f{de#O, ijs;éO, f(xY—yX)ds=0.
Ci C C
(101)

It is apparent that a superposition of solutions
corresponding to the boundary conditions (98)
through (101) can be made to satisfy quite general
boundary conditions on the lateral surface.

9 Zwolinsky and Riz [12] treated the case (for isotropic cylinders) where f(2)=z,
N=0, T=constant on C.

10 The problems of extension, bending, and flexure of isotropic (and orthotropic)
cylinder]s by forces applied on the end sections have been solved by Saint-Venant
[8 p. 100].
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10. Appendix. Strain Energy and
Elastic Symmetry

The strain energy, W, of a strained elastic medium is

defined by [8, p. 88]

2W=14.60,+ TyyCyy T 27uzeyz+ 2755051 27'zyeyx- (102)

In the linear theory of elasticity the strain energy is
assumed to be given also by a positive definite quadratic
form in the components of the strain tensor by

IV = %bllefx +b128zz3yu+ bl3ezzezz+bl4exzevz+b15ezzezz+ bl6ezzezv
+ %bﬂezy + bZSeuye:z + b24eyyevz+ b?5eyyezz + bZGeyyezu
+ %bggef, + b34eueuz +b35623321‘ +b3ﬁeuezy
+ %buefri‘ b45eyzezz +b4ﬁeﬂze:u
+ 3bsse 1+ bssezzezy
+ %b%egu-
(103)
The positive definite nature of the form (103) imposes certain
requirements on the signs of the elements of the matrix
(b1 by bz by bis bis )
bio by bos Do bos  bas
biz by bas ba bis b
bH b‘H b34 bﬂ b45 b46
bis by bas bis bss bss

\bic bs bz bis bss bﬁﬁ-J

(104)

An elastic medium is said to possess elastic symmetry in a
plane if a reflection of coordinates in that plane leaves the
strain energy form (103) invariant. Let us consider elastic
symmetry in the zy-plane. The form (103) must be invariant
under the transformation

!

I

z
=y (105)

o

n < K
I

—2z.

The components of the strain tensor transform according
to the relations

€tz =C€zzy  Cyly' =E€yyy, €12 =

} (106)

Cytyt = — €Cygy €ty = —Cszy €xtyt=Czy,
and if the form (103) is to be invariant under the transforma-
tion, we must have

bia="b15="bos=Dbos=Dbss=bys=bs=0. (107)
The matrix (104) then has the form
(b1 b bz 0 0 b )
bia bw by 0 0 by
bis by bz 0 0 by
(104a)

0 0 0 by by O
0 0 0 b45 b55 0
\bis b big 0O 0  bg.J

Since the matrix (104a) is obtained from a positive definite
quadratic form it follows that

b44 b45
b45 b55

By dlfferentlatmg (102) and (103) with respect to e.., and
comparing, Hooke’s law is obtained, expressing the stresses
in terms of the strains.

If this expression of Hooke’s law is solved for the strains
in terms of stresses and the coefficients are denoted by
¢y, . . ., Cgs asinsection 2, it will be seen that the determinant

(108)

C44 C45

(108a)

Cs5  Cs5

is a positive multiple of the determinant in (108), and hence
is positive, as asserted in section 4.

Los AxcerLes, May 26, 1951.
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