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Contributions to the Theory of Markov Chains
Kai Lai Chung*

_ The fundamentals of the theory of denumerable Markov chains with stationary transi-
tion probabilities were laid down by Kolmogorov, and further work was done by Doblin.

The theory of recurrent events of Feller is closely related,

if not coextensive. Some new

results obtained by T. E. Harris turn out to tie up very nicely with some amplifications of

Doblin’s work.
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passage time to the ‘“union’ or

The fundamentals of the theory of denumerable
Markov chains ?> with stationary transition proba-
bilities (DMCS) were laid down by Kolmogorov
[1] # and further work was done by Doblin [2]. The
theory of recurrent events of Feller [3] is closely
related, if not coextensive. Recently some interest-
ing new results were obtained by T. E. Harris [4] and
communicated to the author. They turn out to tie
up very nicely with some amplifications of Doblin’s
work the author was engaged in.  Although Harris’
main purpose lies elsewher e, he was led to consider
the probabilities of hitting one state before another,
starting from a third one. This idea of considering
three (instead of the customary two) states, one
initial, one “taboo,” and one final, will be more fully
developed in the present work. The notion of first
passage time to the “union’” or “intersection’ of
two states will also be introduced here. The inter-
play between these notions will be illustrated.

Recorded results in this paper will be labeled as
formulas and theorems, respectively. Relevant re-
marks as to their origin or significance will be found
in the body of the paper. The author is indebted to
Dr. Harris for communicating some of his results
before publication.

. The sequence of random variables { X, }, n=0,
1,2, forms a DMCS. The states \\'111 bo dc—
noted sunply by the positive integers. The (one-
step) transition probability from the state 4 to the
state j will be denoted by P/P. Because of station-
arity we have

Pz‘(ll'):P(quLl:j‘Xm_

for all integers m >0 for which the conditional prob-
ability is defined. With this understanding, we shall
permit ourselves to write m=0 in the definitions to
follow, as if the conditional probabilities were always
defined.

Norarions:
n, N, », r, s, denote positive integers and will be
used as time parameters or general numerals;

1 National Bureau of Standards and Institute of Statistics, University of
North Carolina, Chapel Hill, N. C.

2 “Denumerable” means “with a denumerable number of states;” “chain”
refers to a process with an integral time parameter.

3 Figures in brackets indicate the literature references at the end of this paper.

Harris was led to consider the probabilities of hitting one state before
This idea of considering three states, one initial, one
“taboo”, and one final, is more fully developed in the present work.
“intersection’
interplay between these notions is illustrated.

The notion of first
of two states is also introduced here. The

i, 7, k, I, h, denote positive integers and will be

used as state labels:

0, 1#]
Py=P(X,=j\X;=i); PO={

L, 4=y
PP =PX,=j, X,#=k, 1Zv<n|X,=1)
F‘i‘;' : :P(‘\vn.: ‘\'L' ¢]v 1<v<n 1‘\70: [-)
FO=PX,= X.#j, #k, 1<0<n|X;=1)

r=3q
n=1

wlm e () may stand for any of the symbols Py, Fyj,
.

V\ e offer the following (luv to the 11)0\'0 notations.
The letter P (I(‘Slgllll(‘s ‘passage’’; the letter F|
“first passage”’; the first right-hand subscript desig-
nates the initial state; the second, the final state; th(,
left-hand subseript <l(‘q1(matvs the “taboo st(lt(’
namely, one to be esc hewed during the passage (ex-
clusive of both terminals); the st(n on a letter with
subscripts designates the sum of the corresponding
infinite series ad
inf. We admit that this is not the most logic: |
system of notations we could have invented. For
instance, we have the superfluity F'=,P%  and if
we had allowed more than one Teft- lmnd subse ript,*
we could have used only one letter P and written
o=, Pe . However, we consider our notations
to be preferred to the arbitrar v use of all sorts of
letters from the Latin and Greek alphabets. Also,
after painful deliberations we decided not to define
PO F9 or (F while reserving the right to do so
later in some cases.

Formura I: If i, then

=75 (1+:P%), @

where on the right side 0- « 1is to be taken as 0.°

(“ni{(\ or - m\ u|“pnn\(l f.nn\ n=1

(il T S 1l LULIL

4 This naturally suggests the consideration of more than one taboo state.
5 This follows also from the easily interpreted relations

*

= F”
) T &
1—;F; F;
The convention that 0- © is to be taken as 0 will be understood in similar cir-
cumstances.

14;P;= E GFt=
n=0
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Proor: We start from the formula

Fo=3,Po Fo-v, 1)

9=0

where we agree that ,P®=1. Equation (1) is
proved as follows. Either the state 4 is not entered
at all during the passage from 7 to j, which contin-
gency contributes the term corresponding to v=0 on
the right side of (1); or there is a last entry of 7,
occurring at the »th step, 1<v<n—1, which con-
tingency contributes the general term.
Summing (1) over n, we obtain

® o n=1
* ___ — ) —v)
1>F4=35 Fip =35 33 P2 AFG
n= n=1 o=

PO 30 Fo-v=,Fr1+,P¥).

=
=0 n=v+1

Since the terms of the double series are nonnegative,

the inversion is ]ustlﬁed and (I) is proved. Moreover,

this proves that if ;% >0, then ,P%< . It follows

from (I) that ,F% —0 if, and only if, F,-"}:O, namely,

P =0 for all n.

Formura II: If j=k, then
Pl =iF5(1+:P%). (II)

(This formula is easily interpreted in terms of math-
ematical expectations.)

Proor: We start from the formula

PP=33 F Py, @)

v=1
where as before ;P =1. If we ignore the left-hand
subseripts, (2) reduces to a familiar formula. The
proof of the latter extends immediately to (2).
Summing (2) over n we obtain

Z P(n)_Z Z kF(v) P(n =)

=33 Y 32 4P~ = F5(L+HPY).

v=1 n=v

We note the following corollaries to (I) and (II),
to be used later.

Formura Ila: If 15], then

1P1ﬂ;:1F:(1+1P1*;)' (II&)
Formura IIb: If 75k, then
P =F7  FF. (I1b)

Formura ITlc: If 1], then

FE(1+P5)= P51+ %) (ITc)

Formura III: If © 7, then

i 2oy
lim * =° =P} < . (IIT)
N—wo Z P
Proor: We start from the formula
Pi(")—z P(v) P(n v) (3)

where we agree that ;P =0. The proof of (3) is
entirely similar to that of (1).
Summing (3) from n=0 to n=N, we obtain

ZP(n)_E Z Pl(f) 1P(n v)_z P(v) Z P(n). (4)

=0 v=0 =0

We need an elementary lemma which is frequently
useful in such connections.

Lemma. Let 0<a,<1,5,>0; Eav>0 lim b,=
B<+ o. Then
E @yby_y
lim ”’——B.
e
Z @y
v=0

Applying the lemma to (4) we obtain (IIT). That
PE< o is clear from (Ila), and the remarks at the
end of the proof of (I).

TaroreEM 1.  The limit

N

2 e
lim “ 0 (5)
Nowo 2 P(n)

exists, and 1s equal to any of the following three
CrPressions:

1+,P% P
1+.P} PE

the first always, the second if 177, the third if FXF%>0.

* *
F 1Fii,

* 1% )
F:’i iﬁii

(IVa,b,c)

Proor.  Doblin [2] has shown, trivially, that
ZP(n)
— o (6)

Comparing (III) and (6), we obtain (IVb) if 757.
(IVa) now follows from (Il¢) and obviously holds for
1=y4. If FEF% >0, then the denominator of (IVe) is

not zero, and this is then equal to (IVb) by (I1b),
with k=1.
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That the limit (5) exists, and is finite and not zero,
was proved by Doblin [2]; that it is equal to (IVa)
was previously proved by the author [5]. The
present approach seems to be the simplest.

CoroLrLARY. If 4,9,k,l, are distinct states of one
class,® then

ZP' i
lim

Now ZP(")

F(14,P;
FI:;(1+1P

Naturally there are other expressions for it, and
we omit the tedious considerations when some of the
states are identical.

2. We now consider two states 7 and j belonging
to the same recurrent class, namely:

¥ __ Ik __ Tk
Fi=Ff=F%=1

A fundamental idea in the theory of DMCS, already
found in Kolmogorov’s work, is that whatever tran-
spires between successive entries at a recurrent state
forms a sequence of independent events. Using this
idea, Harris [4] and Lévy [10], independently of each
other, discovered theorem 2. Our proof is somewhat
different from theirs.

Let ©77 and define

Y,=the number of », 1 <v<n, such that X,=1;
Z,=the number of », 1 <v<n, such that X,=j.

In words, Y, (or Z,) is the number of entries at the
state 7 (or j) in the first n steps. Using the average
owodl(, theorem (see (11) below) it is easy to show
that if 7 is a positive state, and P(Xe() =1, where
(' 1s the class containing j, then we have

P lim- "Z”

N—ox V\])(x)
Al 11

=1 \=1.

The following theorem covers both positive and null
classes.

TrreoreM 2 (Harris-Lévy). If i and j are two states
wn a recurrent class C and P(Xye(') =1, then

P(v)
. Z, . Z
Py lim —YA—~111n —  |=1. (7)
n—ow n n—o Zl)(,,
Proor. Since ¢ is recurrent, we have P(lim ), =
n—o
-+ oo):l. Let »,<<w,< . . . be the successive in-

dices », such that X,=7. Let W=the number of
v, 05 0< 051 such that X,=j. Then as remarked
above, the Ws are independent, identically dis-

¢ Slightly generalizing Kolmogorov, we define a class m be a set of states such
that for any two states i and j belonging to it, we have FF>0. See [6].
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tributed random variables. Evidently we have

EW)=33Py=Ph< .

Now by definition we have vy, Sn<vy, 41 and

Ya—1 Ya
E Wss ZNS UI+ZW3~
s=1 s=1

Consequently,
Ya—1 i
2" 7 o
TS'ES‘E-I_iYn ° (8)

Applying Khintchine-Kolmogorov’s strong law of
large numbers (see, e. g., [9] p. 208) to the sequence
{ W} we obtain:

Yn
Z‘, W,
> — = .P* J—
I }!,I.Tm Y, JE% 1. 9)
Moreover, P(n, <+ «)=1. It follows from (8) and
(9) that
P (71”‘7‘1’ Y" ): 1. (10)

Now F%=1. Hence theorem 2 follows from (10)
and theorem 1, using (IVb) there.

This theorem includes as special case a previous
result by Erdoés and the author [7]. Consider in-
dependent, identically distributed random variables
{U,} which assume only integer values with mean
zero. They form a DMCS with all integers as the
states. Since the mean is zero, all possible states
are recurrent by a theorem of Fuchs and the author
[8].7 Without loss of generality, we may suppose that
every integer is a possible, therefore recurrent, state.

n
Writing S,=>] U,, we see that
v=1

Py =P (Su=j—i)
Hence, P7 =P =Py’ and (7) becomes

thW%Q—1

n—o

which is theorem 8 in [7]. Needless to say, as far as
this statement is concerned, Harris’ approach is
incomparably better. However, we note that there
we actually proved a sharper result, 1. e.

POZ

7 This important step cannot be circumvented by the present, more general,
approach,

‘ 1+e
Enz Ials M) m)O



for every e >0, where J/[n=i P(S,=7).

=1
theorem 7 in [7]. It would be of interest to investi-
gate corresponding strong relations for the general
Markov-chain case, using perhaps a more precise
form of the strong law of large numbers.

3. We now consider a positive recurrent class C.
According to Kolmogorov, in € all mean recurrence
and first passage times are finite, namely, for all
1,7eC we have

See also

my=2> nlF .

n=1

We introduce the notions of first passage to jUk and
to 7Nk, as follows. Let j=k.
T(1,)Uk)=the smallest integer n>1 such that
An¥7 or X,=k, whichever happens first, given that
=
T(z,]ﬂk)—the smallest integer n>1 such that
there exist two integers n, and n, such that n,=mn,,
1<n;<n, 1<n,<n, and X, =j, X,,=Fk, given that
}so—?,
m(i.UR) = E{ T(,jUk) )
m(i,jOk) = E{ T(,j0k) }.

Lot w denote the sample point. Put

el ={w:Xo(w)=1, X,(w)#=j, =k
for 1<v<n; X, (w)=3};

. c .
e!=U é.
n=1

Thus ¢/ is the event that X;=17 and the state 7 is

reached before the state k. Since 4, 7, and k belong
to one recurrent class, we have
eUek = {w: Xy(w)=1}.

Let P(Xy=1)=c>0. We have the following rela-
tions, immediate consequences of the definitions.

O s { J;np((zw)jL f :nP(dw)}

—em(i, JUR)+P(em,
n(i.nik)=33} [, (e mP(de)
+ (ot

=cm(t, jUk)+P(e?)m i+ P(e)my;.
Now by definition we have

P(e?) — F Ple)__
c o @®

*
Ftk

Hence we obtain from the above:

Formura VI. If j#k, then

m(i, JUk)=my— ;Fimy=my—Fimu.  (VI)
Formura VII. If j#k, then
m(i, jOk)=m -+ FEmup=my+ ;Fime.  (VII)
Since
I+ F =1
we deduce from (VII):
Formura VIIIL. If 55 k, then
Mg~ Mpg— M= I (M Myy). (VILI)

We note the following special case (i=Fk) of (VIII):

(VIIIa)

M= L5 (M . +My,).

This last formula is due to Harris [4], who also de-
rived from it the following relation:

£
m]']'_iF;v'k'

—H Lk
mue

(VIIIb)

Now in a positive class the ergodic theorem of Kol-
mogorov holds:®

-
mu

fim — ZP(”

lim >3 (11)
Thus (VIIIb) turns out to be a special case of
theorem 1, using (IVe) and noting that F},=F}=1.

D1V1d1ng (VIII) by the product of (VIIIa) and
(VIIIb) we obtain

Mg+ My —
mjj

My LF

i . 12
. =

By formula (I1b), the right side is P, snce F,=1 in

the present case. Thus we obtain

Formura (IX). [If j=k then
P _ M My =My IX)
mjj

As an application consider, as in the Central Limit
Theorem for Markov chains, random variables { 17, }
attached to the Markov chain { X, } in the following
way: Y,=u; if X,=1i where the z;/s are arbitrary
real numbers.

TaEOREM 3. Let © be a positive state.  Given Xo=1,
let vy denote the smallest n>1 such that X,=1. Then
if the series on the right-hand side converges absolutely,

¢ This theorem actually establishes the limit of P{ as n—cw. The average form
(11) is an easy consequence of a Hardy-Littlewood Tauberian theorem.
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we hawve
9

E{YiF... 47, [ Xe=i)=mu3) L (Xa)
j=1 My
FE{(Y 1+ .. Y )i Xe=1}
S % L om, iLZﬂ)m]i+7nzk Mk,
B J=1 Myj ”]= mijj Moy -
J#i
(Xb)

Proor. It is more convenient to consider new
variables Z, defined as follows:

{0 if X,=1 for some », 1 <v<m;
W=
2;1f X,=j and X,#1, 1 <o,

where 7 may be 4 in the last-written line.  Evidently
we have then
) ® .
E{Z Y, oni}:E{z A XO:z}
n=1 n=1
:iE{Zﬂ X():@'} :i S5 Pz,
n=1 n=1 j=1
— >3 Phz,=> "z,
= j=1 M
by (IX) with i=£.
Furthermore, we have
o
CCIo [ e
n=1 n=1
:E{j’j Z2+2 3 Z,ZS>[X0:i}-
n=1 1<r<s<n

As before, we obtain readily

=2 242

J=1 b4

E{;Zﬂ)(oz'}

Next we have

3

z: _ilE(Z,ZS[XO:i)z
i i 3 izp(r)xup(g r)xk_‘z I)*xjiip;kk$k-
T=1s=r+1 j=1 k=1 k=1
J#Ei ]#1

By (IX) this reduces to (Xb).

The two expressions on the left sides of (Xa) and
(Xb) play an important role in Doblin’s Central
Limit Theorem for DMCS. We refer the reader to
[2] for details. They are here evaluated in what
seems to us more tangible terms.

4. From formulas (VI) and (VII) it follows that

9 Doob pointed out to me that this is a case of Wald’s equation for Markov
chains.

m (1,JUk) +m (i,700k) =m ;- m .

This relation is in striking resemblance to a familiar
formula in the elementary calculus of probabilities,
according to which if A and B are any two events
then

P(AUB)+PANB)=P(A)+P(B).

The generalizations of the last relation to any
finite number of events is known as Poincaré’s for-
mula (see, for example, [9], p. 61); and we immedi-
ately suspect that the same may be true for the mean
iirst passage times. This is indeed so. We define
m(1,7,U. . .Uj) and m(z,7;N. . .Nj;) as the obvious
extensions from the case s—2. We shall also write
JiN. . .Nj;=j to denote ]1ﬂ Njr_ NG L0y if
/—/ (1 <r<s) and j;N. ﬂ)v if 7 is not one of the
J \

Foamura X1 If ji,. . .7 are distinct states in a
positive class to which i also belongs, then

m(i, U ... Ujs):z—:’ m(i, J,)— m (i, jr,Njr,)

+ 2w gy Ni i) —
(=1 'm(i, 1N ... NGY. (XI)

1<r1\r)<.s-

Proor. Put

er ={w: Xoy(w)=1, X,(w)#71, . . ., Js
for 1 <v<<ln, X,(w)=73,}

We have, as at the beginning of section 3,
m(i, jn0 - - NJr,)

S ©
=¢71 2,2

=7 = ’
r=1n=1Je),

{n+m(5, 3,0 ... NG,~+j,) } P(dw)

=m(i, 41U . .. Ujy)

+ilc-1P(eT>m<j,, Jnl .. NG i), (13)

Substitute (13) into the right sido of (XI) and
consider the typical term ¢ 'P(e")m(j,,j,,N
Nj,,), where » is distinct from », . .. . It
appears on the right side of (XI)once in m(7,7,0 . . .
Nj;,) and once in m(i,j,Nj,N . Nj.), with
opposite signs; and does not appeal in any other
terms. Hence its net coefficient on the right side
of (XI) is zero. It remains only to cons1de1 the
term m(i,,U . . . Uj). This appears once in
every term and hence 1ts net coefficient is

(-G

Therefore (XI) is established.

(—1)y-1=1.
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We remark that trivial as this proof is, it does not
exactly correspond with the familiar proof of Poin-
caré’s formula, and we do not know if there is any
closer relation between the two apparent twins.
We also leave possible extensions suggested by the
known extensions of Poincaré’s formula to the
interested reader.

5. We now give another method of computing
#P%. This method requires the ergodic theorem
(11). An interesting byproduct is the following:

TureoreM 5. If 4, 7 and k (not necessarily dzstmct)
belong to a positive class then

S {PR—PR)=

Proor. Using the familiar formula (cf. the remark
after (2))

Mk — Mg

My

n
) J— ) —2)
PR=3: FQP§™,
V=

we have
N N—v
> PR—PRl=2 (FR—FR} S PR. (4)

Substituting from (11), we see that the right side
of (14) is, as N— «, asymptotically equal to

N _
S (Fg—Fy)Y=r. (15)
=1 KK
Now since
Fi=F}=1, EUF(”)_m1k< ©, 21 vF O =mp< o,
=

we have, as N— o

N3 (FR—FR)}=N > (FR—FR}-
9=N+1
Using this in (15), we see that its limit as N— o is
m jp— M g
lim — > (—o){ F® — F@ } =T "M,
Jlim >~ HZ) (—o){ e s

We note that theorem 5 gives a convenient de-
termination of the mean first passage times in terms
of the transition probabilities; in particular

m,.,c=<1+i (P —Pip} Jlim 3> 2 PY.
n=1

n—o

We do not know what the situation is in a null class.
All we can infer from theorem 1, (IVe), is that if
7 and j belong to one recurrent class and ,F A% =Y
then

zl (PP —PP}==% w.

To return to P}.

1h) =, 1
PR PP =P,

h=k

If 7k, we have evidently
(16)

where, as later, an unspecified summation runs from

1 to «. Summing (16) over n, we obtain
hz P* P}f;‘) kP* kPi(;),
or
E Ph PP =P+ PP —Pf (17)
since
W=l PR =2,
We assert that in general
n
Z WP PP =P+ 25 (PP —PS ).

v=1

This is readily shown by induction on =, starting
with (17). Now sum from n=1 to n=N, divide by
N,and let N - . By (11) and theorem 5 we obtain
(E kPi’ﬁ,)i:kPHi {PY—PS}

7 m 45 v=1

m”_‘

=.PX+ M, (18
* my; (18)
Now,
PIADID I
h h=1n=1
=31 P(X, %k, 1 <o<n| Xo=1)=3] DI F Y =my.
n=1 n=1 v=n
(19)
(18) and (19) give (IX).
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