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Twisted Square Plate Method and Other Methods
for Determining the Shear Stress-Strain
Relation of Flat Sheet ™'

Walter Ramberg and James A. Miller

A method is presented for determining the stress-strain relation in shear for isotropic
flat sheet. The method requires measurements of deflection or of extreme fiber bending strain

in the center portion of a twisted square plate.

The octahedral stress derived from the

stress-strain curve in shear for a twisted plate of aluminum alloy agreed within about 5
percent with the octahedral stress derived from tensile and compressive tests of the same

material.
point.
size of the specimen.
the use of an annulus of constant thickness.

1. Introduction

There has long been an interest in the stress-strain
relations in shear of materials in the form of sheet.
The interest has become more pronounced as working

stresses and strains have increased and as it has

become apparent that the mechanical properties of
thin sheet could not be deduced directly from
mechanical tests of heavier sections. The most satis-
factory method, perhaps the only really satisfactory
one, for determining the stress-strain curve of thin
material in shear requires the material to be in the
form of tubing with circular section. As long as the
tube material is isotropic, its stress-strain curve in
shear can be computed conveniently from the torque-
twist curve of the tube by following the procedure
given in [1].2

There is no dearth of suggestions for methods of
determining the stress-strain curve in shear of flat
sheet. Figure 1 indicates 10 suggested methods for
stressing thin sheet in shear that have come to the
authors’ attention. The first two methods deal with
tubular specimens.

Method (a) is nothing more than the bending of a
strip of the sheet into a tube of large diameter, which
is then tested like the conventional long tube for
which a satisfactory theory exists [1]. The tube
would have to have a large diameter so that the
strains introduced in bending the strip would be
small compared to the stramns to be measured.
Difficulties might be experienced with deviations

from the theoretical uniform shearing stress caused

by variations in clamping forces along the edges of
the specimen. Difficulties might be experienced also
with the discontinuity at the joint and with the
transmission of sufficient torque to obtain stresses
in the plastic range.

Method (b) was suggested to one of the authors

*This paper is based on work sponsored by the National Advisory Committee
for Aeronautics and the Mechanics Branch, Office of Naval Research, U. S
Department of the Navy.

1 The major portion of this paper was presented before the First U. S. National
Congress of Applied Mechanics in Chicago on June 11 to 16, 1951. It was
published in the Proceedings of that Congress under the title ““Determination
of Stress-Strain Curve in Shear by Twisting Square Plate.”

2 Figures in brackets indicate the literature referencesat-the end of this paper.
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The difference was much greater for specimens of mild steel with a definite yield
Unfortunately, the method is difficult to perform on thin sheet because of the small
An examination of alternate methods indicates particular promise for

by J. M. Frankland of Chance Vought Aircraft.
Four strips of the sheets are assembled into a tube
of square section. The strips will be subjected to a
uniform shearing stress by equal and opposite torques
applied to the ends, if the torsional rigidity of the
joints along the four corners is negligible compared
with the torsional rigidity of the tube as a whole.
It is probable that this corner effect is not negligible
for tubes that are sufficiently thick-walled to trans-
mit, without buckling, torques that extend the shear-
ing stresses into the plastic range.

Several methods have been suggested for stressing
a specimen of sheet in shear by forces acting in the
plane of the sheet.

Method (e¢) is the well-known square-picture-frame
method, in which a square specimen is held between
four pairs of rigid clamping bars with pin joints at
the corners. The specimen will be placed in a state
of uniform shear by equal and opposite forces acting
at opposite corners of the frame, provided that the
sheet 1s perfectly flat, the clamping bars are infinitely
rigid, the edge effect due to deviations from ideal
clamping does not extend into the middle portion
of the sheet, and the pin joints are frictionless.

Method (d) tries to get around the difficulties with
the edge effect in method (¢) by making the speci-
men long so that the shearing stress is practically
uniform along the middle portion of the specimen.
However, an end effect will remain because the shear-
ing stress reduces to zero at the corners. This end
effect may be evaluated by making tests of the same
material in picture frames of different lengths. The
procedure would be costly and time consuming.

Method (e) was used by Coker and Filon [2] and
Bollenrath [3] to stress thin sheet in shear. The
loads are applied symmetrically to subject each one
of the two “bays’ of the specimen to a state of stress
in which the shearing stress along the center line of
each bay varies from zero at the ends to a nearly
constant value near the middle. As in method (d),
the end effect may be eliminated by testing speci-
mens of different lengths.

Method (f), suggested by W. R. Osgood, subjects
a single strip to a state of stress which approximates
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Methods suggested for stressing thin sheet in shear.

Fraure 1.
that in ecach bay of the specimen for method (e).

Method (g) avoids end effects by testing the sheet
in the form of an “endless strip’” or annulus. Equal
and opposite torques are applied at the inner and
outer edges of the annulus. The method has the
advantage that, except near the periphery and the
inner cirele, the shearing stresses would be known
accurately, for isotropic sheet, in the plastic as well
as in the elastic range. There are some disadvan-
tages, however. The shearing stress varies inversely
as the square of the radius of the circle along which
it acts. Hence there will be a nonlinear strain varia-
tion along the gage length of any finite gage mounted
at 45° to the tangential direction. As a result, the
average strain along the gage will differ from the
strain at the midpoint of the gage, unless the annulus
is large enough to make the nonlinear variations
negligible. 1If the annulus is large enough, it may be
difficult to apply sufficient torque to stress the ma-
terial into the plastic range. The testing machine
would require heads that are rotatable about their
axis only, to prevent bending of the specimen by
rotation about other axes. The method would give
only an average stress-strain curve for anisotropic
sheet.
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Method (h) eliminates some of the difficulties of
method (g). The annulus is machined into a disk
that varies in thickness inversely as the square of
the radius. The material in the annulus will be sub-
jected in that case to a uniform shearing stress by
equal and opposite torques applied at the inner and
outer edge. The disk must be sufficiently thick near
the periphery to develop strains in the plastic range
before buckling occurs and the variation in thickness
with radius must be small enough at the radius where
the strains are measured to assure a practically uni-
form shearing stress throughout the thickness. A
practical difficulty is that of machining the specimen
accurately to the desired thickness variation with-
out changing the properties of the material by the
machining operation. |

The methods so far mentioned subject the sheet
to a shearing stress that is substantially uniform
throughout the thickness of the sheet. In the re--
maining two methods the shearing stress is varied
in the thickness direction from one extreme to an
opposite extreme.

In method (i) a state of shear is produced in a
square plate by twisting the plate into an anticlastic
surface by equal and opposite tranverse forces ap-
plied to adjacent corners. The state of shear will
be uniform for planes at a fixed distance from the
median plane which will undergo zero shearing stress.
The upper and lower faces of the plate will be under
equal and opposite shearing stress.  Objections might
be raised against this method in so far as it neglects
deviations from uniform shear due to various causes,
such as having large transverse stresses near the
corners and no shearing stresses along the edges.
These objections will be discussed in detail in the
body of the paper. Experimental difficulties may
arise in applying the corner loads to the specimen
without interfering with strain and deflection meas-
urements on the faces of the plate.

Method (j), suggested by A. H. Stang, uses a
much simpler scheme for producing a state of stress
similar to that in method (i). A specimen in the
shape of a long strip is placed in a state of shear by
applying equal and opposite torques to the ends of
the strip. Shearing strains can be measured with
strain gages or they can be obtained from the twist
per unit length of the strip. However, if the strip is
made long enough to eliminate end effects, it is
likely to deflect laterally. This will superimpose
bending stresses on the torsional stresses. The same
objections might be raised in this case as in case (i)
with regard to edge effects. 'The shearing stress at
the extreme fiber will be practically constant in the
center portion, far from the edges of the strip, but
it will decrease rapidly to zero as the edges are
approached. The value of the extreme fiber shearing
stress near the center of the strip will depend on
this edge effect. It can be computed exactly in the
elastic range, but no exact solution is known for the
plastic range.

Consideration of the above 10 methods suggests
that at least three of them, the square-picture-frame
method (¢), the annulus of constant thickness method



(¢), and the twisted-square-plate method (i), should
be tried out expermmentally.

An experimental study of method (¢), the square
picture frame, was conducted by Wm. R. Osgood
about 5 years ago. Method (c¢) was selected because
it appeared to have particular promise and because
it had been used in the aireraft industry to estimate
shear properties of sheet. A fixture had been de-
veloped at the El Segundo Plant of the Douglas
Aireraft Co. to make such tests. A duplicate of this
fixture was obtained, and tests were made at the
National Bureau of Standards for the National
Advisory Committee for Aeronautics on several
4.5%4.5X0.063 in. 245-T aluminum alloy plates.
The results were disappointing. They were reported
to the NACA, but were not published. The strains
were far from uniform even in the center portion of
the plate farthest from the edges. The extreme
fiber strains in this optimum region deviated up to
10 percent from the average strain. The deviations
persisted even after an attempt had been made to
improve the conditions of clamping along the edges
by remachining parts of the clamping fixture.

Two years after completion of the work for the
NACA, it was decided to try method (1), the twisted
square plate, since Nadai had shown in 1915 [4]
that this method provided a simple means for
determining the shear modulus of sheet material.
More recently the test has been extended to ortho-
tropic materials at the Forest Products Laboratory
[5] to determine the shear moduli of wood.

2. Nomenclature

The following nomenclature is used in the paper:
a=half-span for deflection measurements.
b—=width of specimen.
F=modulus of elasticity in

compression.
(=modulus of elasticity in shear.
h=thickness of specimen.
m=moment per unit length.
M=bending moment.
M ,=twisting moment.

P=load at each corner of plate.

R—=radius of curvature along diagonals of

plate.

w=displacements parallel to z-, - and z-

axes, respectively.

x, y=axes parallel to diagonals of plate, also
planes normal to the corresponding
axes.

1’ y'=axes parallel to edges of plate, also
planes normal to the corresponding
axes.

>=axis parallel to thickness of plate, also

plane normal to z-axis.

v=shearing strain.
vo.=octahedral strain.

e=normal strain.

v=Poisson’s ratio.

oc=normal stress.

r=shearing stress.

7,—octahedral stress.

tension or

(I (P

3. Principle
3.1. Elastic case

An elastic square plate will be in a state of pure
shear, in which the shearing stress is proportional to
the distance from the neutral surface of the plate
when the plate is bent into an anticlastic surface
with equal and opposite principal curvatures. The
bending of the plate into such an anticlastic surface
produces equal and opposite extreme fiberbending
stresses along the two principal axes. Nadai has
shown that this remarkably simple state of stress
may be realized by applying equal and opposite
tranverse forces to adjacent corners of the plate.

Nadai’s proof [4] makes use of Saint-Venant’s
principle of the equivalence of equipollent loads.
Nadai notes that for a load P at each corner, each
edge of the plate is loaded by equal and opposite
forces P/2 acting at two corners (fig. 2). The load
along the edge will remain unchanged upon applying
balancing forces 4 P/2 at frequent intervals along
the edge, as indicated in fig. 2. Any element of
length of edge Az" between two adjacent equal and
opposite forces P/2 will then be subjected to a twist-
ing moment (P/2)Az’. According to Saint-Venant’s
principle, this edge load is equivalent to any edge
load which results in a constant twisting moment
per unit length

) 2)
7”:’”,:.&%)7 {3 Al,igr (1)
uniformly distributed along the edge of the plate.
The stress distribution, in regions of the plate suffi-
ciently far from the edge to satisfy Saint-Venant’s
principle, will then be that corresponding to uniform
twisting moments —m,,,,,—m,.,, in the 2’, 3" planes,
normal to the a’, 3" axes, respectively. The twisting
moments +m,,, are associated with principal bending
moments m,, m, on the y, & planes normal to the
diagonals of the plate. Equilibrium of moments
acting on the edges of a triangular element of the
plate (fiz. 3) bounded by planes parallel to the z, ¥,
and ¥’ planes shows that

Mp=="My=—Myryr = — P/[2. (2)

The plate is bent into an anticlastic surface by equal
and opposite bending moments per unit length P/2
acting on the ¥, # planes normal to the diagonals of
the plate. The surface will have its planes of prin-

PiP
20 y'

—{ax- \

Frovre 2. Twisting of square plate by forces on corners.
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Ficure 3. Edge moments acting on element of twisted square
plate.

cipal curvature normal to the diagonals of the plate.
If R is the radius of curvature along the diagonals,
the deflection relative to a plane tangent to the center
of the plate is given by

zz_yz

3)

The distribution of strain and of stress throughout
the plate may be computed on the assumption of the
Kirchhoff plate theory that plane sections remain

plane. The normal strains e, e, must then increase
linearly with distance from the neutral fiber
2z 2z
€x=7L” €1 51/:7 €2) (4)

where €;, €; are the principal extreme fiber strains;
z, the distance from neutral fiber; and %, the thick-
ness of plate. The maximum shearing strain on the
z plane is

2z
_h— Y2

(3)

Y= Vol Ccis S

where v, is the shearing strain at the extreme fiber
yi=€,—es. Because of the antisymmetry of the
deformation e;= —e;, so that

(6)
The shearing stress corresponding to the strain v is

given by
()

The twisting moment per

v1=2¢.

=0y

nside the elastic range.
unit length is given by

R/2
Mgryr= rzdz.
—h/2

Substituting (1), (7), (5), and (6) in this equation
gives

(8)

§= o GI2. )

O

From which
1_’

3

Hence the shear modulus can be computed from the
slope PJe; of a plot of load against extreme fiber strain
by substituting P/e; in (10)

The shear modulus may be determined also from
the deflection w, of the center of the plate relative to
a line connecting points a distance @ from the center
along one of the diagonals, figure 2. If plane sections
are assumed to remain plane, the curvature 1/R along
the diagonal % is given by the familiar formula

1 d*w €1

R W2 )
where w=normal deflection. Substituting (11) in
(9) gives : 5

_ad’_3aP

L b (e
so that i
- 3a
St bl (13)

which gives the desired relation between shear mod-
ulus and center deflection under a given load.

3.2. Extension into plastic range

Equations (1) to (6) apply beyond the elastic range
as long as plane sections remain plane. Equation
(8) for the relation between twisting moment and
shearing stress applies beyond the elastic range also.
We may replace 2z in the integral of that equation by
v, using eq (5) so that eq (8) becomes

I
mz'u’:§:2—,ﬁﬁ ’T’Yd’Y-

The change in load dP corresponding to a small
change in extreme fiber shearing strain dy; is obtained
by differentiating this equation in respect to v; with
the result

(14)

af 2 L h* g 4
BT J, it e (2P,
(15)
where 7; is the extreme fiber shearing stress. Solv-
ing this equation for 7, gives
1
=72 'Yld +2P:| (16)

The extreme fiber shearing strain can be computed
simply from measured values of extreme fiber bend-
ing strain ¢ or from measured values of deflection
w, by making use of eq (6) and (12)

2hwa.
a’

71—-261—- (17)
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The stress-strain curve in shear can be derived, there-
fore, from measurements of P(e) or P(w,) by using
(17) to compute the shearing strain v,, plotting
P(y,), and computing 7, from the ordinates and
slope of P(y1) in accordance with eq (16).

It is interesting to note that eq (16)}is of_the same
form as the (‘q’lldthll

231],

2
0':67}12[

which is derived by Nadai [6] to compute the stress-
strain curve a,(e) from the bending moment-strain
curve M(e) for a rectangular beam of width, b, and
height, &, in pure bending; ¢ is the extreme fiber
l)on(lmo’ strain produced by the bending moment,
M. lho identity in form of eq (16) and (18) nnght
be expected because the square plate is bent plasti-
cally into an anticlastic surface by equal and oppo-
site bending moments per unit l(]l("l]l about axes at
right :m;:l(x\ to each other.

d ! \[

(161 (18)

4. Design of Specimen

In designing the specimen, consideration must be
given to prac u('al deviations from the theoretical be-
havior because the theor v neglects edge effects, mem-
brane stresses, and deformation by transverse shear-
ing forces. These effects must be considered in some
detail in order to dimension the specimen so that the
deviations from ideal behavior can be either neglected
or taken into account.

The edge effect will be considered first. In the
theory, the concentrated forces at the corners are
1vplacod by twisting moments uniformly distributed
along each edge, which are applied by horizontal
sheari ing forces rather than the vertical forces shown
in {lgme 2. It follows that the theoretical solution
will hold only for regions of the plate at a sufficient
distance from the edges, to make Saint-Venant’s
principle applicable. Dimensional reasoning indi-
cates that the “sufficient distance” should be pro-
portional to the thickness, h. The factor of propor-
tionality may be estimated roughly by examining
cases for which solutions have been obtained from
the theory of elasticity.

The plane stress solution for a bar of constant
width & compressed by a concentrated load at the
center of the free ends is given in [7]. This shows
that the maximum compressive stress, which be-
comes infinite directly under the load, differs less
than 3 percent from the average stress at a distance
h from the end. Seewald’s plane stress analysis of
the local stresses near a concentrated transverse load
acting at the center of a slender beam of rectangular
section with simple supports at the ends [8] shows
that these stresses become negligible compared to
the extreme fiber bending stresses derived from
simple beam theory at a distance from the load
greater than the depth of beam.

This suggests that the errors resulting from the
:u)phcatlon “of Saint-Venant’s principle w 1l be small
in regions of the plate at a distance from the edge
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Ficure 4. Distribution of extreme fiber shear
(727y")max along surface of strip with b/h=10.

stress

which is greater than /. This condition is casily
satisfied for a plate that is thin in relation to its
lateral dimensions. Unfortunately, it will be shown
below that a very thin plate is not acceptable because
it will develop appreciable membrane stresses under
the loads required to produce yielding in shear.
The membrane stresses are negligible only if the
plate has a width not exceeding a few times the
thickness. In such a plate, it is probable that the
deviations from the assumed stress distribution at
the edges will have an appreciable effect upon the
magnitude of the stresses in the central portion of
the specimen.

A correction for the edge effect in the twisted
square plate was suggested to the authors by their
associate, Samuel Levy. He pointed out that the
twisting of an elastic square plate can be considered
as a special case of torsion of a rectangular plate
considered by Kelvin and Tait [9]. The elastic
stress distribution at crosssections of a long rectan-
cular plate far from the ends is given in [10]. The
extreme fiber shearing stress is plotted in figure 4
for the case b/h=10 which was chosen, after a pre-
liminary analysis, as a practical compromise for the
twisted plate. Kelvin and Tait [11] showed that
the shearing stresses 7..,» parallel to the plane of the
strip resist only one-half of the external twisting
moment A\[,_Pb transmiited by each transverse
section of the strip. The other half is resisted by
the transverse shearing stresses r,., acting on the
section.

A redistribution of stresses will take place as the
strip is twisted beyond the elastic range. The
pature of this redistribution becomes clear by con-
sidering the extreme case of stress in a twisted strip
of perfectly plastic material when all the material
has yielded. This case was solved by Nadai [12]
with the sand heap analogy. The resultant stress
distributions are shown dotted in figures 4 and 5.
Integration of the stresses for the perfectly plastic
state shows that, in the plastic as well as the elastic
range, M,/2 is 1951stcd by the %heanng stresses 7,
parallel to the surface of the strip and M,/2 by the
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Ficure 5. Distribution of transverse shear stress (7,:)max
along x'-axis of strip with section b/h=10.

shearing stresses 7,., normal to the surface of the
strip.

The shear stress distribution of figures 4 and 5
and the condition that one-half of the twisting
moment M, is resisted by 7,,,» and the other by =,..
show that the stresses across transverse sections of
the strip can be approximated by application of
equal and opposite concentrated forces near the
ends of the section and a uniformly distributed
twisting moment along the entire section.

This distribution of equivalent external forces
coincides with that shown in figure 2 as acting on the
edge y'=b/2 of the square twisted plate provided
that the corner forces P are moved in from the
corners by a small distance to make P/2 act at the
same point as the resultant of the transverse shear-
ing stresses 7,. which are shown in figure 5 for
points along the z’-axis. It may be concluded that
the distribution of forces acting on two edges of the
square plate in figure 2 nearly balances the shearing
stresses acting across any transverse section of a
long strip of width, b, and thickness, %, which is
twisted by a torque M=Pb applied to the ends.
The square plate can be regarded, therefore, as a
portion of such a long twisted strip with a distribu-
tion of shearing stress across the section =0 which
approximates that in the transverse sections of the
strip. Consequently, the extreme fiber shearing-
stress distributions indicated in figure 4 would also
apply to the square plate. The shearing stress in
the central portion would be greater than that com-
puted from eq (16) because of the above-mentioned
edge effect. In the elastic case, this increase would
be about 7 percent for b/h=10, according to figure 4.

In general, we find from [10] that the extreme
fiber shearing stress in the central portion of the
longer sides of a rectangular section can be expressed
by
(19)

T1
Tie—=57 7
1c 3k2

where %, is a factor depending on b/h. For values of
b/h>5, the relationship reduces to

TM_ 1 ;
r1—0.63h/b 0
In the limiting case of a perfectly plastic material
which has yielded throughout the section, we have

from the sand-heap analogy [12]

o C . R 21)
. 1—0.333h/b &)
For b/h=10, we obtain {rom (20) and (21)
71.=1.0677, elastic case
}- (22)
m1.=1.0347, plastic case

| The actual correction for edge effect beyond the

| next.

elastic range should lie somewhere between the limits
given by eq (20) and (21). It should be closer to
(20) as long as the plastic yielding is localized in

| the outer fibers of the plate.

The effect of membrane stresses will be considered
The stiffening effect of membrane stresses is
noticeable experimentally during twisting of a thin
square plate as the transverse displacements w(z,y)
become comparable to the thickness of the plate.
Figure 6, taken from Figure 11 of [13] shows the
effect for a 7.2X7.2X0.126-in. plate of 24S-T
aluminum alloy. The two straight lines in the
ficure are the strains ¢, along the diagonals computed
from eq (9) for the linear elastic case. It is seen that
the measured load P agrees closely with the calcu-
lated values at very small strains, but that it deviates
increasingly with increasing strains. The deviation

| is close to 30 percent for a strain ¢ =0.0008.

The effect is analyzed in the appendix for the
elastic range on the assumption that the transverse
deflection of the plate continues to be given by

eq (3). Equation (67) in the appendix shows that
50
o  Measured
Theory including
membrane stress
40 — — Theory excluding
membrane stress
'
s /
30
§ V\ /
: \ /
= /
o
5 \ %
\ /
19 R /
(0}
-8 -4 o] 4 8x10™
Bending strain
Ficure 6. Extreme fiber bending strains at center and along

diagonals of 7.2X7.2X0.126 wn. plate of aluminum alloy
245-T twisted by transverse forces P applied at the corners.
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the relative error in extreme fiber bending strain e
caused by the stiffening effect, is equal to

LA motm( > €2, (23)
€] ’

The error goes up with the square of the extreme
fiber strain €; and with the fourth power of the width/
thickness ratio, b/h. It may be made small by
making b/h small.

Lastly, consideration will be given to the transverse
shearing stress. The effect of transverse shearing
stress will be negligible as long as this stress is very
small compared to the extreme fiber shearing stress
parallel to the plane of the plate. The average
transverse shearing stress 7, on a section of a cylinder
at a radius, 7, from one of the corners of the plate
(fig. 2) is

])
- (24)
wrh/2
The extreme fiber shearing stress in the elastic range
is from (7), (6), and (9)
11=0Gv1=2Ge=3 P/h’. (25)
The ratio of the average transverse shearing stress
to the extreme fiber slwmmg stress in the elastic
range becomes
> 2 h h i
Brie 206 0.2 — (26)
T1 3T r 7
This requires A/r to be small, that is, the effect
becomes negligible as lll(‘ plate is made very thin.
Equations (20), (23), and (26) were used to esti-
mate the deviations hom ideal behavior caused by
edge effect, membrane strain, and tmm\'mso @ll(‘ wr
for square plates with width/thickness r:
10, 20. The results, rounded off to the nearest ])vr—
cent, are given in table 1.

TABLE 1.

; b/h
| T LA DR
[ 5 10 20
i s ‘,, o
g ueicHe Uiy /) e e 0.13 0.07 0.03
| Membrane stiffening effect .\51/51 . .00 .02 ‘ .38
Transverse shear effect Ty S BRSO R R SR S 2] =10 ‘ .05

In table 1 (r/m1)—1 1is taken as the correction
according to eq (20) for the elastic case. The ex-
treme fiber shearing strain v, =2¢ is assumed as 0.016
to place it well beyond the elastic range. The mem-
brane stiffening effect was computed from eq (23)
for the elastic range, since the stiffening will be rela-
tively insensitive to the vielding that takes place
near the extreme fibers of the twisted plate. The
average transverse shearing stress was computed for
a radius 7=»5/5 from the corner leaving the inner
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portion of the plate 0.2<r/b<0.7 available for
strain and displacement measurements.

Table 1 indicates that a plate with b/A=10
provides a fair compromise between the three differ-
ent disturbing effects that were considered.

5. Tests

5.1. Test procedure

Specimens were made from aluminum alloy 755-T6
sheet nominally 0.125 in. thick for which the tensile
and compressive stress-strain curves had been ob-
tained both parallel and perpendicular to the direction
of rolling [14]. This material was selected because of
its approximately isotropic properties. The speci-
mens were taken from near the center of the sheet,
where there was little variation in thickness. The
specimen selected for tl\'ing out the procedure was
0.1324 in. thick and 1.25 in. square. This gave a-
width/thickness ratio b/A=9.44, which approximates
the value b/h=10 suggested in the previous section.
The specimen was ]argv enough to provide space for
mounting a deflectometer and for attaching strain
gages at several locations. It had additional mate-
rial at each corner, as shown in figure 7, to reduce the
concentration of transverse shearing stress at the
corners. A conical seat was machined at each corner
of the square, a pair on one side at the ends of a
diagonal and a pair on the other side at the ends of
the other diagonal.

The specimen S, figure 8, was loaded through

1/8-in. steel balls in the conical seats at the corners
with a beam-and- -poise screw-type testing machine
of 50,000-Ib capacity used in the 5,000-Ib range. In
this manner of loading, the load acted along vertical
lines through the centers of the balls, which were
almost a thickness of the sheet from the neutral
surface. This resulted in the moment becoming
larger instead of less as the specimen twisted. This
effect 1s opposite in sign to the stiffening effect of
membrane stresses previously mentioned. Two cor-
ners of the specimen rested upon balls.  One of these
was seated m a block of steel resting on the upper
head of the testing machine, and the other was seated
in the block A, figure 8, which was free to move on

Ficure 7. Location of wire strain gages on plate.



Ficure 8.
measuring deflections along principal diagonals.

Plate under load with deflectometer in position for

rollers in the direction of the diagonal. The other
two corners were loaded by means of a hanger con-
nected to the loading head of the machine by a rod
having a ball-and-socket joint at each end. The
upper cross pieces, B, in which the balls were seated
are shown in ﬁgm e 8. They were connected to a
common piece below the head by steel tapes, C.  The
ball joints at each end of the rod and the pin joints
at each end of the tapes had the effect of equalizing
the load on the corners of the plate.

SR—4 type A-7 strain gages were mounted on the
specimen in pairs on opposite sides of the specimen.
The gages were connected with an SR—4 model K
portable strain indicator through a multiple-pole
mercury-contact switch. A gage cemented to a
piece of the sheet material was used as a temperature
compensating gage. Since each portion of the spec-
imen was subject to both tensile and compressive
strains at right angles to each other, the gage-factor
setting was taken as the axial sensitivity of the gage
computed from the gage factor provided by the
manufacturer and the data on axial and transverse
sensitivities for gages of this type [15]. Strain
readings were estimated to 0.1 division (0.000001).
A correction was applied to compensate for the strain
sensitive wire being farther from the neutral surface
of the specimen than the surface of the sheet; each
strain was multiplied by the ratio of the thickness of
the specimen to the sum of the thicknesses of the
specimen and the gage.

A deflectometer using two Tuckerman optical
strain gages with 0.4-in. lozenges, figure 8, was used
to measure deflections relative to the center of the
plate. The Tuckerman strain gages were mounted
so that their knife edges were connected to a pair of

legs, D, placed along one diagonal of the plate, while
their lozenges were connected to a pair of shorter
legs, E, placed along the other diagonal. One of the
gages was cemented to the cross piece holding the
two longer legs. The knife edge of the other gage
was mounted on a %-in. tube which was inserted in
the cross piece midway between the two legs. The
lozenges were actuated by a Y%-in. rod, which was
screwed into the cross piece holding the two shorter
legs and which was reduced at the lower end to pass
through the tube with ample clearance. The loz-
enges were set near their lower limits of travel so that
the vertical component of the clamping force would
assist in maintaining contact of the two shorter legs
with the specimen. The deflectometer was mounted
on the specimen symmetrically with respect to the
center with the point of one of each pair of legs in a
small punch mark on each diagonal and the other in
a seratch along the diagonal. The span was about
0.7 in. The deflectometer measured the sum of the
deflections at the center with respect to each pair of
points or twice such a deflection, since the loading
was equal and opposite at each pair of corners. With
this deflectometer, deflections could be read to the
nearest 0.000002 in.

5.2. Test Results
a. Elastic Range

Wire strain gages were cemented on the specimen
at locations 1 and 3, and 2 and 4, respectively oppo-
site them on the other side; figure 7. The speci-
men and deflectometer were set up as shown in
figure 8, and the specimen was loaded in the elastic
range. The value of the shear modulus is from (6),
(12)

7'1[(12
2w,

s i
G—=—le— "l

(27)
71 26

where 7. is the shearing stress after correction for
edge effect.  Within the elastic range, from (20) and

25),
2 N v
Tlcth(l —0.63h/b) ey
or with b/h=9.44,
Tie— 202 R, (29)

Substitution of 7, in (27) gives the shear modulus
in terms of either measured extreme fiber strain e,
or measured center deflection w,. Table 2 shows the
values thus obtained from the initial linear portion
of plots of deflectometer readings and wire strain-gage
readings as a function of load P.

The last value of G in table 2 was computed from

S

21+ S

by substituting for the Young's modulus an average
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Shear-modulus values measured at central portion
of square plate

TABLE 2.

|
Obtained from— ; G
|

Deflectometer_.__-_-_______ ‘
Strain gage 1. _

Strain gage 2__
Strain gage 3__
Straingage4.______________
‘ Haguation=@ME= -t = !

1 —

value ££=10.37 <X 10%1b/in.? obtained from tensile and
compressive tests of the aluminum alloy 755-T6
sheet, and for Poisson’s ratio »=0.33, the nominal
value for this alloy.

Table 2 shows that the experimental values of
shear modulus agreed within 1.5 percent. The
average for the wire gages was about 0.7 percent
greater than the value obtained from the deflection
data and about 1.2 percent less than the value com-
puted from eq (30). A lower value from the deflec-
tion data would be expected because of the effect of
transverse shear.

The deflectometer was removed, and gages 5 and 7,
figure 7, and gages 6 and 8, respectively opposite
them, were cemented to the specimen. The loading
was repeated in the elastic range. The results are
given in table 3.

Shear modulus values measured in outer portion
of square plate

AR TE S

Obtained

!.
| y
[ G

from gages
ib/in.2
| 5 3. 53X106
6 3.46
7 4.04
8 3.98

The results show greater strains at locations 5 and
6 than at any other location. This indicates a devi-
ation from the uniform state of stress, which becomes
serious in the corner portions of the plate.

b. Plastic range

The specimen was loaded until a shear strain of
about 2 percent was reached at the extreme fiber.
Deflections were measured with the deflectometer
and strain with the four central wire gages. The
shear stress was partially corrected for edge effect
by substitution of 7;, eq (16), in eq (20). Equation (20)
was used beyond the elastic range to avoid discon-
tinuity at the end of the elastic range. It should be
an adequate approximation in the important region
near the knee of the stress-strain curve because only
a small proportion of the material would be in the
plastic range.

The stress-strain data are plotted in figure 9.
The values of G determined both from the strain
data and deflection data were a little over 2 percent
higher than in the first test, the average value for
the four wire gages being almost 1 percent above the
value computed from (30). No explanation could be
found for this small deviation.
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c. Comparison with stress-strain curves under axial load

Ficure 9.

It is interesting to compare the stress-strain curve
in shear with that under axial load. Such a compar-
ison can be made by deriving the octahedral stress-
strain curve in each case [16]. The octahedral stress-
strain curves for both states of stress should coincide
if the maximum shear strain v, on the octahedral
plane (the plane defined as having a normal which
makes equal angles with the three axes of principal
stress) is a single-valued function of the maximum
shearing stress 7, on the octahedral plane, regardless
of the direction and proportion of the principal
stresses.

The octahedral stress-strain curve 7,(y,) was com-
puted from an average axial stress-strain curve o (e)
by substitution in the following formulas (16):

[ S
2 T i

N = f)( AN
w5 o n—g T2 ()

The axial stress ¢ was obtained from tensile and
compressive stress-strain curves of the material
parallel to and perpendicular to the direction of
rolling [14] as the average of the tensile and com-
pressive stresses corresponding to a given axial
strain e. The value of @ used, 3.93>X10°Ib/in.?, was
the average determined from the strain data in this
test. The value of £ used, 10.37X10°1b/in.?, was
the average obtained from tensile and compressive
tests on the sheet. The stress-strain curve in shear
determined from the strain data, figure 9, was con-
verted similarly into an octahedral stress-strain
curve by substitution in

SBes i (B
Ta_\/3 T1, ’YO_G‘I_\/S <'Yl G

The resulting curves of octahedral stress versus
total strain v, and versus permanent strain v,—7,/G
are plotted in figure 10. It will be noted that the
two stress-strain curves are in good agreement ex-
cept for deviations up to 5 percent near the knee and
at shearing strains exceeding 0.009.

In this connection, mention should be made of
the much larger discrepancies found in exploratory
twisting tests of a 0.125<0.625<0.625-in. plate of
SAE 1025 steel. These tests were made to extend
the above comparison to a material with a pro-

(31)

(32)
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Ficure 10. Octahedral stress-strain curve, aluminum alloy

755-T6 sheet.

nounced yield point. The shear modulus was found
to be in good agreement with the value computed
from Young’s modulus and Poisson’s ratio. How-
ever, the octahedral stress corresponding to the yield
point obtained from the twisting test was 38 percent
greater than that obtained from the average of the
vield points of tensile and compressive specimens of
the material. Twisting tests of long strips of
width/thickness ratios equal to 5 and 10 gave
octahedral stresses corresponding to the yield point
respectively 17 and 26 percent greater than for the
average of the tensile and compressive tests. A
twisting test of a long round specimen 0.59 in. in
diameter, on the other hand, showed a corresponding
octahedral stress 15 percent lower.

6. Conclusion

The stress-strain curve in shear up to strains of
the order of 0.01 can be obtained for isotropic flat
sheet from measurements of deflection or of extreme
fiber bending strain in the center portion of a twisted
square plate, provided that a correction is made
for the edge effect. The shear moduli obtained from
the twisting test of a 0.13X1.25>1.25-in. square
plate of 755-T aluminum alloy agreed within 2
percent with the value calculated from the average
of the tensile and compressive moduli and an accepted
value of Poisson’s ratio. The octahedral stress de-
rived from the stress-strain curve in shear for the
twisted plate agreed within about 3 percent with
the octahedral stress derived from tensile and com-
pressive tests of the same material except near the
knee, where the systematic deviations were as high
as 5 percent. Much greater deviations were found
in exploratory tests of mild steel.

Unfortunately, the method is difficult to periorm
on sheet material because the specimen must be
small in size. Alternative methods should be inves-
tigated. An examination of other methods indicates
that the annulus of constant thickness method can
be used for determining the stress-strain curve in
shear, even in the presence of a large radial variation
in shear stress. Preparations are under way for
carrying out such tests at the National Bureau of
Standards.

7. Appendix
7.1. Membrane stresses in elastic range

The membrane stresses in a twisted square plate
can be estimated from the equations for the state

of strain in a flat plate with large deflections. These
are given by Love [17] as
o, 1 /ow\
o= ()
o, 1 /ow\ s

v, ou . ow ow
Yzy= 5i+ O?/+7bix ’5{/

It is assumed that the plate of figure 2 is bent into
an anticlastic surface so that the transverse deflection
is given by

2 12
w=" 2#1 , (34)
just as in the case of small deflections, eq (3).
The curvature is from (11)
1 2 €1 PR
2l 3

The magnitude of the membrane strain depends on
the displacements u, » parallel to the z, ¥ axes as
well as on w.

The displacement u in the z-direction can be
approximated by a polynomial of the form

=R (36)
i,J

where 7, j are positive integers. The coefficients
¢;; of many of the terms in the series must be equal
to zero in order to satisfy the following conditions
of symmetry and antisymmetry in the plate, figure 2:

u(x,y)=u(x,—y)
}. (37)
u(z,y)=—u(—z,y)

These conditions are satisfied if 7, 7 are confined to
T }
JenEa

The displacement » at the point (y, ) must be equal
to the displacement u at the point (z, %), so that

o=y .
i:J

(38)

(39)
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Up to and including terms of the fifth power, the
series (36) and (39) become

U= C10L+ C1o2Y* +C302° + ('14-"?/4 4 c202®y? - c502°
. (40)
v=c0Y+c 12-171?/ + ey’ + 1 4?/ + 30’y -+ Csol”

To satisiy the conditions that the membrane stresses
a,, 724 be zero along the edge

(41)

y=—=—1z
V2

of the plate, and that the strain energy stored in
the form of membrane stress must be a minimum,
the six unknowns ¢ig, €19, €30, €14, €32, and ez were
determined as follows.

Equilibrium of forces on an element of the plate
bounded by the edge and by planes y=const.,
r=const. shows that the membrane stresses along
the edge are related to the membrane stresses
1, 0y Toy DY

g+ 0o
Tyt === Z{) !/+7'11/

07y

&

The stresses o, 0, 7, must be adjusted to make
o, and 7., In (42) equal to zero. The membrane
stresses are related to the membrane strains e, e,
v, by Hooke’s Law

T /8

Oz=— «»(f.r 1 Vf]/)~ Oy=— ~ ‘)(efl’N Vef)
1—»° li—37

Y (42)
___E
TIJ/*Q(1+V) Yzy

where /£ v are Young’s modulus and Poisson’s ratio,
respectively.

The membrane strains may be computed from
the displacements, using eq (33). Carrying out the
computations and using the following notation for
convenience

E‘, l/ b
ST h PR

% o b* 14
Co=Cro; C2=Cp2b%; ('3:3(’:401)"‘}“))[],2 e
"4i"(’14bl; ('5:("',1»[’11 ('v'-,:('3;)b‘ /

lead to
€= Co+Con”+ €38+ em* +-3eeE™n’ + SesE!
€, = CotC:8+csn’+ & +3eEn*+ Sesnt )+ (45)
Vry=[4¢:— p*+ (4cs+2¢6) (E+9°) [én s
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Substituting (45) in (43) and (43), in (42) and using
the notation

1—»
"

:1+V (46)

gives, for the normal and shearing stresses acting

on the edges,

7 A
Oz = 2 114_ V) 2¢o ((‘2"}'(’3)(224’” 772)+

(es+5¢s)(E' + 1)+ 6¢s8 1+ aknldea—p*+
(4est2¢e)(E+ )]}

rev =gt g €M) +(Bes—e @+

L. (47)

The shearing stresses 7., will be zero for all points
£, 7 along the edge of the plate only if the expression
in the square brackets is equal to zero. This re-
quires that

(48)

The normal stress o, along the edge can be expressed
as a polynomial of the fourth order in & by noting
from (41) that, for points along the edge of the plate,

1

2

(49)

n=—=—¢.
\

Collecting terms by powers of & and substituting
(48) leads to

2(1—v) ”

o ) 5 ;
15 =2y ":«+'2 ('s‘*";) [—4c;—20¢5+

\ P4
a(4c;+10¢;+cs— p?)]+ £[4cs+30¢5+
3¢+ a(—4e;—30¢;— 3¢+ p?)] +
V2E[—20c;— 65+ a(4cg+40c5)] +

E[20¢;+ 605+ o —4cg—40cs)] =0  (50)
The stress o, will be zero for all points & along the
edge only if each one of the five brackets on the
right is equal to zero. Examination of these brackets
shows that only three of them are independent of
each other. One may solve the resulting three
equations for any three of the coefficients ¢, e¢;,
¢s, ¢g in terms of the remaining coefficient.

Solving in terms of ¢, and assuming for Poisson’s
ratio the typical value »=1/3 and hence from (46)
a=1/2, one obtains from (50)

2 1 2.4
= c(.—% P

C3:F3('0‘1'—P2/8; C5— 66:0' (51)

Substitution of (51) and (48) in (45) shows that the



strains reduce to

(52)

ex=e,=Co+Cy(§+ ")+ 5¢5(& + n*)}
Yo =[4cs— p*+20c5(£+ n%)]én

It remains to compute the constant ¢ by minimizing
the membrane strain energy stored in the plate.
The membrane strain energy per unit volume,
Vo=1(0,€:+ oy€,+ 72y71y) s with (43) and (52), assum-
ing%y=1/3

Vi EBe+12). (53)

The elastic membrane strain energy V,, stored in the
plate is obtained by integrating (53) over the volume
of the plate

Va=4 iz f o "hdydz

mzf(n/z) —

—4hb? Vedndt.  (54)

Substitution of (52) in (53), of the resulting expres-
sion in (54), and integration leads to

_  3Ehb? 2 § A
V= EEZ | 26842 cvtnt g i+ 10ee) +
13
4 2y | 19 2
(32— Seup+ )+ g (BBescs—cu) + gt |

(55)
The membrane energy V7, is minimized by computing

oV,
—"=() 56
=0, (36)
and substituting (51) to obtain an equation having
¢y as the only unknown. Solving for ¢, gives |8 @

Co=— — 1%6 PoE= —-00205p2.
The membrane strains and stresses throughout the
plate are then obtained by substituting (57) in (51)
and the resulting constants in eq (47) and (52) and
the latter then in (43).

The stresses can be plotted in dimensionless form
by multiplying them by A?/b*yi7:, where b/h is the
width/thickness ratio for the plate and ~v;,7, are the
extreme fiber shearing strain and stress due to
bending. These are from (6), (7), and (11)

h. /
",’1:};7 T1:G*RL'

(58)
The results of such computations are plotted in fig-
ure 11 as solid lines. The plots show that the mem-
brane stress at the center of the plate consists of a

uniform compressive stress

2

7, =0.082 %; Y71 (59)

Opr =

The membrane stresses are largest at the center of
the edge of the plate. The membrane normal
stresses at this point are

,+=0.136 2 Y171 (60)

Ogpr— 0.

A check on this solution seemed advisable since it
did not satisfy the conditions of equilibrium at all
points of the plate; it would be necessary to apply a
system of body forces per unit volume with compo-
nents X, Y in the z, y directions in order to maintain
equilibrium in all plate elements. The equilibrium
conditions would be satisfied more nearly if ¢, is
chosen to minimize the average value of X*4}? for
the entire plate instead of minimizing the strain
energy. This leads to

co=—0.0187p7, (61)
which is about 10 percent below the previous value.
The membrane stresses corresponding to this value
of ¢; are shown as dotted lines in figure 11. They
differ less than 10 percent from the stresses previously
obtained.

A second check on the adequacy of the theory was
obtained by computing from it the nonlinear relation
between load P and extreme fiber bending strain
and comparing it with the experimental values given
in figure 6. The relation between P and ¢ for the
elastic range was obtained by equating the incre-
ments of work done by the corner loads dW, and the

b X3
Least energy
— — Least deviation
from equilibrium
il -0
f b -+
Ficure 11.  Elastic membrane stresses in twisted square plate.
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resulting increase in strain energy 17 consisting of
the m(lomvnt dV, stored in lll(‘ form of bending
strains and the increment dV17,, stored in the form ()f
membrane strains

AWp=dV,+dV,,. (62)
Each one of the three terms in this equation can be
regarded as a function of the curvature ratio p=>b/R.
It can be shown easily that the work done by the
corner forces P (01r(\s])011(llng to an increment of
curvature ratio dp is

dWp=Pbdp. (63)

The increase in bending strain energy can be derived
from the bending strain, eq (4) as

LR

% 8' odp. (64)

The increment in membrane strain energy is obtained
from (55) after substituting (57) and (51). This
leads to

dV,,=0.001146 Ehb*o*dp. (65)
Substituting (63) to (65) in (62), solving for P, and
replacing p by

b
L L pys ;
p=p=27 @ (66)
gives the desired relation for P(e),
p_E h [1 +0.03666 (h) el:l (67)

This reduces to eq (9) for small values of ¢ with

vy=1/3. Substitution of /Z=10.4}10° lb/in.?, h=
0.126 in., b=7.2 in. for the plate of figure 6 leads to

the solid line shown in that figure. The observed
points come close to this curve, thereby providing a
second check on the adequacy of this approximate
theory for computing membrane stresses in the
elastic range.
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