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On a Recursion Formula and on Some Tauberian Theorems'
N. G. de Bruijn? and P. Erdds®

The paper is concerned with two sets of positive numbers, ¢, and fx, connected by a

linear recursion formula.

The assumptions on the ¢; are of Tauberian type.

Under certain assumptions there exists an asymptotic relation

n n
between the partial sums > ¢x and > fj.
T

The method is based on discussing

@ @
the associated power series > |, ¢zz* and > ) frak.
T T

Let

Define

=1, fo=Fefa—k) @>D. O

This recursion formula has various applications in
the theory of probability. In the present note,
however, we will investigate (1) independently of
its applications. Assume, first, that

2 ke .
k=

Erdés, Feller, and Pollard [2] proved that if the
greatest common divisor of the £’s with ¢; >0 is 1,
then,

fm)—A-? | (A= j;‘,;kck). (2)

It is easy to see that if the greatest common divisor
of the k’s with ¢, >0 is greater than 1, then lim f(n)
cannot exist.® It was also shown that if

©
Zlkck= ©,

then (2) always holds, in other words, f(n)—0.
Feller in a paper [3] restricted himself to the case
when >Yke,<< . In the present paper we will not
in general make this assumption.
We prove the following results:
Theorem 1. Asswme that for every k>1,
(3)

2
Ck—10k+1>0k .

Then for every n>1,
fn—1)f(n+1)>F(n).
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Other theorems of the same type as theorem 1 were
proved by T. Kaluza [4]. Assuming (1), he showed
for instance, that f(2) >0, f(n——l)f(n—}—l)>f2(n)
(n=2:3, .) imply that the ¢’s are positive.
Furthermore, he proved that f(1),/(2), .. .1s a
moment sequence if, and only if, ¢;, ¢, ¢35, . . . is a
moment sequence. (Here ¢y, ¢y, ¢3, . . . 1s called a
moment sequence whenever it is of the form

a,= | u"dx(u), where x(u) is nondecreasing and
0
such that the integral converges for all n).

Theorem 2. Putrk—ECz,S(y) Zrk, S(y)= Z)f(k)
Assume that for every p>0

lim $PY)__ . 4
YILIE 8(2/) ok @
for a fixzed o,0 <a<1 (a independent of p). Then
2 Y
Theorem 3. Assume that (3) and (4) both hold.

Then,

l—« 1
f(")=snr(1+a)r(2—a)+° (?,)

In case a=1, (6) does not give an asympiotic
formula, it only gives f(n)=o(s, ).

It would be interesting to obtain conditions that
imply f(n-+1)/f(n)—1. We can prove that if
Cni1/cn—>1, then f(n-+1)/f(n)—1; also if

(6)

Ca Bianmie;;
1<k<n
then f(n-+1)/f(n)—1. We suppress the proofs be-

cause we believe that very much more general
conditions can be obtained. If f(n+1)/f(n)—1,
then it is not difficult to prove that ¢, ;=o{f(n)}.
It can be conjectured that the converse is also true,
under the additional condition that the g.c.d of the
k’s with ¢, >0 1is 1.
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Proof of theorem 1.
ca{ f(n+2)f(n) —f*(n+1)}

First we show that for any n

:é(cn-i—lck—l_cnck) {f(n+1)f(n+1—k)
—fm)f(n+2—k)}. (7)

To prove (7) split the right-hand side into four
sums. These are, respectively,

Cups f(nt1 )éckﬂﬂn F1—k)=cp f(n+1) f(n);

—nif(0) kéck_l fn+2—k)
=—CanfM) {f(n+1)—c. f(1)};

=t f(n+1 )éckf(wr 1—k)
=—c fin+1){ fin+1)—ef(n)};

enf(n) éckﬂnw—m
=c,f(n) {f(n+2) —cn f(1)—ef(n+1)}.

Addition gives ¢,{f(n+2)f(n)—f*(n+1)}, which
proves (7).
To prove theorem 1, observe that

F)fB)—r2(2) =ef(2) +eof (1) —f*(2) =c2f (1) >0.

((3) implies that all the ¢’s are positive.) Assume
now 7 >2, and suppose that f(k)f(k-+2) >f*(k+1) is
already proved for 1<k<m. Then (3) implies
Co1Cki1 > Cnlr; isince by (3 6(ca)01) < (Cafca) <C T . %
Thus in (7) all terms on the right side are positive,
and we obtain f(n)f(n-+2) >f*(n+1), which proves
theorem 1.

Remarks: 1t is clear from the proof of theorem 1
that if we only assume that ¢, ¢, 1>¢2 (k>1), we
obtain f(n+1)f(n—1) >f*(n)(n_>1).

If (3) is true, then, by theorem 1, f(n-+1)/f(n) is
an increasing function of n. We have f(n-+1)/f(n) <1
for all n, for otherwise we would have f(n-+1)/
f(n) >a>1 for some a and all large n. This would
contradict the fact that f(n)=0(1), which easily
follows from (1). From f(n+1)<f(n) n=12, . . .)
it follows that

fm)(a+ . . . +e)<f(n+1)<F(n), (8)

and so (3) implies f(n+1)/f(n)—=1 (n—> ).
To prove theorem 2 we need some lemmas.
Lemma 1.5 Let dy, ds, . . . be an infinile sequence,
and let a be a number greater than —1. Put g(y)=
Sy, and assume that g(y) >0 for all large y, and that,

k<y

6 As far as the authors know, a complete proof of this lemma was not published
before, although it is the Abelian counterpart of the Tauberian lemma 2, which is
due to Karamata. K. L. Chung brought to our notice that in Doetsch [1] an
incomplete proof is presented for a theorem very similar to our lemma 1. Doetsch
claims to use only the inequalities Z(y)=0(ye), 1/L(y)=0(y) (y—«), whereas
an inequality of the type (11) seems to be indispensable.

for every p_>0,

g(py)/9(y) —p= (Yy— ). 9)

©

Then the series D(x)= > \da* converges for |z|<1, and
1
if t>0, t—0, we have

D(e™)={140(1) }g(1/)T(1+a). (10)

Proof. 'The function L(y)=g(y)y * is positive for
y large, and it is measurable and bounded over any
finite interval 0<y<A (for ¢g(y)=0 if 0<y<1).
Furthermore, L(y) is slowly increasing, that is,
L(py)/L(y)—1 as y— =, for every p >0.

We shall prove that for any e>0 there exist
positive constants C(e), (’;(e) such that

(>0, y>C(9). (11)

2D <o)

()

It is known 7 that L(py)/L(y)—1 as y— «, uni-
formly for a <p<b, where @ and b are arbitrary
positive. Therefore, ('(¢) can be determined such
that L(y) >0 for y>C(e) and such that

log{ L(py)/L(y) } <e

(' <p=<e,y>C(e)).

It follows by induction that
log {L(py)/L(y)}<e(1+log p) (p=1,y=>C(e), (12)
and

log {L(py)/L(y)}<e(1+log p7')

(Cley'<p<1, y=20(e)). (13)
Put

M(e= sup L(y).
0<y<C(e)
Then we have, for 0<p<C(e)y ™",
log { L(py)/L(y)}
=log{L(C(e))/L(y)} +log{L(py)/L(C(e))}

y=2C(e) by (13),

M " M (e) (14)
<e{1-+1oe s} +oe 716y
<e(l+log p71) +Co(e).
Now (12), (13) and (14) prove (11).
In the first place, we obtain from (11) that

L(z)=0(x¢) as z—, and therefore d,=0(k>"e).
Hence the power series for D(z) converges if |z|<1.
We have, for ¢ >0,

D(e-)= Jome-wigw): ﬁ "t rig(y)dy,

7 See [5] (where L() is assumed to be continuous), and [7].
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and so,
I)(G_t) == tVaL(t_l) I;md’(ll;t)dya
where :

oy, 1) —e "y é%g

For any fixed 4 >0, ¢(y,t) tends to e 'y~ as t—0.
Furthermore, by (11), ¢(y,t) can be majorized by a
positive function of 7 only, whose integral over (0, )
converges.  Therefore, by the Arzéla-Lebesgue
theorem, we have

ﬁymww%eww:m+w<owA»

This proves the lemma.
Lemma 2.  Assume that

©

(o) =P>u
1

is convergent for |x|<1, and that d;>0 but not all
dy=0. Let «a>GC be fized. Assume that for any

fized p >0

D(esza)Dlest)—>pis =t 0—>0)% (15)

Then we hawve
= {140} DE )1 +a)  (>0,6-0).

This result is due to Karamata [6].

Theorem 2 can be derived from lemmas 1 and 2.
Following a suggestion of Karamata, we first prove
a more general theorem:

Theorem 4. Let a,>0 (but not all=0), b,>0 (but
0T Ol el

n—1
di= by A B
i

Put
s)=2ar, SE=2b, T()=2.ds
k<y k<y k<y

Assume that for every p_>0, we have

stpy)[s@)—ps, Tpy)/T(@y)—pr (Y—=),

where v>a>0, v and « independent of p. Then we

have

Ty) r(1+v)
s@) TA+y—a)T(1+a)

St)={1+o}

Proof. Put A@)=>awx*, B(z)=>bu*,
1 1

(@)= f;‘,dkz", then we have formally A (z) B(z)=D ().
2
Both A(z) and D(z) are analytic for |z|<1 (see
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Jlemma 1); it follows that B(z) is analytic in some
circle |z[<6. 'The coefficients of B(z) are non-
negative, and for 0<z<l, B(z) is analytic (since
A(@)>0 for 0<xz<1). Thus by a theorem of
Pringsheim (see [8], sec. 17) B(z) is analytic for
|| <1.

By lemma 1 we have, as t >0, t—0,
Ale)~s(tHT(14+e); D(EH)~TEHTA+7).
Hence for any p_>0,
B(e?")/B(e™")—p~=.
But then by lemma 2
S ~B(e)/TQ+y—a).

Now theorem 4 follows immediately from

D(x)=A(x)B ().

Proof of theorem 2. 'Theorem 2 is an easy con-
sequence of theorem 4. If

Fle)=fz+f2)e*+ . . .,

then it follows from (1) that F(x)R(z)=2a*/(1—z),
and so

R(x)=ratrz’t+ . . .,

’;ﬁln.f(n—k):l (e s s e

Therefore, taking

Ap=="g, bL:f(k) (k:1727 S ‘)7
W=k =220 5l q==l
we obtain from theorem 4
n T(2)

SO~y T@— T (o)’
which proves theorem 2.

Proof of theorem 3. Let e be a number greater
than 0. From (8) we infer

Jm)>{Snare—Su}/(en+1).

It follows from (4) and (5) that

(17)
SnSnNOny SnSn(l+€) NOn(1+e)l_“’

where O=1/{T'2—a)T(1+a)}.
plies

lim inf f(n)s, > C{(14¢)'~*—1}/e

Therefore, (17) im-

(n—>w).
This holds for every e >0. Making e—=0, we obtain

lim inf f(n)s,> (1—a)C.



Applying the same argument to n(1—e) instead
of n(1+¢) we obtain lim mnf f(n)s,<(1—a)C. This
proves theorem 3.

Some final remarks: Feller [3] proved the following
theorem: Assume that the g.c.d. of the k’s with
¢, >0 1s 1, and that

i;kzck<oo , (18)

then
S fO=A"mt-d+o (1), 19)
where A= ch, and, in fact, Z{f(l) AN <.

Now we show the converse, namely, if (19) holds,
then (18) holds too.
Theorem 5. Assume that the g.c.d. of the k’s with

¢ >0 18 1, and that ik“’ckzw.
1

SO —A" =

Then we have

Proof. If A= then (19) expresses thatif(l) <.
il

This is false, since S2f()at=z/{1—3 ¢;z*}, and the
1 1

right-hand side tends to « if z—1.
Now assume A< ». Since f(I)—=A"", we have by

(16),
SHO)-Sr= 3 Ot 3D 3 e
it 1 2<k+I<n =1 n+1-1
:n—1+"2(A-l+e,> i s
=n—1+A4" ‘Ekrk—l—Ze, Z Te
=1 n+1-1
:n_1+21+22.
We have > -—>«, since > kr, diverges
Cokry>3>"k%e), and > =0(>), since —0.

Finally, we have irk:ikc‘k:A, and so
1 1
ASHW) >t Tt o(S).

Consequently,

3O — A > A o)) s,
q.e.d.

Let D denote the greatest common factor of the
k’s with ¢, >0. Erdés, Feller, and Pollard [2]
proved that if D=1 and > ke¢,< e, then

SR —f k1)<, (20)

which, of course, implies that f(k) tends to a limit.
It seems possible that the condition > Jke,< e is
superfluous.

If D>1 and > ke, <<, then (20) does not hold,
since lim f(k) does not exist. In order to see this,
take ¢f =cip, f*(k)=f(kD—D+1); it follows that

F*() > kei) ' =DA™

Hence,

f(kD+1)—>DA50, f(kD+2)=0.

If D>1 and > ker=, then we have f(k)—0.
Nevertheless, the series (20) need not converge.
Take ¢,=0 for n odd, ¢,=247"*n"2 for n even.
Then we have f(2n)=0, f(2n—1)=f*(n), where
f*(n) and ¢f=e¢,, are related by an equation of the
type (1), and icle.

1
that f*(n) ~7% (6 log n).
Therefore,
f@n—1)~x* (6 log n), f(2n) =0,

and the series (20) diverges.

It follows, by theorem 3,
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