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Contributions to the Theory of Markov Chains 
Kai Lai Chung 1 

The fundam entals of t he tJleory of denumerable Markov cha ins with station a ry trans i
tion probabilit ies were laid down by Kolmogorov, and fur ther work was don e by Doblin. 
The t heory of recurrent events of F eller is closely related , if no t coextensive. So me n ew 
resul ts obtained by T. E. Harris turn out to t ie up very nicely with so me amplifications of 
Doblin 's work. Harris was led to consid er t he probabilities of hi ttin g one state before 
another , starting from a third one. This idea of consid erin g t hree states, one initial , one 
"taboo", and one fin a l, is more full y developed in t he presen t work. The notion of first 
passage t ime to t he " union" or " in tersection " of two states is also in trodu ced h ere. The 
in terplay between t hese no t ions is illustra ted. 

The fundamen tals of the theory of denumerable 
Markov chains 2 with s tationary transit ion proba
bilit ies (DMCS) were laid down by Kolmogol'ov 
[IJ 3 and furthcr work was done by Doblin [2]. The 
theory of reC UlTent events of F eller [3] is closeh
r elated, if not coextensive. R ecently some inter est
ing new results were obtained by '1'. E. Hal'l'is [4] and 
communicated to the au thor. They t urn out to tie 
up very nicely with some amplifications of Doblin 's 
work t he author was engaged in. Although Hal'l'is' 
main purpose lies elsewhere, he was led to consider 
the probabili ties of hitting one state before another, 
star t ing from a third one. This idea of considering 
three (instead of the customary two) states, one 
init ial , one" taboo," and one final , will be more full:,
developed in the present work. The notion of first 
passage time to the "union" 01' " intersection" of 
two states will also be introduced here. The inter
play between these notions will be illustra ted . 

R ecorded resul ts in this paper will be labeled as 
formulas and theorems, r espectively. Relevan t re
marks as to the ir origin or signifi cance will be found 
in the body of the paper. The author is indeb ted to 
Dr. Harris for communicating some of his results 
before publication . 

1. The sequence of random variables { X ,,}, n= 0, 
1,2, ... forms a DMCS. The sta tes will be de
noted simply by the positive integers. The (one
step) transition probability from the state i to th e 
state j will be denoted by Pg) . B ecause of station
arity we have 

Pg) = P(X m+ l = j lX m = i) 

for all integers m ~ ° for whieh the conditional prob
ability is defined. With this understanding, we shall 
permit ourselves to write m = O in the defini t ions to 
follow, as if the conditional probabilities were always 
defined . 

NOTA'I'IONS: 

n, N, v, r, s, denote positive integers and will be 
used as time parameters or general numerals; 

1 National Bureau of Standards and Insti tute of Statistics, Uni versity of 
North Carolina , Chapel Hill, N. C. 

2 "Denumerable" means "with a denumerable number oC states;JI "chain" 
refers to a process with an in tegral time parameter . 

3 Figures in brackets indicate tbe literature references at tbe end of this paper. 

i, .j, k, l , h, deno te positive integers and wil l be 
used as state labels : 

Pi7) = P(X,, = .i IXo = i); p .IO) = ., {
a, 

1, ~ = .7 

kP/j)= P(X ,,= j, Xv~ lc , l ..s;v < n IX o= i) 

Filj')= P(X,,=j, Xv ~j, l ..s;v < n IXo = i) 

kFi';)= P(X ,,= j, X,, ~ .i, ~ lc , l ..s;v < n!X o= i) 

Q* =~ Q(nJ 
n= l 

where Q may stand for any of the symbols kP ij, Fij, 
or kFij . 

We offer th e following clue to the above no tat ions. 
The letter P designates "passage" ; the letter F, 
"first passage"; th e first right-hand subscrip t desig
nates th e initial state; the second , the final state; the 
left-hand subscript designates tbe "taboo state," 
namely, one to be eschewed during the passage (r:x 
elusive of bot h terminals) ; ·the star on a letter WIth 
su bscl'ipts designates the sum of the corresponding 
infin i te series (fini te or + 00 ) summed from n = 1 ad 
inj. We admit th at this is no t th e most logical 
system of notations we co uld have inven ted. For 
instance, we have the superB uity n i ) = jP.I;d , and if 
we bad allowed more than on e left-hand subscript ,· 
we could have used only one letter P and written 
kF?i)=j,kPt:l. However, we consider our no tations 
to be preferred to the arbitrary use of all sorts of 
letters from the Latin and Greek alphabets. Also, 
after painful deliberations we decided not to define 
kPi7), FiT , or kF/? ), while reserving the righ t to do so 
later in some cases. 

FORMULA I: I} i ~j, then 

F:; = iF7'; (1 + jP:i ) , (I ) 

where on the right side 0· 00 is to be taken as 0.5 

• T his naturally suggests tbe consideration of morc than onc taboo statc . 
• This follows also from t he eas ily intcrpreted relations 

co " n _ _ l _ _ ~:, . 
l+ jP ;.:= ~ (, F lI ) - " - • 

n= O I-,ll'" , F~1 
The convention that O· '" is to be taken as 0 w ill be un derstood in sim il a r cir
cumstances. 
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PROOF: We start from the formula 

(1) 

where we agree that jPi?) = 1. Equation (1) is 
proved as follows. Either the state i is not entered 
at all during the passage from i to j, which contin
gency contributes the term corresponding to v=O on 
the right side of (1); or there is a last entry of i, 
occurring at the vth step, 1~v~n-1, which con
tingency contributes the general term. 

Summing (1) over n, we obtain 

Since the terms of the double series are nonnegative, 
the inversion is justified and (I) is proved. Moreover, 
this proves that if jF,j > 0, then jPi~ < ro. It follows 
from (I) that jFij= O if, and only if, F,j = O, namely, 
P,<'; ) = 0 for all n. 

FORMULA II: If j ~k, then 

(II) 

(This formula is easily interpreted in terms of math
ematical expectations.) 

PROOF: We start from the formula 

n 
kP .('! ) = '" kF.(~ ) kP ('! -, ) (2) 

11 ~ \J 11 , 

v=1 
where as before kP/?) = 1. If we ignore the left-hand 
subscripts, (2) reduces to a familiar formula. The 
proof of the latter extends immediately to (2). 

Summing (2) over n we obtain 

00 00 n 
P* - '" p (n ) _ '" '" F (' ) p (n -, ) k if - L...J k if - L...J £.-J k if k ii 

n=1 n=l v=1 

We note the following corollaries to (I) and (II), 
to be used later. 

FORMULA IIa: If i~j, then 

(II a) 

FORMULA lIb: If j ~k, then 

FORMULA III : If i ~j, then 

(III) 

PROOF: We start from the formula 

(3) 

where we agree that iPi?) = 0. The proof of (3) IS 

entirely similar to that of (1). 
Summing (3) from n = O to n = N, we obtain 

We need an elementary lemma which is frequently 
useful in such connections. 

LEMMA. LetO~a.~ l, b. ;:::O; 

B~ + ro o Then 

~ a,> O, lim b,= 

N 
L2 a.b N _. 

lim .=0 
N-too -=--="N:r---

L2 a. 
v=O 

v=o v-+cn 

B. 

Applying the lemma to (4) we obtain (III). That 
iP,j < ro is clear from (IIa) , and the remarks at the 
end of the proof of (I), 

THEOREM I, The limit 

(5) 

exists, and is equal to any of the following three 
expressions: 

l +jPi~ 
l + i Pij' 

Fij jFi~. 
F~ iFti' 

(IVa, b, c) 

the first always, the second if i~j, the third if FijFi~ > 0. 

PROOF. Doblin [2] has shown, trivially, that 

N 
"'P !'!) 
.L..J '1 

] ' n=O F* 1m - N- - = 'ii ' 

N-t oo '" P ('! ) 
.L..J " n=O 

(6) 

FORMULA IIc: If i~j, then 

(lIb) Comparing (III) and (6), we obtain (IVb) if i~j. 
(IVa) now follows from (IIc) and obviously holds for 
i=j. If FijFi~ > O, then the denominator of (IVc) is 
not zero, and this is then equal to (IVb) by (lIb), 

(II c) with k =i. 
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That the limit (5) exists, and is finite and not zero , 
was proved by Doblin [2]; that it is equal to (IVa) 
was previously proved by the author [5]. The 
present approach seems to be the simplest. 

COROLLARY. If i,j ,k ,l , are distinct states of one 
, class, 6 then 

F,i (1 + tP/;) 
F :Z (l +jPti)' 

Naturally there are other expressions for it , and 
we omit the tedious considerations when some of the 
states are identical. 

2. We now consider two states i and j belonging 
to the same recurrent class, namely: 

A fundamental idea in the theory of DM CS, already 
found in Kolmogorov's work, is that whatever tran
spires between successive en tries at a r ecurrent state 
forms a sequence of independent events. Using this 
idea, Harris [4] and Levy [10], independently of each 
other , discovered theorem 2. Our proof is somewhat 
differ ent from theirs. 

L et i ~j and define 

Y,, = the number of v, l :::;'v :::;'n, such that X .= i ; 

Z ,, = the nll1nber of v, l :::;'v:::;' n, such that X .=j. 

In words, Y" (or Z n) is the number of entries at the 
state i (or j ) in th e first n steps. Using the average 
ergodic theorem (see (11) below) it is easy to show 
tha t if j is a positive state, and P (XOEC) = 1, wher e 
C is the class containing j, th en we have 

p(lim n
Z" = 1)= 1. 

n--+<x> ""'P C,) 
£......J 11 
v=O 

The following theorem covers both positive and null 
classes . 

THEOREM 2 (Harris-Levy). If i and j are two states 
in a recurrent class C and P (XOEC) = 1, then 

""'P C~) 

tributed random variables. Evidently we have 

<X> 

E (Ws) = L; jPii ) = jP,i < co • 
n =1 

Now by definition we have vy,,:::;'n< vY,,+l and 

Y.-l Y. 
L; W. :::;' ZN:::;' VI+ L;Ws. 
8= 1 8=1 

Consequently, 

Y.-l Y. 

L; Ws Z L;W. 
8= 1 <~<~+~. 

Y n - Y ,,- Y n Y" 
(8) 

Applying Iiliintehine-Kolmogorov's s trong law of 
large numbers (see, e. g., [9J p . 208) to the sequence 
{ W.} we obtain: 

(9) 

Moreover , P (v 1 < + co) = 1. It follows from (8) and 
(9) that 

P (lim Z n=iP;i ) = 1. 
n --+<Xl Yn 

(10) 

N ow F,i = 1. H ence theorem 2 follows from (10) 
and theorem 1, using (IVb) there. 

This theorem includes as special case a previous 
result by Erdos and the author [7] . Consider in
dependen t, identically distributed random variables 
{ Un} which assume only integer values with mean 
zero. They form a DMCS with all integers as the 
states. Since the mean is zero, all possible states 
are recurrent by a theorem of Fuchs and t he author 
[8] .7 Without loss of generality, we may suppose that 
every integer is a possible, therefore recurrent, state. 

11 

'Writing S ,,= L; Uv, we see that 
v=1 

[ n ] Z £......J 11 

P 1· "' n l' v= O 1 lm -= Im - -- = . 
,,--+ <x> Y n n--+ <x> ±Pii) (7) P (lim yZ "= 1)= 1, 

n--+Q) n 
v= O 

PROOF. Since i is reClll'l'ent, we have P(1im Y ,,= 
n---><x> 

+ co ) = 1. Let VI < V2< . . . be the successive in-

dices V, such that X .=i. Let lVs = the number of 
v, vs<v< vs+! such that X .=j. Then as remarked 
above, the Ws's are independent, identically dis-

'Slightly generalizing Kolmogorov, we define a class to be a set of states such 
that for all Y two states i alld j belonging to it, wc bavc F;! l'j'>O. See [6]. 

which is theorem 8 in [7] . Needless to say, as far as 
this statement is concerned, Harris' approach is 
incomparably better . However, we note that there 
we actually proved a sharper result, i. e. 

7 T bis important step cannot be circumventcd by tbe present, more general, 
approach. 
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n 
for every ~> O , where k f n = 2.: P (Sv=i). See also 

v=1 

th eorem 7 in [7J . It would b e of inter es t to investi
gate corresponding strong relations for the gen eral 
M arkov-chain case, using perhaps a more precise 
form of th e strong law of large numbers. 

3. W e now consider a positive r ecurren t class C. 
According t o Kolmogorov, in C all m ean r ecurren ce 
and firs t passage times are finite, nam ely , for all 
i,.1 ~ C we have 

'" 
m ij= 2.: nF\/) < ro. 

n=1 

W e in troduce the notions of first passage to .1Uk and 
to .in k , as follows . Let .1 ~ k . 

T (i, j Uk ) = th e smallest in teger n ~ 1 such that 
X n=.1 or X n= k , which ever h appens fir st, given that 
Xo = i; 

T (i, j n k )= th e smallest in teger n~ 1 such th a t 
th ere exist two in tegers nl and nz such that 1h :;:n z, 
l ~nl~n, l ~nz~n, and X "l=.1, X nz= k , given th a t 
Xo = i; 

m(i,.1Uk )= E { T (i,j Uk ) } ; 
m(i,j n k ) = E { T (i, j n k ) }. 

L r, t, w denote th e sample poin t . Put 

e ~ = { w :Xo(w) = i, X v(w) ~ .1, ~ k 

for 1 ~ v ~n;Xn(W) =j} ; 

ej = U e~. 
71=1 

Thus ej is th e even t that Xo=i and th e state .i is 
r each ed before th e state k. Since i, .1, and k b elong 
to one r ecurren t class, we have 

L et P (Xo = i) = c> O. We have the following rela
tions, immediate consequ en ces of th e definitions. 

cm(i,.1Uk )= ,ti {J~~ n P (dw)+ .r n P (dw) } 

Cmij= ~ {J~~ n P (dw) + J~~ (n + m kj)dP (w) } 

= cm(i , .1U k )+ P (ek)m kj 

cm(i, n j lc) = ~ {L (n + m jk)P (dw) 

+ i~ (n + m kJ)P (dW) } 

Now by defini tion we h ave 

H ence we ob tain from the above: 

FORMULA VI. If j ~ k, then 

FORMULA VII. If j ~k, then 

m(i, j n k )= m ij+kFij m jk= m ik+jF tkmkl' (VII) I 

Since 

we dedu ce from (VII) : 

FORMULA VIII . If j~ k, then 

(VIII ) 

W e no te th e following special case (i = k) of (VIII): 

(VIlla) 

This last formula is due to H arris [4], who also de
rived from it th e following relation: 

(VIII b) 

Now in a positive class the ergodic theorem of K ol
mogorov holds: 8 

,. l ~ p () 1 11m - L..J .~ =--. 
n-.'" n V= 1 " mjj 

(11) 

Thus (VlIIb) turns ou t to b e a special case of I 

theorem 1, using (IVc) and no ting that F7k= F :i = 1. 
Dividing (VIII ) by th e product of (VIlla) and 

(VIIlb) we ob tain 

(12) 

By formula (lIb), th e right side is kPt;, s:nce Fik= 1 in 
th e presen t case. Thus we obtain 

FORMULA (IX) . If j~ k then 

m ik+ mkj- mij 
m jj 

(IX) 

As an application consider, as in th e Cen tral Limit 
Theorem for Markov chains, r andom variables { Y n } 

attach ed to the M arkov chain { Xn } in th e following 
way: Yn = Xi if X n=i where th e x/s are arbitrary 
real numbers. 

T HEOREM 3. L et i be a positive state. Given Xo=i, 
let Vo denote the smallest n ~ 1 such that X n=i. Then 
if the series on the right-hand side converges absolu tely , 

8 T his theorem actuall y establishes the limit of Pli) as n-.",. T he average form 
(11) is an easy consequence of a H ardy-Litt lewood 'rauberian theorem. 

206 



(Xb) 

/ PROOF. It is more convenient to consider new 
! variables Zn defined as follows: 

{o if X .=i for som e v, 1 ~v<n; 
Zn= 

Xj if X n=j and X .. ~i, 1 ~v<n, 

. where j may be i in the last-written line. Evidently 
we have then 

E {t Yn I Xo= i } =E {~ ZnIXo=i} n=1 n=1 

by (IX) with i= k. 
Furthermore, we have 

E{(~ Yn) 2IXo= i } =E{(~ ZnYIXo=i} 
=E{f:(Z~ + 2 ~ ZrZ,) IXo = i }. 

7> = 1 1 $ r<8$ n 

I As before, we obtain r eadily 

E{~ Z~ IXo= i } =~ m ii xi. 
n=1 :' = 1 m jj 

Next we have 

~ ~ E(ZrZ, IX o=i)= 
r= 18= r+ l 

By (IX) this red uces to (Xb) . 

The t·wo expressions on the left sides of (Xa) and 
(Xb) play an important role in Doblin's Central 
Limit Theorem for DMCS. W e r efer the r eader to 
[2] for details . They are h ere eval uated in what 
see:rns to us more tangible terms . 

4. From formulas (VI) and (VII) it follows that 

, Doob pointed out to me that this is a case of Wald 's equation for Markov 
chains . 

This r elation is in striking r esemblance to a familiar 
formula in the elementary calculus of probabilities 
according to whi ch if A and B arc any two event~ 
then 

P (A UB) + p (A n B) = P (A) + P (B). 

~rhe generalizations of the last r elation to fl.ny 
fimte number of events is known as Poincar e's for
mula (sec, for example, [9], p. 61 ) ; and we immedi
ately suspect that th e same may be true for the m ean 
first passage t imes. This is indeed so. W e define 
m(i ,jl l.} .. . Uj ,) and m (i ,j ln . . . n j ,) as th e obvioLls 
extenslOns from th e case s= 2. We shall also write 
/ In ... . n j ,....;-j to denotejl n .. . n jr_l n j ,+ln . . . n j , if 
J = .7r (1 ~ r ~ s) andjl n . . . n j, if j is not one of the 
j r's . 
FO:l~MuLA XI. If jl, . . . ,.1, are distinct states in a 

positive cLass to which i also belongs, then 

+ ~ m(i, j rln .1r2n j (3) - . . . + 
l $ r' < " < ' 3$8 

(- l )'-lm (i, j1 n . .. n js). (XI) 

P.ROOF. Put 

e~ ={ w:Xo(w)= i, XV(W)~jl"'" .1s 

for 1 ~ v< n, X n(W) = .1T} 

eT = U e~l ' 
7> = 1 

We have, as at th e b eginning of section 3, 

m(i, .1' ln . . . n.irl ) 

= c- 1 ~~ i~ {n+m(jr, .1r1 n .. . n jrl....;-j,) }P(dw) 

= m(i, j lU . . . Uj ,) 
8 + ~ c-IP(e')m(j" jT. n ... n j . ....;- ';. ). (13) 

,= 1 

Substitute (13 ) into the r ight side of (XI ) and 
consider the typical term c- IP(er)m(.i" .1' ln 
n j rl )' where r is distinct from rl, ... ,1'1. It 
appears on the right side of (XI) once in m (i,.1T 1 n . 
n .1'l) . and. once in m(i,j,n j rl n . .. n j'I)' with 
OppOSIte SIgns; .and does not appear in any other 
terms. H ence ItS net coefficient on the rio'ht side 
of (XI) is zero. It remains only to consider th e 
term m(i,.iI U . . . U.i,). This appears once in 
every term and h ence its net coefficient is 

Therefore (XI) is established. 
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We remark that trivial as this proof is, it does not 
exactly correspond with the familiar proof of Poin
care's formula, and we do not know if there is any 
closer relation between the two apparent twins. 
We also leave possible extensions suggested by the 
known extensions of Poincare's formula to the 
interested reader. 

5. We now give another method of computing 
~P7;. This method requires the ergodic theorem 
(11). An interesting byproduct is the following: 

THEOREM 5. If i, j and k (not necessarily distinct) 
belong to a positive class, then 

~ {p Cn) _pCn)} _ mjk-mik 
£.....J i k ik - • 
n=1 mkk 

PROOF. Using the familiar formula (d. the remark 
after (2» 

" P Cn) -" F C') p Cn -,) 
i k -.LJ ik kk , 

v =1 

we have 

Substituting from (11), we see that the right side 
of (14) is, as N -7 OJ, asymptotically equal to 

-£ {F ;'2 -F}'2} N- v. 
v= 1 mkk 

(15) 

Now since 
00 00 

F;*k = Fik= l, L:vF;'2= mik< OJ, L:vF}V2= m jk< OJ, 
v= 1 v=1 

we have, as N -7 co 

Using this in (15), we see that its limit as N -7 OJ IS 

lim _1_ £ (-v){F ;'1 -F}'n m jk- mik. 
N ->oo mkk v= 1 mkk 

We note that theorem 5 gives a convenient de
termination of the mean first passage times in terms 
of the transition probabilities; in particular 

We do not know what the situation is in a null class. 
All we can infer from theorem 1, (IVc), is that if 
i and j belong to one recurrent class and jFt; r!'- iFtil 
then 

To return to kP7i' If j r!'- k, we have evidently 

" p Cn) P CI) _ p c" +1) 
£....J;\: " I. hi -k i i , (16) 
h;>< k 

where, as later, an unspecified summation runs from 
1 to co Summing (16) over n, we obtain 

or 

since 

" P* P CI) _ P* P CI) L..J k .11. hi - k ij-k i j, 
h;><k 

" P* P (1)_ P* + P (1) P (1) L..J k i h hi - k if ki - if 
h 

We assert that in general 

(17) ..( 

This is readily shown by induction on n, starting 
with (17). Now sum from n = 1 to n= N, divide by 
N, and let N -7 co. By (11) and theorem 5 we obtain 

( L: kPth)ml =kP;j+ f; { P~i) -P;(i)} 
h j j v=1 

Now, 

= f; P(Xvr!'-k, 1::; v<n l Xo=i)= f; f;Fi~) = m ik' 
n =1 n= 1 v=n 

(19) 
(18) and (19) give (IX) . 
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