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Torsion of Anisotropic Elastic Cylinders by 
Forces Applied on the Lateral Surface ! 

Harold Luxenberg 2 

The classical Saint-Venant theory of torsion presents a method for the determination 
of the elastic behavior of an orthotropic elastic beam of uniform arbitrary cross section 
twisted by forces applied on the end sections, with the lateral surface free of stress. In the 
present paper the t heory is extended to include a more generally anisotropic beam (possessing 
only. a single plane of elastic symmetry, rather than three mutually orthogonal planes of 
elastIC symmetry, as in the case of orthotropic materials) built in at one end and twisted by 
forces uniformly distributed along the lateral surface. 

The stresses in a beam of elliptic cross section twisted by constant tangential traction 
are obtained as an application of the theory . 

1. Introduction 

The classical Sain t-V enan t theory of torsion 
presents a method for the determination of the 
elastic behavior of an or tho tropic ela tic beam of 
unif<?rm arbitrary cross section twisted by forces 
applIed on the end sections, with the lateral surface 
free of stress.. In the presen t paper the theory is 
ext~nded to mcl.ude a more .generally anisotropic 
cylmder (posses mg only a smgle plane of ela tic 
ymmetry, rather than three mutually orthogonal 

planes of elastic symmetry, as in orthotropic ma
ter.ials) buil~ i~ at one end and twisted by forces 
umformly dl tnbuted along the lateral surface. 

The extension of the Saint-Venant theory of tor
sion of cylinders by forces applied on the end sections 
to anisotropic cylinders wa made by Lechnitzky 
[3,4)3 in 1939; 

The torsion of i otropic cylinders by~forces applied 
on ~he lateral urface hl;1 been considered by Filon 
[1] m 1902, Tlmpe [11] m 1912, and Zwolinsky and 
Riz [12] in 1939. 

Filon and Timpe showed that the stresses and dis
placements in an isotropic circular cylinder twisted 
by forces applied on the lateral surface are derivable 
fr?m a biharmonic stress function. Zwolinsky and 
RIZ treated the problem of the isotropic cylinder of 
arbitrary cross section twisted by constant tangential 
forces , and showed that, in this case, the stresses and 
di placements are derivable from two stress func
tions, one biharmonic, the other harmonic. For a 
circular cylinder the harmonic stres function van
ishe , and the Filon-Timpe solution is obtained a a 
pecial case of the Zwolin ky-Riz solution. 

The results obtained h ere are more general than 
those given by Zwolin ky and Riz in two important 
respects. First, the applied force assumed in the 
present. treatment are no t necessarily constant or 
tangentIal to the lateral surface; and econd, the 
results are applicable to a wider range of elastic 
materials, including wood, which i orthotropic, and 

1 The preparation of this paper was sponsored (in part) by a grant from the 
Research Corporation of New York through the Regents of the University of 
California, and (ill part) by the Oillce of Naval Research. 

' ;Present address, Remington & Rand, Inc., Philadelphia, Pa. 
S Figures in brackets indicate t he literature references at the eud:of!this Da],er. 

certain crystalline media [5, p . 155 to 160] which 
possess a single plane of elastic symmetry. ' 

It will be noted that no mention has been made of 
the distribution of stresses over the built-in end of 
the cylinder. This distribut~on will , . in general, 
depend on the mode of clamplllg. If these stresse 
are prescribed the exact solu tion of the problem 
presents considerable difficulty because of the com
plicated boundary conditions. 

In 1855 Saint-Venant stated as a principle of 
elasticity that two statically equivalent sys tems of 
forces applied to a portion of the surface of a medium 
will produce essentially the same stresses at point 
of the body not too near the region of application of 
the forces. 

If this principle is accepted, and if it is borne in 
mind that in most applications only the resultant of 
the stresses on the end of the cylinder is known, it is 
seen . that a solution of practical usefulness may be 
obtamed by "relaxing" the boundary conditions, and 
specifying only the resultant stress on the end section. 

The extra freedom allowed by the relaxation of the 
boundary conditions permits us to obtain a solution 
by the o-called semi-inverse method of Saint
Venant, which consist in making certain assump
tions about the stres distributions, while still 
leaving enough arbitrariness in the assumed tresse 
to satisfy all the conditions of the problem. 

By the use of this method it i shown that the 
stre ses in the twisted cylinder are derivable from 
two stress functions, c/>(x,y) and 1f;(x,y ), which satisfy 
the differential equation . 

(1) 

251762-53- 4 263 



in the region R corresponding to the interior of the 
cylinder, and the conditions 

(l ~: +m ~~ -ly+mx) cos (x, v) + 1 
( m ~: +n ~~ - my+nx) cos (y, v)=o 

~ ( Oif;) = (Zl/> + m x2_ N) cos (x v) + ~ ds oy 2 a ' 

( l T) (2) 
~ x2-2" y2+ m l/>+; cos (y, v) 

-~ (Oif;) = (,!:!: x2_1 y2+ m l/>-'£) cos (x, v)+ J ds ox 2 2 a 

( m N) nl/>-Z y2_-;; cos (y, v) 

on the bounding curve 0 of each cross section. The 
parameters Z, m, n, bt, and bij appearing in these 
equations are functions of the 13 elastic constants of 
the material, Nand T are the normal and tangential 
components of the applied surface tractions per unit 
area, v designates the unit normal vector to 0, and 
a is given by 

Ie (zY - yX)ds 

a f [ ( b<l> b<l» (b<l> b<l» ] • JR nz'-2mz!I+ly'+ :z: m b:z: + n by -y I b:z: +m by dB 
(3) 

In eq (3), X and Yare the x and y components of 
the applied surface traction, and the contour integral 
is the applied twisting moment per unit length. The 
s1ll'face integral is proportional to the torsional rigid
ity of the cylinder. 

In the case of an isotropic beam the differential 
equations (1), simplify to 

the boundary conditions (2) become 

(~: - y) cos (x, v)+ (~~ +x) cos (y, v)= 0 

~ (O"")= (!!!._l\~ cos (x v)+ ds oy 2 ; ) , 

( X2 y2 T) - 4- +; cos (y, v) 

d (Oif;) (X 2 _ y2 T) - - - = - --- cos (x v) + ds ox 4 a ' . 

(~-~) cos (1/, v) 

(4) 

(5) 

and a is given by 

f e (xY - YAJds 
(6) 

It is shown, from energy considerations, that the 
boundary-value problems posed above possess a 
unique solution, and several methods of solution are 
discussed. 

As an illustration of the method, the stresses in 3, 

cylinder of elliptic cross section twisted by constant. 
tangential traction are obtained. 

2. General theory 

The first fundamental boundary-value problem of 
elasticity may be stated as follows [8, p. 72]: 

Determine the distribution of stress and the dis
placements in the interior of an elastic body in 
equilibrium when the body forces are prescribed and 
the distribution of the forces acting on the surface of 
the body is known. 

The second fundamental problem is similar, except 
that in this case the surface displacements rather than 
the forces acting on the surface are prescribed, and in 
the third, or mixed, boundary-value problem the 
forces are prescribed over a portion of the s1ll'face and 
the displacements over the remainder. 

The problem of the cylinder that we are considering 
is of the first kind, where body forces are absent. 

In the following paragraphs we shall review certain 
basic elements of the mathematical theory of elastic
ity and present the mathematical formulation of the 
first fundamental boundary-value problem. 

The state of stress in an elastic medium is char
acterized by the six components Txx, TVY' T .. , T1/Z, Tzx, 
T X1/' of the stress tensor. The components of stress, 
X " y ., Z" on an element of surface whose normal 
has the direction v are given in terms of the tress 
tensor by the relations [8, p . 40) 

X .=TXX cos (x, v) + Txy cos(y,V)+ Tzx cos (z,v) } 

Y .=TXY cos(X,V)+ Tyy cos(y,V)+ TyZ cos (z ,v) (7) 

Z .=Tzx cos (X ,V) + TyZ cos(y,V) + Tzz cos(z,v) . 

The relations (7) may be regarded as defining the 
six components, Txx, Tyy, .. . , TxV, of the stress tensor. 
If we let the vector v take on the directions of the 
three coordinate axes in eq (7), we obtain the usual 
definition of the stress tensor, 

X x = Txx, Y x= TXY , Z,2 , ,. } 
~Yy =TXY1 Y y=Tyy, Z y=TyZ ( ) 

..(Yz = T zx , Yz=TyZ' Z z=Tzz' 

264 



From considerations of static equilibrium it can be 
hown that 

(9) 

and that the defining r elations (8) are self-consistent. 
For any material in static equilibrium under a 

prescribed system of surface loading X., Y., Z., and 
free of body forces, the stress tensor must satisfy the 
equilibrium equations 

(10) 

in the interior of tbe medium, and the conditions (7) 
on the surface, where we now regard .X., Y., Z. as the 
prescribed surface tractions. 

The strain tensor, Cxx, evv, Czz , eyz • e. x, eXY , i defined 
in terms of u , v, and w, the x, y, and z components 

I of the displacement vector , by tbe r elations 

(11) 

It may be shown [5, p. 4 ] that a necessary and 
sufficient condition that a given tensor may be con
idercd as a strain tensor arising from actual physical 

displacements in an elastic material is that the 
tensor satisfy the conditions 

(12) 

Equation (12) n,re lmown a the compatibility 
equations and arc the integrability condition for 
the system of (11 ), when the displacements u, v, w 
are to be determined from a given train tensor. 

The stress and strain tensors in an elastic medium 
are rela ted by the generalized Hooke's law. If the 
elastic constants of the medium are denoted by 
Ctj (i,j= I ,2, ... ,6) Hooke's law for a medium in 
which the xy-plane is a plane of elastic symmetry ~ 
may be written in the form [8, p. 62]: 

(13) 

where C12=C21, C13 = C31, CI6=C61, C23=C32, CZ6 = C62, 

C36 = C63, C45 =C54 · 

For isotropic materials, the number of independ
ent elastic constant reduces to tvw, and Hooke's 
law has the simpler form 

(13a) 

where E is Young's modulus and cr is Poisson's ra tio 
for the material. 

We may. now reformulate the fust fundamental 
boundary-value problem of elasticity in maLhemat
ieal terms: 

D etermine a set of six functions, the components 
of the stress tcnsor, which satisfies the equa tions (1 0) 
in the interior of the elastic medium and the l'cln,tions 
(7) on the urface of the medium, where X., Y., and 
Z. are prescribed functions , and such that the strain 
tensor calculated from these functions by the usc of 
(13 ) satisfies the compatibility conditions (12). 

3 . Formulation of the problem 

Let the coordinate system be chosen as shown in 
figure 1, with the built-in end of the cylinder in the 

• T be most general clastic mcdium is characterized by 21 indel)Cndcnt elastlo 
constants. Here wc consider a medium wbose elastic propert ies are Iden tical in 
any two directions symmetric with respect to t he xy·plaue. T his type of clastic 
symmetry rcd uces the number of independent elastic constan ts to 13. 
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Jllane z= O, and the free end in the plane z= h. The 
boundary curve of any cross section will be denoted 
by 0; the region enclosed by 0 and the unit normal 
to 0 will be denoted by Rand -;. 

~> A) 61 R c 
• z x 

y x y 

FIGURE 1. 

The prescribed surface traction T (force per unit 
area) is assumed to be independent of z, directed 
parallel to the (x,y ) plane, and such. that the result
ant on any cross section is a twisting moment of 
magnitude M (torque per unit length). 

This condition requires that the components X 
and Y of the applied surface traction satisfy the 
relations 

r 
Jc (xY - yX)ds = M . 

(14) 

In order that the first fundamental boundary 
value problem of elasticity may be formulated in 
such a way that the solution is unique, it is necessary 
that the stresses be prescribed over the entire sur
face, subject, of course, to the conditions of static 
equilibrium. This would require that Z" and ZII' the 
components of the clamping stresses on the end 
z= O, be prescribed, subject to the conditions 

JR Z .,dS = O, fR Z lIdS = O, f/ xZ1/-yZ x)dS = Mh . 

(15) 

In this ca e the boundary conditions on the end 
sections would be of the form: 

(a) on the end z=O: 

(b) on the end z= h: 
(16) 

-, •• = 0, TZX= O, 

Inasmuch a Zx and ZII are unlmown (and depend 
upon the mode of clamping), we shall replace the 
exact boundary conditions (16) by the relaxed 
conditions, 

j 

(a) on the end z= O: 

fR TzzdS = JR XTzzdS = fRYT zzdS = 0 

f Tz"dS = £ TlIzdS = O 
R . R 

JR (xTZy- YTzx)dS= Nlh ; (16a) 

(b) on the end z= h: 

-~ £ TzzdS = J: xTzz dS = J: YTz,dS = O 
• R R R 

Tzx= O 

7I1 z= 0. 

These are conditions on the resultant stresses, rather f 

than on the stress distributions. 
The boundary conditions on the lateral surface, 

that is, on the curve 0, are 

7xx cos (X,V) + 7XY cos (y,v)=x} 

7"y cos (x,v) + 71/Y cos (y,v) = Y 

7zx cos (x,v) + 7yZ cos (y,v) = o. 

(17) 

Our problem, then, is to determine a system of 
stresses Txx, 7yy, .. . , Txy which satisfies the equilibrium 
eq (10) , the relaxed boundary conditions (16a) and 
(17), and for which the strain system calculated by 
the use of Hooke's law (13) satisfies the compatibility 
equation (12). 

The solution of the problem as thus formulated is, 
of course, not unique, but, according to the principle 
of Saint-Venant [8 , p. 95], the stresses given by any 
two solutions will be essentially the same at points 
of the cylinder not too near the end sections. 

We shall make use of the Saint-Venant semi-inverse 
method of solution [8, p. 100] . This consists in 
making certain assumptions about the stress distri
bution, and still leaving sufficient freedom to permit 
the satisfaction of the differential equations and the 
boundary conditions. If these assumptions are 
carefully made, a unique solution (unique under I 

these assumptions) exists. 
It is apparent that the torsional couple trans

mitted across each cross section is a linear function 
of the distance from that cross section to the free 
end of the cylinder. Hence, it is natural to assume 
that the stresses in the cylinder are given, in part at 
least, by a Saint-Venant torsion function . 

There is a type of elastic deformation lmown as 
plane train [7, p . 231], in which the displacements 
are of the form 

U= U(X,y), v= v(x,y), w=o. 
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'[ The stresses in this type of deformation are derivable 
from an Au:y s tress function and can be chosen to 
satisfy very general boundary conditions of the type 
given by (17). 

W e shall assume that the stress system in the 
t wisted cylinder may b e derived, in part, from a 
uperpo ition of t he torsion. solution and the plane 

strain type solution. 
For a deformation to be of plane strain type, it is 

necessary that r zz ~ O. Because a variable tension 
on the end sections may produce a bending or exten-
5ion of the cylinder , we sh all further superpose the 
bending and tension type solutions. 

Thus, if we denote by r ij anyone of the six com
ponents of th e stress tensor, we may vrite 

(18) 

wh ere IX is a constant to be determined by conditions 
of static equilibrium, rg) is derived from an Au:y 
stress function, r,<f) is derived from the Saint-Venant 
torsion function , and Ti;) is required to satisfy the 
condition that the end surfaces be free of stresses 
that would produce b ending moments and extensions. 

The stress system rn) ma~T be wriLten [7, p. 231] 

(1)_ 021/; 
r ---

"" oy2 

r ;!) = 0, r~!) = ° (19) 

wh ere I/;[ =tf(x,y)] is the Airy stress function and p 
q, and r, are functions of the elastic constants. W~ 
note that the stress system rn) satisfies the equilib
rium equation (10) identically. 

The stress system ri~) has the form [ , p. 101, 108] 

r!!)=A+Bx+Oy, 
(20) 

where A, B, 0 are determined by the three relations 

f RYTzzdS= O, 

(21) 

which state that the r esultant bending couples and 
tension vanish on the end sections. 

The syst em r,(;) is a modification of the Saint
Venant stress system r;;. Sokolnikoff [8 , p. 214] 
gives the stresses r;; in an or tho tropic beam twisted 
by end couples as 
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(22) 

where l, m, n are fun ctions of the elastic constants 
and <t>[=¢(x, y)] is the torsion function. Because 
we wish the torsional couple to vanish on th e face 
z=h, we shall set 

T~;)= (h-z) {n(~: +x )+m(~: -y )} } 
(23) 

r;;) =(h- z) {l(~: -y )+m(~: +x)}. 

The third of Lhe equilibrium equaLions (10) will be 
satisfied if ¢(x, y) satisfies the condition 

02¢ 02¢ 02¢ 
l OX2+2m oxoy +n oy2=0. (24) 

In order that the first two equilibrium equations 
in the set (10) bc satisfied identically, we set 

m r (2) =lA.+- x2 
xx 'f' 2 ' 

m r (2) =nA. __ y 2 

"" 'f' 2 ' 

n l 
r ;;) =2 X 2_ 2 y2+ m¢. (25) 

To simplify the satisfaction of the compatibility 
conditions (12), we choose 

s t r(2) = _A.+_X2 __ y2 
.. 'f' 2 2' 

with sand t as yet undetermined. 

(26) 

Our assumed stress system, then, is the following: 

1 _ 021/; m 2 
7;rxx - l<t>- oy2+2 X 

1 021/; m 2 
7;ryv= n¢- ox2-2 y 

(27) 



with the constants 01, l , m, n, p, q, r, 8, and t as yet 
undetermined. 

We next determine p, q, r, 8 , and t, in such a way 
that ezz will be independent of ift(x,y ) and of the 
terms in x2 and y 2. The insertion of the stresses 
o-iven by (27) into the third of (13) leads to the 
following expression for ez. : 

1 
- e.z= (C31 l+ ca2n - Ca3 + C36m )</> + 
Oi 

caa(A + B x+Oy)+ 

~ (Calm + Caa8 + c36n )x2-

1 02ift 
2"(Ca2m +c33t+ C36l)y2+(Ca3P-C3z) oxz+ 

02ift 02ift 
(C32 q+ Ca6)~+(Caar-c31)~· v x vy vy 

If we set 

P= C32/C33, q= - C36/Ca3 , r = CaI!Ca3, 

(28) 

8 = - (C3Im + C36n) /ca3, t= - (Ca2m + Ca6l) / caa, (29) 

the last five terms in the right-hand member of (28) 
will vanish. 

If the value for p, q, r, 8, and t given in (29) are 
substituted in the stress equations (27), and the 
strains are then calculated from Hooke's law (13), 
we have the following expressions for the components 
of the s train tensor: 

1 02ift 02ift 02ift 
-eXX= b l </>- b I2~+ bI6~- bll~+ 
01 vx v Xvy vy 

x2 y 2 
(bum + bI6n)Z- (bI6l + bl2m) 2+ 

CI3(A+ B x + Oy) 

1 02ift 02ift 02ift 
-ew = b2</> - b 22~+ bZ6~- b2l ~+ 
a v x v Xvy vy 

x2 y2 
(b 2Im+b 26n) 2 -(bZ6l + b22m )2+ 

C23(A+ B x + Oy) 

1 
-ezz = b3</>+ Ca3(A + Bx + Oy) 
a 

~euz=(h-Z) { (C44n+ C45m)(~~ +x)+ 

(C44m+C45l)(~: - y)} 

~ezx=(h-Z) { (C54m + C55l)(~: - y)+ 

(C54n+C55m)(~~ +x)} 

(30) 

--_._---

1 02ift 02f oZift 
;exv= b6</> - b62 ox2+ b66 oxoy - b61 oy2+ 

x2 y2 
(b6lm + b66n),)"-(b 66l + b6Zm) ')"+ .., .. 
c6iA + Bx +Oy), 

where 

biJ= bJi=!CijCi3 !/C33, i ,j= 1,2,6 } 
C3 jC33 

bi= CjJl+ ciZn - ci3+ c,6m, i = 1,2,3,6. 

(30) 
Con . 

(31) 

If the components of the train tensor given by (30) 
are inserted in the compatibility equations (12), it 
is seen that all but the fourth of the compatibility 
equations are satisfied by the assumed stresses if l , 
m, and n can be chosen to satisfy the six equations 

l (CS5 + Cal) + m(2c45+ Ca6) + n (c44 + C32) = C33 

l (Cal) + m (2C45 + Ca6) + n (2C44 + C32) = Ca3 

l(2c55+Cal) + m(2C45+ Ca6) + n(cd = Ca3. 

(32) 

(' It is easily seen that only three of these six equa
tions are linearly independent and that the compati
bility equations are satisfied if we set 

where 

For convenience in calculation we rewrite the ex
pressions for 8 and t given by (29) in terms of the 
elastic constants, using the relations (33) : 

The fourth of the compatibility equations (12), 
the only one that is dependent on ift (x, y), requires 
that ift (x, y ) satisfy the relation 

04ift 04ift 04ift 
b22 ox4- 3b 26 ()x30Y +2(bI2 + b66) ox20yZ-

04ift 04ift 02</> 02</> 
3b l6 ~+b ll ~= b2 );"2- 2b6~+ v Xvy vy vx v Xvy 

02</> 
bloy2+ b26n-b16l. (35) 

In the next section we shall consider the boundary 
condition on the functions </> (x, y ) and ift (x,y) . 
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-----~ ---- --

4 . Boundary conditions 

It ha been shown in the previou section that the 
system of stresses given by 

1 - l 02"'+m 2 
~ Txx - cf> - oy2 2 x 

1 

Since both of the function rp(x,y) and if; (x,y ) 
appear in (39), it is apparent that we mu t first 
determine cf>(x,y). Fortunately the third boundary 
condition of the set (1 7) is independent of if; (x,y) , 
so that the two boundary value problems are 
separable. 

If the value of Tvz and T zx given by (3 6) are 
inserted into the third of (1 7), we see that thi 
boundary condition will be atisfied if 

{l ~:+m ~~}cos(x,v)+{m ~:+n ~~} cos(y,v)= 

C31C45- C36C55 2 C32C45- C36C44 2 ,/, + 
2{3 x - 2(3 y - 'Y 

(ly-mx) cos (x,v) + (my-nx) cos (y,v) (41 ) 

on O. It is shown by Sokolnikoff [8 , p . 215] that the 
(36) change of variables 

A + Bx + Oy 

~Tyz=(h-z) {n(~~+x)+m(~~-y )} 

~Tzx= (h-z) {l(~~-y)+m(~~+x)} 

will satisfy the equilibrium equations (10) if cf>(x,y) 
ati fie 

02cf> 02rp 02cf> 
l ~+2m~+n~=0 , (3 7) 

u X v X vy v y 

and will satisfy the compatibili ty conditions (12), 
! provided that 

l = C33C44 / {3, m = - c33c45/{3, n = C33C55/{3} 
(38) 

{3 = C44 (C55 + C31) + C.\5 (C44 + C32) - C4 5 ( 2C45 + C36) , 

and if; (x, y) satisfies the differential equation 

o4if; 04if; 04if; 
b?2 ~-3b26 ~+2( b I2+ b66)~-

- v X u X v y v X u y -

04if; 04", 02cf> 02cf> 
3b l 6 ~+b ll ~= b2 ~-2b6~+ 

v X v y v y v X v X v y 

02cf> 
b1 oy2+ bo, (3 9) 

where 

i,j= 1, 2, 6, 

and 
i = 1,2,3,6. 

(40) 

m 
1/ = y-y X, 

will reduce the systems (37) and (41) to the simpler 
system 

02cf>'(~, 1/)+ 02 cf>' (~, 1/ ) 0 
oe on2 

(43) 

:vcf>'(~, 1/)=1/ co (~,v)-~ cos (1/,)1) = 0 on 0'. 

The problem of determining cf>(x,y) is thus reducible 
to a problem of Neumann. Since the right hand 
member of the second of equations (43) i a perfect 
differential, the determination of cf>'(~,1/) is possible, 
and is unique to within an additive constant. 

It hould be pointed out that the quantity 
( In - m 2) is positive for all clastic media, since from 
the defining relations (33), we observe that 

(44) 

and the positiveness of (C14C45-d6) is guaranteed by 
the positive definite nature of the strain energy form.s 
Once the function cf>(x,y) has been determined the 
right-hand member of (39) is a known function. 

Let us expre s the surface tractions X and Y in 
terms of the tangential traction T and the normal 
traction N, by the relations 

X = N cos (x, )1)- T cos (y , )I), 

Y = Ncos (y , v)+ Tcos (x,!!) . (45) 

, See appendix. 
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If we make use of the relations (45), the stresses j' ( m) (n l ) 
given by (36), and the relations a l¢+2" x2 dy - Z x2- Z y2+m¢ dx 

dy 
cos (x, v)= ds' dx 

cos(y, v)=-ds' (46) =~ r {N cos (x, v)-T cos (y, v) }ds, aJa 

~~: ~::! two equations of (1 7) may be rewritten in f a (~ X2_~ y2+m¢) dy-( ncf;-; y2) dx 
(51) 

ls (~t)=(l¢+; x2_ ~) cos (x, v)+ 

(~x2-~y2+m¢+f)cos (y, v), 

-~(o1J;) =(~x2-ly2+mcf;-'!'..)cos (x v)+ ds ox 2 2 a ' 

(47) 

on C. Let us denote the right-hand members of 
these equations by F2(x,y) and Fl(x,y), respectively. 
If we can find a particular (single-valued) solution, 
1J;*(x,y) of (39), we must then solve the homogeneous 
system: 

(48) 

It is easily deduced from the results given by 
Sokolnilmf [7, sections 66 and 95] in his discussion of 
the theory of anisotropic plates that the system (48) 
possesses an essentially unique, single-valued solution 
1J; (x, V), provided that (a) the roots of the character
istic equation 

are all complex, and (b) 

f a (xFl-yF2)ds= O. 

(5 0) 

It was shown by Lechnitzky6 [3] and [4], through 
energy considerations that the roots of eq (49) are 
always complex. Thus condition (a) is fulfilled. 

We shall test the functions Fl (x, y) and F2(x, V), 
in the first two equations of (50). These equations 
become 

• Lechnitzky considered a similar equation. arising in the study of anisotropic 
plates, whose roots are the negatives of the roots of eq (49). 

1j' =- N cos (y, v)+T cos (x, v)ds. 
a a 

The right-hand members, by the u e of eq (45) are 
seen to represent the components of the resultant 
force per unit length. 

By making use of Green's theorem, 

r r (oN OM) JaNdy -Mdx= .J R ~+ oy dS, (52) 

we rewrite the left-hand members of (51) in the forms 

fR {z (~: -y )+m (~~ +x)} dS, 

j~{m (~:-y)+m (~~+x)} dS. 
(53) 

Since ¢(x,y) satisfies the differential equation (37) 

we may rewrite the expressions (53) in the forms 

f R[oOx {xZ(~:-y)+xm (~~+x)}+ 

OOy {xm (~: - y )+xn (~~ +x)}] dS 

fR[oOy {yn(~~+x)+ym (~:-y)}+ 
(54) I 

oOx {ym (~~ +x)+Yl (~: -y )}] dS. 

Once more we use Green 's theorem (52), this time on 
the expressions (54). These now have the forms 

j~ x [{ l ~: +m ~~ - ly +mx} cos (x, v)+ 

{m ~: +n ~~ -mv+nx } cos (y, p)] ds 
(55) 

f a y [{ l ~: +m ~~ - ly+mx} cos (x, p)+ 

{m ~: +n ~~ -mv+nx } cos (x, p)] ds . 
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The e'pressions in brackets vanish, by (41 ), and 
hence the fixst two of our integrabili ty equation 
(50) become, in this case: 

These are the conditions which the prescribed 
components X and Y of the applied stress wer e 
as umed to satisfy in scction 3, hence the fIrst two 
integrability conditions (50) are satisfied. 

Let us now consider the third equation of (50) . 
We eA"Press Nand T in terms of X and Y and see 
that we must have 

~ r (xY - yX)ds aJe 
= fe {~X2Y-4y3+mYrJ>-xnrJ>+; xy2}dX 

+ {~x3-4 xy2+mxrJ>-yZrJ>_1; yx2 }dy . (56) 

We apply Green's thcorem to the right-hand member 
of (56), to obtain 

~ r (xY -yX)ds aJe 

= f R [ nx2-2mx y + Zy2+x ( m ~: +n ~~) 

-y (Z ~: +m ~~)] dS. (57) 

Now, the left-hand member is proportional to the 
twisting moment per unit length , M, that is, 

M= f e(xY- yA;ds. (5 ) 

Let us denote by D' the e).."Pression 7 

(5 9) 

Then, if a is taken as 

a= M jD', (60) 

the third equation of (50) is satisfied, and a single
valued solution of (48 ) exists. 

W e have satisfied the boundary condi tions on the 
lateral surface; next we shall consider the r elaxed 
boundary conditions on the end sections. 

On both end sections we require that there be no 
resultant forces. H ence we require that 

f T he quantity D' is proportional to the Saiot-Venan t coefficient of torsional 
rigidity D , which arises in the theory of torsion by end couples. 

The fir t of these conditions can be sati fied by 
adjusting the parameters A, B , and C. The econd 
and third are easily shown to hold by con idering 
(53) through (55). 

On bo th ends we require tha t the bending couples, 
z z 

M x and Nlv, vanish . These requiremen ts can be 
met by adjusting the parameters A, Band C, so that 

(61) 

z 
On th e end z= O, we require that Mz = M·h and on 

z 
the enel z= h, we must have11Vlz = 0. The second 
condition is easily seen to be saLisfied smce Txz= 
Tuz= O for z=h . 

z 
Since M z for z= O is given by 

M z=haJ R {x [ n (~: + x )+m (~: -Y)] -

Y [Z (~: -y )+m (~: +D ] }dS, (62) 

and the integrand is equal to the integrand of (57 ), 
it follows that 

z 
M z= haD' = hM. (63) 

Thus the sLresses given by (36) can be made to 
satisfy th e boundary conditions (16a) and (17), the 
conditions of static equilibrium (10) and the com
patibility conditions (12) by proper choice of the 
constants l, m, and n, and th e fUllctions rJ>(x,y) 
and f (x ,Y). 

In the next section we shall specialize the equations 
to th e isotropic case, and in section 6 we shall 
illustrate the use of the m ethod by calculating the 
tresses in an elliptic cylinder twisted by constant 

tangential traction. 

5. Isotropic beam 

If the beam is isotropic th e differential equations 
and boundary conditions are considerably simplified. 
In this case th e elastic constants eij may b e expressed 
in terms of E, the YOlmg's modulus, and rT , the 
Poisson ratio , as follows. 

(64) 
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The elastic constants l, m, n, bi, bij are given by 

l= n=! 

m= O 

b66 = (1 + u)/E 

b]2= - (u+u2)/E 

b]= b2= - b3= (1+ u) /E 

b6= 0. 

(65) 

The function 4>(x,y) must satisfy the conditions 

V24>(x,y)=O } 

d ~~ d! = y cos (x, v)-x cos (y, v), on C 

and f (x,y) must satisfy 

V4if;(x,y)= 0 

d (Oif;) (4) N) (X2 - y2 T) - - = --- cos(x v)+ --+- cos(y,v) 
ds oy 2 ex ' 4 a 

d (Oif;) ( X2_ y2 1\ (4) N) - ds ox = -4--~) cos(x,v)+ 2-~ cos(y,v). 

(67) 

The torsional rigidity D' is calculated from the 
defining equation 

~ T =~ (X2_y2)+ o2if; , 
ex IV 4 ox oy 

and the strains are given by 

J 

(70) 
Con. 

1 1 + u u+u202f 1- u2 o2if; U 1 
~exx= 2E 4>+Jr ox2-----y;; oy2-E(A+ Bx+Cy) 

1 1 + u 1-u202if; u+ u2 o2if; u 
~eyy= 2E 4> -----y;; ox2+ E oy2-E(A+ Bx+Cy) 

1 l + u 1 
~ezz=---p; 4>+ E (A+Bx + Cy) 

1 l + u (Of) - e =-- (h-z) --y 
a zx 2E ox 

J 
(71) 

6 . Stresses in an elliptic cylinder 

As an illustration of the theory developed in the 
preceding sections, we shall calculate the stresses in 
an anisotropic cylinder of ellip tic cross section 
twisted by a constant tangential traction T. 

Let the equation of the ellip tic boundary, C, of the 
cross section of the cylinder be given in the paramet
ric form 

x=a cos 0, y=bsinO. (72) 

(68) Then, 

and is related to the Saint-V enant coefficient of 
torsional rigidity D by the relation 

D'= D(l +u)/E. (69) 

The stress system in this case has the simpler form, 

1 

cos (x, v) :cos (y, v) = b cos e:a sin e. (73) 

Let us set 

i,j=O, 1,2. (74) 

and 

i,j=0,1,2,3,'±, (75) 

and seek to determine the coefficients A lj and Btj in 
such a way that (37), (39), (41) and (47) are satisfied. 

We first calculate M from the defining relation (58), 

(76) 

1 1 (oe/» 
- T =- (h-z) -+x 

(70) If we insert in (76) the expressions for Yand X given 
by (45), we find that M is given by 8 

ex yz 2 oy 
8 Although N is assumed to be zero in this discussiou, we iuclude it iu eq (n) 

to show that a constant normal traction produces no twisting moment. 
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M = f C{ (-yN+xT) cos (x, v) + (yT+ xN) cos (y,v) }ds. 

(77) 

By making use of Green's theorem (52), we may re
\\rite (77) in the form 

M = 2T L dS = 271"abT. (7S) 

We insert the expression (74) into (37) and (41) 
and, after some manipulation obtain 

as the solution of the systems (37) and (41) . 
Using the value of 4>(x, y) given by (79) in the defin-

ing equation (59) we find that D' is given by 

D' 7I"a3b3(nl-m 2). 
(SO) 

(b2l+ aZn) 

H ence, from (60), it follows that 

(Sl) 

We next insert the expression (75) for if; (x,y) into 
the two equations (47) and after setting x= a cos 8, 

y = b sin 8, and making use of (73), we~obtain a pair 
of polynomials in sin 8 and cos 8. These are expanded 
in Fourier series and the coefficient of the variou 
terms are equated to zero. We thu find that, in 
order to sati fy the boundary condition , if; (x, y) 
must be given by the expression 

24a2b2(a2n + bZl).if;(x,y) = b4 (3 lmb2- 5mnaz+ 'Y )x4+ 

4a2b2 (bZm2-aZnZ)x3y+ 2a2b2'Yxzyz 

+ 4aW(b2l2-a2m2)xy3+a4(5lmb2-3mna2+ 'Y)y4 _ 

2a2b4 (3 lmb2- 3mna2+ 'Y)xZ-

2a4b2(3lmb2- 3mna2+ 'Y)y2, (S2) 

where I' is a constant, as yet arbitrary. 
If the value of if; (x, y ) given by (S2) is inserted in 

the differential equation (3 9), it is found that I' must 
atisfy the relation 

{3b22b4+2a2b2(b12 + b66) + 3bu a4}.'Y 

= 3b2Zb4(5mna2- 3lmb2) + 9bz6a2b2(b2m2-a2n2) + 

9b16azb2(b2l2-a2m2) + 3bna4(3mna2- 5lmb2)-

6b2a2b4m + 6b6azb2 (a2n-b2l) + 6b1 a4b2m + 

3a2bZ(a2n + b2l) (b26n - b16l). (3) 

Inserting the value of 4> (x,y) , lX, and if; (x,y) given 
above into (36) we obtain the stress system 

T xX (3mna2- 3lmb2-'Y) (bZxz+3 a2y2- a2b2)- 6a2b2(ln - m 2)x y 
'1' 3a2b4(ln - m2) 

T W (3mnaZ- 3lm b2- 'Y) (3 b2x2+ a2y2_ a2b2)+ 6a2 b2(ln-m2)xy 
T 3a4b2(ln - m 2) 

TXJ/ 3(ln - m Z) (b2x2- a2y2)- 2(3mna2- 3lm b2 - 'Y)xy 
'1' 3a2bZ(ln-mZ) 

Ty: 4 x(h- z) 
( 4) 

T a2 

Tzx 4y(h -z) 
'1'=- b2 

where 

3 b2c32(3lm b2- 5mna2+'Y)- 3 a2c36( b2m2_ a2n2) + a2C3l'Y 
P' 6a2c33(b2l+ a2n) 

3C32( b2m 2_ a2n2)- c36'Y+3c31( b2l2_ a2m 2) + 3c33(a2n - b2l) 
q' 3e33( Pl+ a2n ) 

(85) 

,_ b2C32'Y-3 b2c36( b2[2 - a2m 2)+ 3a2c31{5lm b2- 3mna2+ 'Y) + C32m + c36l 
r - 6b2c3aC b2l+ aZn) C33 
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To evaluate the parameters A, B , C, in order 
that the conditions 

are satisfied we write 

fR (p'x2+q'xy+r'y2+ A + Bx + Cy) dxdy=O 

fR (p'x3+q'x2y+r'x y2+ Ax+Bx2+Cxy) dxdy=O 

L (p'x2y+ q'x y2+r' y3+ Ay+ Bxy+Cy2) dxdy = O. 

(86) 

If we denote by R, I x, and I v the area and the 
moments of inertia of the elliptic section, the system 
(86) can be written in the form 

For the ellipse, 

(88) 

Hence the parameters A, B , and 0 are given by 

A= 
a2p' + b2r' 

4 ,B=O, 0= 0, (89) 

and the proposed problem has been completely solved. 
For the isotropic elliptic cylinder the solution may 

be simplified by using the relations given in section 5. 
The solution for this case is given by: 

7ra3b3 

D' = 2(a2 + b2) 

4(a 2+ b2)T 
a a2 b2 

')'=0 

1/;(x, y) 
b2xy3-a2x3y 

12(a2+ b2) -

TXII b2 x2_ a2y2 
T a~ b 2 

(90) 

Tvz 4x(h -z) 
T a2 

Tzx 4y(h - z) 
"T =- b2 

T zz 2/T(a2 - b2)xy 
'J' a2b2 ' 

(90) 
Con. 

For an isotropic circular cylinder of radius a the 
resul ts are given by 

¢(x,y)=O 

4 
D, = 7ra 

4 

8T 
a= (i2 

Txx 2xy 
'J'=QT 

TVY 2xy 
'J' QT 

T zx 4y(h -z) 
T a2 

~=O. 

(91) 

7. Methods for obtaining solutions of the 
boundary-value problems 

The determination of th e stresses and displace
men ts in th e twisted cylin der h as been made to 
depend upon the solution of th e two linear} partial 
differ en tial equations, 

and 
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together 'with the appropriate boundary conditions, 
(41 ) and (47). 

It was shown in section 4 that (92) can, by a simple 
change of variables, be transformed into the form 

'IPcp(X,y) = 0, (94) 

and the variou methods of potential theory are avail
able for the solution of this problem of Neumann. 
An elegant method of solution of the Neumann 
problem, due to Muschelisvili, is discussed in 

okolnikoff [8, p . 170]. 
The determination of the function 'if; (x,y ) is con-

iderably more difficult . An equation similar to (93) 
ari es in the theory of anisotropic plates and a great 
deal of work has been done on the problem of solving 
this equation. A series of papers by Green and 
Taylor [2] gives a method of solution of the system 
(93)-(47) for the special case (corresponding to the 
orthotropic beam), where 

(95) 

A perturbation method of olving the system (93)
(47), which consists in expressing the solution as a 
series of biharmonic functions, is describ ed by 

okolnikoff [9]. Another, more elegant method, 
essentially due to Muschelisvili, depending on con
formal mapping is also described by okolnikoff 
[7, p. 375] and [10]. 

If the beam i isotropic, (93) ha the simple form 

(96) 

and the solution is easily obtained in th e form 

'if; (x,y) = R [f(z) + z g(z) ], (97) 

wherej(z) and g(z) are analytic functions of the com-

In a ucceeding paper it i planned to e ' tend the 
theory to the case where the applied surface traction 
vary along the length of the cylinder, that i , where 
the boundary conditions are given in the form u 

X - j(z) X (s) 

Y = g(z)Y(s) 

Z = O. 

(98) 

It is hoped that the theory can be further extended 
to the problems of extension, bending, and flexure of 
anisotropic cylindrical beam by forces distributed 
on the lateral surface.10 

The boundary conditions for these problem are: 
(a) Extension : 

X= o on C 

Y=O on C, 

and Z is prescribed on C subject to the conditions 

I e Zd rfO, I e xZ d = 0, I e yZds= O. (99) 

(b) Bending: 

X= O on C 

Y=o on C, 

and Z i prescribed on C slLbj ect to the conditions 

plex variable z [=x +iy], which are chosen so that the (c) Flexure: 
function 'if; (x,y) given by eq (97) will satisfy the 
boundary conditions (47) [10] . 

8 . Summary 

The determination of the tate of stres and the 
displacements in a built-in anisotropic cylinder 
twisted by forces uniformly applied along the lateral 
urface has been made to depend on the solution of 

two boundary-value problems. 
The existence of the solutions of the boundary

value problems has been demonstrated, and several 
methods of solution of the boundary-value problems 
are indicated. 

As an illustration of the method, the stre ses in an 
anistropic beam of elliptic cross section t wisted by 
constant tangential traction were obtained by assum
ing that the stress functions were second- and fourth
degree polynomials. 
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7=0 on C, 

and X and Yare prescribed on C subject to the 
condition 

j ' !XdsrfO, 
eJ 

I eYdsrfO , f e(xY-yX)ds= O. 

(101) 

It is apparent that a superpo ition of solutions 
corresponding to the boundary conditions (98) 
through (101) can be made to satisfy quite general 
boundary condition on the lateral urface. 

, Zwolinskyand Riz [12] treated the case (for isotropic cylinders) where [(2)=Z, 
N = O, T =constant on e. 

10 The problems of extension, bending, and flexure of isotropic (and orthotropic) 
cylinders by forces applied on the end sections have been solved by Saint-Venant 
[8 p . 100] . 
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10. Appendix. Strain Energy a nd 
Elastic Symmetry 

The strain energy, W, of a strained elastic medium is 
defined by [8, p. 88] 

In the linear theory of elasticity the strain energy is 
assumed to be given also by a positive definite quadratic 
form in the components of the strain tensor by 

w = t bue;. + bI2e",.evu + bI3e .. e .. + b14e .. e.,+ bI5enezz+ blseue",. 

+ !b~2e!y + b23evue .. + b24 e •• e., + b258."e .. + b2Sevue",. 

+ ~b33e! + b34e .. e., + b35e .. eu + base .. e",. 

+ !b44e!. + b45e.,e .. + b4Se.,e •• 

+ !b55e~.+ b56e .. e •• 

+!bs6e; •. 
(1 03) 

The positive definite nature of the form (103) imposes certain 
requirements on the signs of the elements of the matrix 

bll bl2 bl3 b14 bl5 
b" l bl2 b22 bn b24 b25 b26 

bl3 bn b33 b3• b35 

b,. J (104) 
bll bN b34 b44 bl5 bl6 

bl5 b25 b35 b'5 b" b56 

bl6 b'6 b36 b'6 b56 b66. 

An elastic medium is said to possess elastic symmetry in a 
plane if a reflection of coordinates in that plane leaves the 
strain energy form (103) invariant. Let us consider elastic 
symmetry in the xy-plane. The form (103) must be inyariant 
under the transformation 

:&' = x I 
y' = y 

z'=-z. 

(l 05) 

The components of the strain tensor transform according 
to the relation 

ev'tI,=ey,n ez,z,=ez• } 

eV'zi = - e lln ez,:z, = - ezx , ex,,,, = eXJJ' 
(106) 

and if the form (103) is to be invariant under the transforma
tion, we must have 

b14 = b15= b21 = b25 = b35 = b.6= b56 = O. (107) 

The matrix (104) then has the form 

bll bl2 bl3 0 0 bl6 

bl2 b22 bn 0 0 b26 

bl3 bn b33 0 0 b36 
(104a) 

0 0 0 b44 bl5 0 

0 0 0 bl5 b55 0 

b16 b~6 b36 0 0 b66. 

Since the matrix (104a) is obtained from a positive definite 
quadratic form it follows that 

(10 ) 

By differentiating (102) and (103) with respect to ex"" and 
comparing, Hooke's law is obtained, expressing the stresses 
in terms of the strains. 

If this expression of Hooke's law is solved for the strains 
in terms of stresses and the coefficients are denoted by 
Cn, ••• , CBB as in section 2, it will be seen that the determinant 

(108a) 

i a positive multiple of the determinant in (108), and hence 
is positive, as asserted in section 4 . 

Los ANGELES, May 26, 1951. 
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