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HEAT TRANSFER THROUGH METAL-INCLOSED
INSULATION

By M. S. Van Dusen

ABSTRACT

The paper gives a mathematical treatment of the problem of heat transfer
through an insulated metal-inclosed panel, such as a sheet-metal door con-
sisting essentially of a sheet-metal box filled with insulating material.' The
treatment is necessarily approximate, but the approximations involved are
accurate enough for practical purposes. The effect of a solid metal thermal
short circuit, such as a supporting member extending from one metal surface
to the other, is also considered. Calculations and graphs are included, showing
the relative magnitude of the heat transfer by metallic induction in a number
of cases which might be considered in the design of this type of construction.
It is shown that the increase in heat transfer through a metal-inclosed panel
due to the presence of the metal may be as high as 100 per cent in many cases
which might be considered in practical design.
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I. INTRODUCTION

The question of heat transfer through what might be termed an
insulated panel, consisting of a slab of insulating material completely
inclosed by sheet metal, the dimensions of the sides being large in

comparison with the thickness of the panel, has been raised on a
number of occasions, but the effect of metallic conduction around
the edges of such a panel apparently has been a matter of conjecture.

Insulated construction of this land has many points in its favor,

the principal one being that the insulating material is effectively

sealed against moisture for a long period. The importance of this

in refrigerator or cold-storage construction is well known. It is

evident that definite information regarding the edge effect will be
useful in the design of insulated construction of the metal-inclosed

type. This paper offers a solution of the problem; necessarily

approximate, but accurate enough for practical purposes,

II. MATHEMATICAL THEORY

It does not appear necessary to give the detailed mathematical
analysis at this point, 1 but it will be of interest to state the assump-
tions made and to indicate the general line of reasoning. Consider

1 Detailed analysis is given in the appendixes.
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a cross section (parallel to the general direction of heat flow) of an
"insulated panel/' together with adjacent ones, as shown by Fig-

ure 1.

The warm surface of the panel receives heat from the warmer
air (at temperature 2) in contact with it, part of which is conducted
through the insulation and part through the metal around the edges.

Since the thermal conductivity of the metal is much greater than
that of the insulating material, the temperature at the point A will

be lower than that at C, and the temperature at B will be higher
than that at D. By symmetry, however, the temperature on the
plane EF will be the mean between 2 and 1?

neglecting unimportant
variations with temperature of thermal conductivity and surface
resistance. Bearing this picture in mind, the following assumptions
have been made:

1. Heat transfer between the warm air and the warm surface of

the panel is proportional to the temperature difference between the
warm air and the metal surface.

AIR AT TEMPERATURE 8„

SHEET METAL

AIR AT TEMPERATURE 8,

Figure 1.

—

Cross section of circular panel with complete metal inclosure

2. Heat transfer at any point between the warm metal surface and
the insulation is proportional to the temperature difference between
the metal at that point and the middle plane EF, Subsequent
numerical calculations show that this approximation is accurate
enough for practical purposes.

3. The sheet metal is relatively so thin and is such a good conductor
compared to the insulation that temperature gradients in the metal
perpendicular to its surface are negligible.

4. That portion of the metal between A and B suffers no net gain

or loss of heat. This assumption is justified by considerations of

symmetry.
5. Similar assumptions obviously apply to the cold metal surface.

It will be evident that the presence of the metal increases the heat
transfer, but at the same time the heat transfer through the insu-

lating material is less than it would have been were there no metal
present. The net increase in heat transfer is the difference between
these two effects.

Even with the simplifying assumptions enumerated above, the

rigorous solution for a rectangular panel appears to be extremely
complex. The solutions for a panel having a very large area so that

corner effects can be neglected, and for a circular panel, however, are

comparatively easy to obtain. In the range of practical cases the

difference between these two solutions is so small that the uncertainty
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in their use for calculations applied to a rectangular panel is of no
practical importance.

_
The solution for a circular panel will be used

in most of the numerical calculations, since it represents the closer
approximation.
The following notation wall be used:

K= thermal conductivity of metal.
t = thickness of metal.

2a = thickness of insulation.

k = thermal conductivity of insulating material.
h = surface conductance per unit area between air and metal.
A = area of panel.

P = perimeter of panel.

/= net percentage increase in heat transfer due to presence of metal
edges (basis, heat transfer without metal edges).

T= transmittance of panel (total rate of heat transfer per unit
temperature difference between air on both sides).

For a circular panel

:

/==
Pah

AjTah + k^ lah + kl (1)

where

T (.2A lah+k\

The quantity 7 is a real function of the Bessel's functions J and Ji
with pure imaginary arguments, and approaches unity with increasing
size of panel. In the limit, therefore, equation (1) reduces to

J- _— f
afe ,._ (3)

, j Vah+ k Iah 4- k~]

Equation (3) can also be obtained by a direct method not involving
the use of BessePs cylindrical functions.3 The differences between
equation (3) and equation (1) are only a few per cent for panels as

!
large as 10 square feet in area.

If h is very large, which amounts to saying that the temperature
gradient in the metal edge is the same as that in the insulating mate-
rial far removed from the edge, equation (3) reduces to:

which could be written down directly from elementary principles, and
represents the case in which the edge effect is greatest.

2 The derivation of this equation is given in Appendix I.

8 See Appendix I.
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If no metal were present around the edges, the tfansmittance C of

any panel would be:

_Mh_

The transmittance T of any panel with complete metal inclosure is

evidently equal to G (1+7).
From (5) and (1),

T= Akh
2ah + 2k

[

1+
Ak[

Pah

ah+Jc
Kt

+ 7V
ah + k

aKt

(6)
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Figure 2.

—

Per cent increase in heat transfer through 4-0 by 40 inch panel,
due to complete steel inclosure

Numerical calculations of practical cases show that the heat flow
through the metal edges is not greatly affected even if the insulation
is considered perfect. In such an event no assumption of linear heat
flow through the insulating material is necessary, and it is therefore
concluded that this assumption introduces no significant error in the
calculation of heat flow in the metal. Numerical calculation also
shows that the percentage decrease in heat transfer through the insula-
tion due to the presence of the metal edges is small, and therefore the
error involved in the assumption of linear heat flow through the insu-
la tion is practically insignificant.

Figure 2 shows the percentage increase (I, equation (1)) in heat
transfer resulting from the use of a metal inclosure, plotted against
the thickness of the metal (steel) used for the inclosure. A family of
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curves is shown, each member applying to a particular thickness of
insulation. It will be noted that the percentage increase in heat
transfer increases with thickness of insulation. The absolute increase
in heat transfer, however, decreases with increasing thickness of insu-
lation, as must be evident from elementary principles. Figure 3 shows
the absolute values of the resistance and transmittance, plotted
against thickness of insulation. Each curve corresponds to a par-
ticular thickness of metal.

In the calculations the following data have been used:

£ = 0.002 B. t. u. hour-1 inch-1 (°F.)
-1

(average insulating material).
h = 0.01 B. t. u. hour-1 inch-2 (°F.)

-1
(still air).

K=2 B. t. u. hour-1 inch-1 (°F.)
-1

(steel).

p
-j= 0.1 inch" 1

(40 by 40 inch panel).
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Figure 3.

—

Transmittance and resistance of 40 by

40 inch panel, as affected by the thickness of panel

and thickness of steel inclosure

Since the percentage increase in heat transfer is nearly proportional

P
to the value of -j, values for panels of various sizes can readily be

computed by a simple multiplication. To avoid inconsistencies, a

single unit of length (the inch) has been used throughout. 4 Round

4 The familiar hybrid conductivity unit containing two units of length, the inch and the foot, is very

inconvenient and illogical in dealing with heat flow in more than one direction. British units are used,

since the majority of American engineers, to whom the paper is primarily addressed, are accustomed to

think in terms of these units. The advantages of a decimal system are very great, but so many extraneous

units; for example, the calorie, have been introduced into the various metric systems that the latter are

almost as bad as the various British systems. The universal use of decimal multiples of e. g. s. units would
be a great step forward.
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numbers, closely approximating average experimental values, have
been used for the thermal properties of the materials. For relatively

small changes in the value of k (through the range of ordinary in-

sulating materials) the percentage increase in heat transfer is ap-
proximately inversely proportional to k.

5 The effect of changes in

the value of h can not be approximated so simply, and recourse must
be made to the original equations. The value of the quantity 7 6

varies little in the range of practical cases, and the average value of

1.05 is sufficiently close. In the calculations for Figure 2, 7 varied
from 1.03 to 1.07.

III. EFFECT OF A SMALL THERMAL SHORT CIRCUIT
IN THE CENTRAL PORTION OF A PANEL

In Figure 4, R is a rod of radius r2 in metallic thermal contact
with the sheet metal on both sides of the panel. This thermal short

circuit is assumed to have the same thermal conductivity as the sheet
metal, and to be far enough removed (a foot or so) from the edges
or from other similar rods such that the effects of the latter on the
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Figure 4.

—

Cross section of metal covered panel with metal short circuiting

connection

particular rod in question are negligible. Outline of the solution of

this problem is given in Appendix II. If the rate of heat flow through
the rod is denoted by H2 , then for rod diameters up to about one-half
inch,

rr_ irr2
2h(d2

-0
1 )H2

~2ata2 + \ar2

(8}

X = 2.3ar2 log10^ (9)

where

and

a2 = ah+ k
aKt (10)

The effect of the presence of the metal connection on heat flow
through the insulation is not significant, since the area of the insula-

r * The approximation becomes less exact as the thickness of the insulation is decreased.
8 Values of y for values of the argument greater than 4 (always the case in a panel of practical dimensions)

can readily be computed by means of the very good approximation

Mix) rir m
This equation can be deduced from the semiconvergent expressions for Bessel's functions.
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bion is very large compared with that of the disturbed region around
the metal connection.

The rate of heat flow through a steel short circuit is plotted in
Figure 5. The figure is self-explanatory and need not be discussed
,o any extent. By comparing the values with those in Figure 3,

t will be noticed that the transmittance of a short circuit of reasonable
ize is small compared to that of a 40 by 40 inch panel.
If the short-circuiting rod is not in metallic thermal contact with

he metal surfaces, or if no metal surfaces are present, its effect is

tactically insignificant on account of its relatively small area. A
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—

Effective transmittance of thermal short circuiting steel con-
nection, as affected by thickness of panel and size of metal connection

Sheet steel on surfaces 0.02 inch thick.

*ood example of this is a nail running completely through the insula-

tion. In such a case the heat flow is evidently given by

#2=
*t2*(02 -0i)& (ID

the thermal resistance of the rod itself being negligible in comparison
with the surface resistances on each end. 7

p.' H. Schofield, Phil. Mag., 7 serie?, 5, p. 567; 1928.
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IV. APPENDIX I. METAL EDGES

Figure 1 shows a cross section of a circular panel surrounded al

the edges in such a way that no heat is lost or gained laterally. Th<
general outline of the procedure and the assumptions used in tht

derivation of the equations has already been given and will not b(

repeated here.

Consider the state of affairs in the metal on the warm side z — 2a ,1

with particular reference to any ring element of infinitesimally small

width dr. It is evident from symmetry that the temperature is

uniform around the ring.

Rate of heat gain from air at 62 to element = 2irr8rh(d2— 6) where 6

is the temperature at the distance r from the center.

Rate of heat loss to insulation =

2
„*D-&±».]

Rate of heat gain by metallic conduction =

~ Kt2irrt
Rate of heat loss by metallic conduction =

1 r,r do
,
d( d0\ 1-^K{ r^+
drVdr)

8^
In a steady state of heat flow the element under consideratioc

suffers no net gain or loss of heat. Equating the gains to the losses,

we obtain

^ x
_ld6_(h_ ,

dr2 +
rdr \Ktf^~(^+aK#/+(^+2a^/2 + 2a^^-° (1

Denoting the coefficient of 6 by a2 and the sum of the constant

terms by 6, we have
d2

d .ldS n~rt™7\
dr-2+7dr- ad+ b = °

This is a modified form of Bessel's equation of order zero, and i

particular solution is easily found to be

6 =AJ (iar)-h~2 (3

where A is an arbitrary constant, J denotes the Bessel function o

zero order, and i is the usual symbol for y — 1'. The function JQ ii

a real function of the pure imaginary argument iar.

The complete solution of equation (2) will contain a Bessel's func«j

tion of the second kind which becomes infinite at the origin, and caij

not, therefore, appear in the solution of the present problem. If i

denotes the temperature (as yet unknown) of the edge r = rx an
s = 2a, then equation (3) becomes
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On the cold surface z = a similar argument yields the equation

fl-Vfl
cXJoJictr) c ()

°-V* cfiJJSctr^ <*
(5)

where 4 is the temperature on the cold edge r = r x and 2 = 0, and

m+mc^+AtO* (6)

Since no heat is lost or gained by the metal along the edge, the

temperature distribution in the metal at the edges must be linear

along the 2 axis. In terms of the unknown temperatures 3 and 4 ,

this distribution is given by

The unknown temperatures 3 and 4 can be evaluated by con-

sidering the fact that there can be no discontinuity in temperature
gradient in the metal where it bends around the edges. We therefore

3an wTite

md
d£L = -(£u (on warm side) (8)

$XA¥Xo (o-oldside) (9)

Differentiating equations (4), (5), and (7), yields, respectively:

©„--(*-5)-3fef <">

The values of 3 and 4 can be obtained by the use of these equa-
tions . Substituting their values in equations (4) and (5). and defin-

ng a quantity,

JQ (iari)
*/ = ; ;— iJi (iari)

ve have finally

. b y(b — c) J (iocr) ., N /1oN= —2-7tt?—r~^ -TT-'
—

\ (.warm side) (13)
of 2a.

2
(y + aa) J (iari)

v

. c y(b — c) J (iar) , ,, ., * ,1>n
^=_2+ ^2)

—

r~\ rh— \ (cold side) (14)
a2 2a2

(y + aa) JQ (iari)
v

The temperature difference A0 between corresponding points at

k = 2a and 2 = on a cylinder of radius r is the difference between
equations (13) and (14), or

A9=^£_.^L^« (15)
az a2

{y + aa) J {iari)
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The rate of heat transfer through the insulation (on the original

assumption of linear flow) is given by

H^r^Trr^Addr (16)

Substituting equation (15) in equation (16) and integrating, yields

Hi=^wn 2^1 (17)
2aof L ria(y + aa)J v '

If no metal were present around the edges, a very elementary cal-

culation shows that the rate of heat transfer would be equal to the
coefficient of the bracketed expression in equation (17). The decrease
in heat flow through the insulation, due to the presence of the metal
around the edges, is therefore given by

ac?(y + aa) UN

The heat flow through the metal edge is evidently given by the
expression:

way,-*,)
(19)

By the use of equations (13) and (14), this expression is easily

evaluated and found to be:

^P^ (20)a{y + aa) K
'

The net increase AH in total rate of heat flow through the panel, due
to the presence of the metal edges, is the difference between equation
(20) and (18), or

a(y + aa)\_ act?J

Were there no metal present around the edges, the total rate of heat

transfer H through the panel would be

The percentage increase in heat transfer, due to the presence of the

AH
metal edges, is equal to -jt' Substituting the values of b, c, and a,

we have finally,

AH= 2ah

H /ah + k
,

lah + k\ (23)

2 P
This is identical with equation (1) in the text, since—= -r*
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A similar analysis applied to an infinite straightedge (therefore

assuming at the outset that the heat flow in the metal edge is directly

proportional to the length of the edge and independent of the area of

the panel) involves the use of exponential functions and yieJds

equation (23) in the special limiting case where 7 —» 1. Evidently
this must necessarily follow, and amounts to nothing more than a
check on the analysis.

V. APPENDIX II, THERMAL SHORT CIRCUIT

Referring to Figure 4, the differential equation of heat flow in the

metal surfaces in the range r^>r2 is evidently the same as in the previ-

ous case. The particular solution required, however, is different,

since the boundary conditions are different. We are no longer con-
cerned with the value of 6 when r = 0, but when the value of r becomes
large, 6 must approach the value it would assume were there no metal
short circuits. The general solution of equation (2), Appendix I is

e= A'J (iar)+B'Y (iar)+~ (1)

By choosing certain values of the arbitrary constants A' and B f

,

we can write

= ,4J[log |
l
][J(ior)]- F (iar)j +^ (2)

The quantity in the braces is real, vanishes for infinite values of

r,
8 and is therefore the solution required, since —3 is the temperature of

the metal surface were there no metal short circuits present.

Y is the more common notation for BesseFs functions of the second
kind, although many other notations are used. /3 is a fixed numerical
constant having the value 1.7811. The bracketed expression in

equation (2) is a real function of r and was denoted by Hankel 9 as

-^H (iar)

When r = r2 and z = 2a, 6 = 3 .

Eliminating the constant A from equation (2) by this means yields

e=i^U-i\iypE± (3)a2
V a2/H (tar2)

valid in the range r^>r2 and 2a — t<Cz<^2a.
Within the cylindrical rod short circuiting the two thin metal sur-

faces, we must satisfy the equation V 2 = O with the following bound-
ary conditions: When

8 See Jahnke-Emde " Funktionentafeln mit Formeln und Kurven," Teubner, p. 94; 1909.
• Hankel, Mathematische Annalen, 1, p. 483; 1869; 8, p. 453; 1875.
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dO_ n (neglecting the very small amount of heat received
z ~ 'dz~ directly from the warm air over the relatively

small area 7rr2
2
)

.

££ r *<*JL from equatlon (3)

a<z<2a-t\ be-0
r= r2 J or

The solution satisfying these conditions, valid in the range r<C,r2

and a<2<2a, can be found without great difficulty, and is as follows

:

Saai ~2— 3 ) %ZZ sm r——- - sin

2~ X^ £j~ lU . T /.(2n- IKS\SQ (2n-l)*iJi^ 2o^/ (4)

sin

where

o2 +Oi
"w

Vo2 /v*— 2 2a

71=1

(2n-l)ir(g-a) T /.(27i-l)7rr\

Ya
J\ % 2a~~

)

H (iar2)

iHi(iar2)

At the boundary region r = r2 and 2a— t<^z<C2a, equations (3) and
(4) should give identical values of temperature (03 ) as well as normal
derivative, in order to satisfy the physical demand of continuity of

temperature. Evidently they will not do this exactly, but the dis-

crepancy is negligible, since over the small distance from z = 2a— t to

z — 2a, the temperature given by equation (4) is very nearly constant.
The elimination of 3 by using equations (3) and (4) is therefore
accurate enough for the present purpose.
When r = r2 and z = 2a

B2 + e1 ""~W -7Y1 "" 2a "V 2q J ...

Xtt
2 Zj (2n-l) 2 ../.(2»-l)w,\

(b)

71=1

Solving for 3

%abX1 fyrhBi

«x2j ' 2
6*~ 8aa" (6 )

1 + 2
The rate of heat flow, H2) down the metal rod is evidently equal to

therefore,

2irr2Kt-r (from equation (3))

#2=
2irr2Kta

(i-*) <7 >
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Substituting the value of 3 , we have

H2=
2irr2Kta

02 + fli
,
Sab VT

E J
Saa (8)

The series, denoted by the abbreviation 2, is approximately equal,

for small values of r2 less than about 0.25 inch, to the expression

4r2

This equation is obtained by considering the limiting forms of

expression of the quantities involved as r2 approaches zero. The
limitations of the approximation can be shown only by numerical
calculation. The approximate value of X (equation (9) in text) is

at least as accurate as the approximation for 2, and was obtained by
the same method.
Using this approximation, and substituting the value of the quan-

tity b, we have finally, after considerable algebra,

#2 =
2ata2

-f r2a\
(9)

This expression can be obtained directly by assuming at the outset
that each end of the metal short-circuiting post has an infinitely

conducting surface layer of small thickness t.

Washington, April 30, 1930.


