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Stress-Strain Relation in Shear From Twisting Test
of Annulus"?
Walter Ramberg and James A. Miller

It is shown that the stress-strain relation in shear of isotropic thin sheet can be deter-

mined from a test of an annular specimen.

The annulus must be clamped uniformly along

the inner and the outer edge, and the relative twist of two circles concentric with the edges
must, be measured. The shear strain at the inner circle can be computed from the shear

strain at the outer circle and the slope of the torque-twist curve.

Tests were made on 0.032-

inch aluminum alloy 7558-T6 sheet well beyond the elastic range to a shearing stress of 48,000
1b/in.2 EroN adhesive VI was used to bond the sheet to a clamping ring at the outer edge of
the annulus and between the sheet and the end of a cylinder through which the torque was

applied.
1. Introduction

The stress-strain relation in shear of thin sheet
metal is of practical importance for estimating the
strength of shear webs. It is of theoretical impor-
tance in studying the plastic behavior of metals
under combined stress.

Many methods have been suggested for determin-
ing the stress-strain curve in shear of thin sheet [1], *
and at least two of them have been tried. Good
results have been obtained so far only from twisting
tests of square plates of aluminum alloy [1]. Unfor-
tunately the twisting test of a square plate makes
severe demands on the skill and patience of the test
engineer. Furthermore, the specimen becomes too
small for precision in the measurement of strain and
in the application of the twisting loads for sheet less
than 0.1 . thick. Hence it seemed desirable to try
out some of the other methods that have been pro-
posed. One of the most promising among these is
the twisting test of an annulus of constant thickness.
This method was accordingly investigated at the
National Bureau of Standards as part of a program
supported by the Office of Naval Research, United
States Department of the Navy.

2. Theory of Twisting Test of Annulus of
Constant Thickness

Consider an annulus of constant thickness #,
twisted by a torque M,, which applies a constant
shearing force per unit length along the inner edge
r=a, figure 1, and along the outer edge »=6. If the
material is isotropie, the shearing stress at any radius
ris given by

M,

~ 2mr*h

T

(1)
The shearing strain at any point can be derived
from the radial displacement % and the circumferen-
tial displacement » by substitution in the equation
1 This paper is based on work sponsored by the Mechanics Branch, Office of

Naval Research, U. S. Department of the Navy.
2 Presented at the Eighth International Congress on Theoretical and Applied

Mechanics in Istanbul, Turkey, August 20-28, 1952. 3
3 Figures in brackets indicate the literature references at the end of this paper.
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for plane strain in polar coordinates 7, 8 [2, p. 66]:

_ov, ou_ v 9
Y=o o6 7 2)

In an isotropic annulus the displacements u, » caused
by twisting are independent of 6, so that (2) reduces

to
_dv v d (v .
=& & <,> 5

Integration of this expression leads to a formula for
the circumferential displacement 6 of a point on an
outer circle with radius », relative to a platform

resting on an inner circle with radius 7, figure 1. We
note from figure 1 that this displacement is
7y ) ,
) —Vy— V] —="9{ - LRl (4)
7y rs T
Dividing v by 7 in (3) and integrating gives
2y V2 Dy
{ oY d i) (5)
J i iy
so that
) 2y
—= —dr. (6)
ol

From this an equation for the shearing strain v; at
the circle 7=r; can be obtained as follows. We can
replace 7 as the independent variable in the integral
by 7, by taking the logarithms of the two sides in
eq (1)

M,
27h

log r=log —2 log 7 (7)

and then differentiating for a given plate under given
twisting moment (M, h constant):

(131: er

: (8)
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Ficure 1. Diagrammatic sketch of annulus.

a, inner radius; b, outer radius; ri, radius of inner gage circle; r2, radius of outer
gage circle.

Inserting (8) in (6) gives

5:,Qf’2 Y g, (©)
2 T

where 7, 7, are the shearing stresses at radii 7, 7o,
respectively. Differentiating with respect to M,
gives [3, p. 29]

dé e 72_ d 2
dM,” 2 [L dMl<r>dT+

dr <2>_ dry (ﬁ)]

dM \ 1) dM\7,
Since the ratio of ¥ to 7 does not depend on the para-
meter M,, d(y/7)/dM,=0, and consequently the
integral on the right-hand side is equal to zero. The
derivatives dro/dM, and dr./dM, are obtained di-
rectly from (1), noting that » is equal to 7, 7, respec-
tively. This leads to

ds awedilog ‘M Y2 >

i 27’5

dz\/[; —477:})4 Tlrf

(10)

(11)

This equation can be solved for the shearing strain
v: at the inner circle

2 dé
‘/1:72+7T231zai'

(12)
Equation (12) makes possible a step-by-step con-
struction of the stress-strain curve in shear, provided
that the measurements are started within the elastic
range. The shear modulus G may be determined
from a single measurement of 6 in that range by
noting that inside the elastic range

Tg_Tl_@. (13)
Inserting in (11) and solving for G:

Ayl LN B
Gmﬁ(ﬁ‘%)/m' i)
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3. Procedure for Twisting Test

3.1. Dimensions of Specimen

The dimensions of the specimen must be chosen to
satisfy several opposing requirements.

The required external torque must be readily at-
tainable. If M, is the maximum torque that can
be applied and 7, the shearing stress at the inner
edge r=a of the annulus, we have from (1)

“:\/2%;#

(15)

The torque must be applied uniformly to the
edges of the specimen. This makes it inadvisable
to use clamps consisting of heavy clamping rings
held together by individual bolts. In such a clamp-
ing arrangement one would expect higher shearing
stresses to be transmitted near the bolts, where the
clamping pressures are high, than at locations rela-
tively far from the bolts. 1t would be better to cut
a circular disk with a radius well in excess of b from
the material and then apply the torque to one or
both faces of this disk through adhesive layers, as
indicated in figure 2. The torque M, is then limited
by the shear stress 7, transmitted through the adhe-
sive at the inner edge r=a of the annulus.

The magnitude of 7, can be computed from the
torque M, on the assumption that each adhesive
layer behaves like an elastic lamination of constant
thickness connecting two rigid bodies that are ro-
tated relative to each other. The shearing stress is
then proportional to the distance » from the axis of
twist. If there is only one layer, the torque is
equal to

(16)

: a e T
M,= | r2xrrdr=2x| r’r,—dr== ar,.
Jo 0 a 2

The torque M, produces a shearing stress 7, at the
mner radius of the annulus given by (1)

M,
— 15
"= 9rath L
With (16) this leads to the condition
2rathr, < T adr (18)
s 2 Sy
or
a/h>47,/7,. (19)
!
adhesive
Freure 2. Cross-sectional view of annulus and grips.



The sheet in the annulus must be stable against
buckling into a pattern of shear wrinkles up to the
highest torque applied. The authors have not found
a solution for the buckling stress of an annulus.
However, an approximation to this buckling stress
is obtained from Southwell and Skan’s solution for
the infinitely long elastic strip with clamped edges
[4]; with »=0.3 this reduces to

Gh*
(b—a)

Ten— 210

(20)

The modulus of elasticity in shear, G, must be re-
placed by a reduced modulus G, where G will be
somewhere between @ and the tangent modulus at
7er, since buckling must not take place until the
material at 7=7 has been stressed well into the
plastic range. This leads to the condition

Gh?

7 2% (b—(l)")’

(21)

where 7 denotes the shearing stress at the mean
radius ¢=(a+b)/2, of the annulus. Condition (21)
sets an upper limit to the width (b—a).

A lower limit is set by the condition that (b—a)
must be sufficient to accomodate the device for
measuring relative displacement.

Another condition that must be satisfied 1s that
the tensile strain in a radial direction is negligible.
From figure 3 we see that this radial strain is in
first approximation

_AB-AB_AF | _b—af+(o,—v)’

e = 7 3 il L
: aB B (b—a)
(22)
or with
o
P o A (24)

This must be small compared to the normal strain
of the order 7/* along lines at 45° to the radial
he 7/* along lines at 45° to the radia

ﬂ/{//A ///4///3/

!
777

Fraure 3. Diagramatic sketch for estimating radial strain due
to relative circumferential displacement of inner and outer
edges of the annulus.

127

direction, that is,

_/'2<<] (25)
From (24)
€, =
e, 90
e o

which is small compared to one in the range in
which we are interested.

Let us apply these equations to the specific case
of high-strength aluminum-alloy sheet with a yield
strength in shear, 7;, of the order of 45,000 Ib/in.?
(tensile yield strength about 78,000 lb/in.?) to be
tested in a torsion machine with a capacity of 27,000
Ib-in.  Let us assume that a bonding material with
a shear strength 7,=4,500 lb/in.> can be used for
applying the torque to the specimen, and that a
displacement measuring device with a width of 1 in.
:an be constructed to measure 6, so that b—a>1 in.
Let us assume also that the stress at the inner edge
exceeds the yield strength in shear by 20 percent
7,=1.27,=>54,000 1b/in.* Substituting these quan-
tities in (17) and (19) gives ¢<0.282/yh and
a>48h, respectively, or, 48h<a<0.282/yh. We
obtain an upper limit for the thickness 4, h<0.0326
in., by going to the case in which « is equal to its
lower and its upper limit. The corresponding radius
of the inner clamp is a=0.282/,/0.0326=1.56 in.
The outer and the mean radius become b=a-+1=
2.56 in; ¢=2.06 in. The shearing stress at the
mean radius is from (1) 7=7,(a*/c?)=31,000 lb/in.?2

This calculation indicates that the annulus must
have a thickness of less than 0.0326 in. for high-
strength aluminum-alloy sheet with a yield strength
in shear of the order of 45,000 1b/in.?

A lower limit for the thickness may be obtained
by solving (21) for . Since much of the material
in the annulus will be in the elastic range, it seems
reasonable to assume 3,000,000 1b/in.? (about three-
fourths the modulus of elasticity in shear) as an

average value of ¢. Then from (21)

h> (b-a)y/7/21.1G=0.0221 in.
We conclude that the thickness should be between

0.022 and 0.033 in. for this alloy tested under the
assumed conditions.

3.2. Method of Applying Torque

Advice regarding the bonding medium for trans-
mitting torque to the specimen was obtained from
experts in the field, and it was decided to try cements
of the Epoxy type upon recommendation of N. .J.
DelLollis of the National Bureau of Standards and
D. M. Alstadt of the lLord Manufacturing Co.,
Erie, Pa.

The shear strength of the cement was determined
from torsion tests of specimens made by joining in a
butt joint two pieces of aluminum-alloy rod 1.5
in. in diameter. Similar specimens were made from
aluminum-alloy tubing 1.5 in. in diameter and 0.094
in. thick. The surfaces were cleaned with a de-
greasing solvent and Deoxidine. The bonding



medium was rroN adhesive VI with 6 parts by
weight of accelerator A to 100 parts of the adhesive.
As soon as the adhesive was applied to one piece,
the two pieces were pressed together until the thick-
ness of adhesive was from 0.005 to 0.01 in. The
pieces were held in position by clamps while the
adhesive was cured for 45 min. at from 200° to 220°
F. The excess adhesive was removed from the
outer surface of each specimen.

The maximum shear strength 7, computed from
these tests by substituting the torque at failure in
(16) for the rod and in an analogous equation for the
tube, was between 6,200 and 6,800 lb/in.? for the
tubular specimens and between 6,000 and 6,700
1b/in.? for the cylindrical specimens.

Attempts to develop shear strength of this order

in transmitting torque to a specimen of 0.032-in.
aluminum-alloy sheet bonded to a 3-in. aluminum-
alloy cylinder were unsuccessful. This may have
been due in part to stress concentration in the ad-
hesive at the inner edge of the annulus. This
stress concentration was relieved somewhat by
machining a circumferential notch in the cylinder
0.01 in. from the bond and by bonding disks (A and
B, fig. 4) of 0.020-in. aluminum-alloy sheet to the
specimen.
The radii of A and B were 0.06 and 0.03 in., re-
spectively, greater than the radius of cylinder C.
The cylinder, the disks, the specimen S, and the
ring R were held coaxially by the pin P and the jig
J while the adhesive was being pressed out to a
thickness of about 0.01 in. and during the curing
of the adhesive. The jig was also used for locating
the bolt holes in the ring and for holding the ring
while it was being machined. The bond between
the cylinder and disk B did not fail until the value of
7, reached 4,670 lb/in.? No difficulty was experi-
enced with the bond between the specimen, which
had a diameter of 6.5 in., and ring R, the inside
diameter of which was 5 in.

Two torsion-testing machines were available for
the tests, a Riehle testing machine of 60,000-1b-in.
capacity and an Amsler testing machine of 150-kg-m
(13,000-1b-in.) capacity. In the Riehle machine the
torque was transmitted to the weighing beam through
a series of knife edges and linkages, which provided a
very flexible mounting for one head of the machine.
The specimen was first set up in this machine
because of its greater capacity but was moved to the
Amsler machine when it was found that good aline-
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Ficure 4. Erpanded cross-sectional view of specimen S, disks
A and B, cylinder C and ring R, positioned by jig J, and
centered with pin P for bonding.

F1cure 5.

Modified Amsler torsion machine.

ment could not be maintained. The alinement of
the weighing head of the Amsler machine is main-
tained by ball bearings. The 13,000-1b-in. capacity,
measured by rotation of the pendulum, was insuffi-
cient for the specimen. To increase the capacity,
the weighing system was changed to the simple
lever and scale type, utilizing the pendulum only
for attaching the arm A, figure 5. The effective
length of the lever was 48 in., and the scale was the
spring balance B, having a capacity of 600 1b. Dur-
ing the test the pendulum was maintained in the
zero position so that its moment would not affect
the torque measurement. The specimen assembly
was mounted in the testing machine by bolting
the ring to the plate H, figure 6, attached to the
dynamometer head of the machine. The holes in the
plate had been located by the jig J, shown in figure
4. The cylinder was centered in the loading head
of the machine.

3.3. Method of Measuring Deformation

The device for measuring deformation of the
specimen is shown in position in figure 7. The

Frcurm 6.

Specimen ready for test in modified Amsler torsion
machine.
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Ficure 7.

Gage for measuring relative circumferential
displacement.

purpose of the device is to measure the relative
rotation between two circles concentric with the
axis of the cylinder C having radii 7, and 7, of 2.375
and 1.625 in., respectively. These circles are defined
by conical points, such as P, 120° apart, mounted
on the rings O and I, respectively. The relative
rotation is measured by measuring the relative
tangential motion between the two rings. To
increase the sensitivity and reduce any errors due
to bending of the specimen, the motion between the
ends of the arms B and F is measured. Due account
1s taken of the radius at which the motion is meas-
ured. Each arm B is attached rigidly to the outer
ring O and provides physical support to the body
of a Tuckerman optical strain gage T. Each arm F,
attached to the inner ring I, is flexible in the direc-
tion of the axis of the specimen and rigid in the
direction of rotation. The rotating lozenge 1. of
cach gage is held against the outer end of an arm F
by a pair of hairpin springs, one attached to each
end of a rod through a hole in F and to a knob on
cach side of the gage. Guides G were rigidly at-
tached to each arm B to limit the motion of the end
of arm F to a plane perpendicular to the axis of the
gage lozenge. The circumferential displacement 6 of
the circle with radius » with respect to the circle
with radius 7, is given by

ry
o=¢e¢ —
i,

where ¢ is the average displacement measured by

the gages, and 7, is the average of the radii to the
points of contact of gage lozenges with the arms F.

4. Results

A disk of 0.032-in. 755-T6 aluminum-alloy sheet
was prepared and tested in shear as deseribed above.
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Ficure 8. Stress-strain curve in shear for a sheet of 75S-T6

aluminum alloy 0.032 in. thick.

The test portion of the disk consisted of an annulus
with inner and outer radii of 1.56 and 2.5 in., respec-
tively. The test was carried to a shearing stress of
48,000 lb/in.? and a shearing strain of more than
0.05 at the inner gage ring before the adhesive at
the inner edge of the annulus broke at a shear stress
in the adhesive, as computed from (16), of 4,670
Ib/in.2. A second annulus reached a shearing stress
of over 45,000 1b/in.2. The data for both annuli up
to a strain of about 0.019 are plotted in figure 8§,
together with a stress-strain curve in shear computed
from an average stress-strain curve obtained from
tests of tensile and compressive specimens from the
same sheet. This curve was computed, in accord-
ance with octahedral shear theory [5] from

and y= §< ~—17—6>
e L ARG T Y g

T:a/\g

where o is the average of the stresses corresponding
to the strain e obtained in tensile and compression
tests of specimens in the direction of rolling and
across the direction of rolling of the sheet, and £ is
the average of the moduli of elasticity in tension and
compression. The shear data are in good agreement
with the derived curve. The modulus of elastieity
in shear for each specimen differed by less than 1
percent from that computed from £ and the nominal
value of Poisson’s ratio (0.33) for this alloy.

5. Conclusions

The twisting test of an annulus appears feasible
for determining the stress-strain relation in shear of
isotropic sheet metal in thicknesses below those which
can be tested by twisting a square plate of the ma-
terial. Special precautions must be taken to obtain
a good bond for transmitting the shearing stresses to
the specimen and to have good alinement between
the two heads of the torsion-testing machine.

Using this method, the stress-strain curve in shear
was determined for 0.032-in. aluminum alloy 755-T6
sheet up to a strain of 0.05, which is far beyond the
elastic range. The stress-strain curve thus obtained
was in good agreement with one derived from the
stress-strain curve of the same material in tension
and compression, on the assumption that the octa-
hedral shear stress in the metal was a function of the
octahedral shear strain only.
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