Journal of Research of the National Bureau of Standards

Vol. 47, No. 6, December 1951

Research Paper 2277

On the Derivation and Accuracy of Certain Formulas for
Sample Sizes and Operating Characteristics of
Nonsequential Sampling Procedures'’

Uttam Chand?

Formulas are given that are needed for the computation of number of observations and
operating characteristics of single sample acceptance sampling procedures based on tests of

statistical hypotheses.

tables and curves located in widely scattered places.

Some of the same results may be obtained by reference to existing

The hypotheses considered concern

the means and standard deviations of certain populations (that is, binomial, Poisson, normal)

where the test is made against a one-sided alternative.
two variances as well as the test of a single mean or variance is discussed.

The comparison of two means or
The accuracy

of the formulas is considered, and where approximations are involved, the results are com-

pared with existing tables.

This paper develops and considers the question of
the accuracy of certain formulas needed for the
number of observations and operating characteristics
of single-sample acceptance-sampling procedures
based onstatistical tests of hypotheses.  Forpurposes
of completeness the paper also contains formulas
that are already known.

1. Introduction

It is now common knowledge among users of
modern statistical tools that the characteristics of a
sampling plan must be specified in terms of the risks
of rejecting good material (Type I error: producer’s
risk) and accepting poor material (Type II error:
consumer’s risk). The problem of determining a
sample size for a given probability of Type I error,
which will minimize the probability of Type II error,
has been considered by several authors, in particular
[1 to 4].* This problem belongs to the category of
that broad class of problems in the field of planned
experimentation in which one is asked to provide
adequate replication to detect treatment differences
with desired amount of protection against taking
wrong decisions. If for a certain sample size it is
impossible to reduce simultaneously to small propor-
tions the risks of two kinds it will be helpful to know
this in advance.

Answers to most of the questions raised in this
paper can be obtained from the existing published
tables and curves. The effectiveness of these
formulas in relation to assumptions and approxima-
tions that have been made in their derivation also
has a theoretical interest.  We shall restrict ourselves
to the consideration of certain parametric hypo-
theses concerning means and standard deviations of
certain populations, mainly against one-sided alter-
natives.

2. Preliminaries and Notation

In the ensuing sections 7, denotes the null
hypothesis, H, any one of a set of alternative hypo-

1 Revision of a paper written during the summer of 1947 when the author was
a guest worker at the National Bureau of Standards. The manusecript was
actually revised while the author was teaching at Boston University.

2 Present address, c¢/o P. V. Sukhatme, Indian Council of Agricultural Re-
search, New Delhi, India.

3 Figures in brackets indicate the literature references at the end of this paper.

theses, a the probability of rejecting the null hypo-
thesis /1, when true, and B the probability of
accepting I/, when some alternative hypothesis, /.,
is true. In connection with the hypotheses concern-
ing the means of certain populations in which the
standard deviations are functionally related to the
means and consequently unspecified, the reader will
at once recognize that the acceptance-rejection
criterion A used for a statistic 7" is not the best in
the sense of the likelihood ratio test [5]. This
difficulty, however, can be avoided by transformation
of the original variables and has been indicated in the
appropriate sections. In connection with the two-
sample problem the formulas assume equal sample
sizes. These formulas can obviously be extended to
cases in which it is desired to take unequal sample
sizes of NV, and N, that are assumed in advance to be
functionally related.

3. A General Formula Concerning Sample
Size and Region of Rejection

Let z=x(/N) be a normally distributed variable
with mean g, and standard deviation (sd) o=

() F(N) under [, and with mean u, and sd o,=
S(ue) F(N) under H,y(us >ui), where F(N) is a certain

function of the sample size N and is independent

of 0. We assume z >4 as the critical region and
obtain .
1 ® 2
] e_t /2dt=a
'\/27" K,
and

— [T erg=1—
w/27er1—B B,

where K, is the standardized normal deviate exceeded
with probability e and actually

A—#l o
TP K- =
11—#2
Faarany—Fo-e=—Ke 2

Solving (1) and (2) for F(N) and A we obtain
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S o P

FON= %, 76 Kaf @
A:Kaﬂzf(#1)+KB#1f(#2), (4)

Ko f(p)+ Ksf(uo)

which may also be written as

— MM 5
leaGJ‘i—KBUz (O)

Ka#201+K5M102
A= K 01+K5<72 (6)

for later convenience in certain simplifications. We
note in passing that in particular cases of application
() will either be a function of u (cf. binomial and
Poisson), or it will not depend on g, in which case it
will be a certain function of the population sd o
(ef. normal) or a pure number (cf. transformed
binomial and Poisson).

4. Tests Relating to the Parameter of the
Binomial Distribution

4.1. Single Binomial

Consider a random sample of N items drawn from
an infinite population in which a proportion P of the
items possesses a definite attribute B and let p be
the fraction of the items possessing B in the sample.
Then E(p)=PFP and o(p)=+P1—P)/{/N. Our
hypotheses are H,:P fPl and H,:P=P,(P, >PF,).
Using the normal approximation for the binomial
variable p, (3) and (4) imply

N <K5\]>(1—}>)+K0\P1(1—P1)> @
P,—P,
‘4:K5P1'VP2(1 PQ)"—K Pz\ P](l“‘ )1) (8)

Ko Pi(1—P)+ K3y Py(1—P)

While (7) determines directly the sample size that
will (approximately) guarantee a specified « and g,
this may also be looked upon as providing the values
of the probability of accepting H, for different values
of P for given N and « F‘oy example (7) yields

’\N(PZ—‘PI)-KQ\“’PI(I ,_Ll).
VPy(1—P,)

Kﬁg (9)

The inverse sine transformation =2 sin~' p

where 6 is measured in radians [16] avoids the diffi-
culty of the dependence of the standard deviation of
of p on unknown P, since 6 is approximately normally
distributed about 2 sin~' /P with sd «(8)~+/(1/N).
In terms of the transformed quantities we obtain

S 1 K.+ K; )2

A ::1<sin“ VP,—sin™! P, (10)
. s

Ag2<Kﬂs1n \[I;_:I[i':sm \/P2> 1)

Kz~2N (sin~! y/ Py,—sin! yP) —K,. (12)

We have derived (7) and (10) to illustrate the use
of the results given in section 3. The comparison
of the two formulas raises questions of quite a com-
plicated nature. We have so far not found any
convenient yardstick with which to compare their
accuracy. In the light of the fact that the critical
region 6 >A (11) has certain theoretical advantages
against p >A (8) there is the temptation to recom-
mend (10). As the following example will indicate
(a=.05, P;=0.1 and P,=0.2) the recommendation
has nothing to do with the relative magnitude of
the values of NV given by (7) and (10).

| | [
B= ‘ 0.20 | 0.10 0.05 | 0.01
M | 689 | 1012 132.6 | 202.8
(10) | 768 | 1063 134.4 | 195.8
| [ |

4.2. Comparison of Two Binomials

Consider two binomial processes with P and P*
as the values of true proportions and let p and p*
be the observed proportions in a sample of N from
each process. We have here H;:P*—P=0 and
H,:P*—P>0. The test function X=p*—p under
H, has an unspecified variance V(X)=2[P(1—P)]/N,
where P is the common (unspecified) value of P and
P* under H,. Under H, we have V(X)=P(1—P)/
N+ [P*(1—P*)]/N, where P*—P=¢>0 say, with
the value of ¢ specified but not the values of P* and
P. We are then faced with the problem of com-
paring two means having unspecified and unequal
variances under H, and H,.

The only satisfactory solution to the problem of
the comparison of two binomial means—see [4,
chapter 7]—is usually given in terms of the trans-
formed variables (section 4.1). Under the inverse

sine transformation sin™! 4/p*—sin~! /p is approxi-
mately normally distributed (except when N 1s very
small or the P’s are close to 0 or 1) with mean sin™

~P*—sin™! \P and variance (1/2N). We now use
results of section 3 and obtain

2
Ng-lr(. = ,f)~ (13)
2 \sin~!'yP*—sin"'yP
K
A—= 14
N (14)
Kg~ 2N (sin~'y/P*—sin~'yP)—K,. (15)

5. Tests Relating to the Parameter of the
Poisson Distribution
5.1. Single Poisson

Let 7 denote the mean of a random sample of size
N from a Poisson population with parameter m.
Let Hy:m=m; and Hym=m, (my, >m,). To apply
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the results of Section 3 we assume normality for
with mean m and variance m/N and obtain

— x> 2
o R O x’L‘J‘@)
N :< mo—m;, -
A*mw rana"}—ml\;’lliI{ﬂ (17)
Vi K4y my Ky
Ky~ (M= m)VN—VmK, (18)

~m,

We notice that under both 77, and #, the variance
of Z is known given N but differs for H, and H,.
If we make use of the well known square-root trans-
formation [17], the variance of the transformed
variate is approximately independent of the unknown
mean and is approximately equal to 1/4N. We now

obtain

> 2

ng< ek ) (19)
4\ Vmy—+/m,

, «x\E:JﬁKfDJE
A= R.4K, (20)

and -
K=~ 2N(yma—+/m;) —K,. (21)
For example for m,=3.0, my=4.0, a=.05, B=.10,
formulas (16) and (19) yield N= 29.3 and N—29. 8

respectively. This is just an illustration; otherwise
remarks made in connection with the single binomial
in the last paragraph of section 4.1 apply here as
well.

5.2. Comparison of Two Poissons

Let M and M* be the parameters of two Poisson
populations.  Let HyM=M* and Hy;M<M*,
e.g. VM*— M=7>0. Consider two independent
random samples of size N drawn one from each of
the two populations. Let r and 7* be the corres-
ponding samplo means. We may regard the quan-
tity Vx*— VT as nppm\lmatel\ normally distributed

with mean m=+ M*—y M and variance 1/2N and
consequently obtain

.1 K.+ K; )2
:\':' e
2 (J{*— VM (22)
K
A~—= 23
VaN e

and

Kgg'\ ::\v(\’:‘i[;—\ﬂ>—Ka. (24)

6. Tests Concerning the Mean of the Normal
Population

6.1. Single Mean Test (¢ known)

Let 7 denote the mean of a random sample of N
observations from a normal population (g, ¢%). We
shall assume that ¢ is known from past experience.

Our hypotheses are I;: p=pu, and F,:
Set ﬂg_#IZAU.

p=ps (u2>py).

The test function Z is normally

distributed with mean u and sd o/yN. Using
results of Section 3 we obtain
—(£=t=e) (25)
__Ka,u2+Kd,U-l Y
S g (26)
and
KH:A\‘N“‘KQ (27)

6.2. Comparison of Two Normal Means (¢'s known)

Let z,, 7, be the sample means of two independent
random samples of equal size N drawn one from each
of the two normal populations m (uy,0%), m(us,02)
respectively. We assume both ¢% and ¢2 to be known
from past experience. Our hypotheses are I1,: u,—pu,
and Hy: p<ps. The test function 7,— 7, is normally
distributed [(po—w), (ei+02)/N] and, therefore, we

obtain
. (K.t K\’ .
=, 25)
A Kalpy—p1)
A=: K. +K (29)
and B
Ks=+{Nd— K, (30)
where 7 e e
voi+to3
If 6?=02=0¢” we obtain
T__ Ka+l(d % 91)
N ;2<~ A ) (31)
Ka(po—p1) g
A=—phst (32)
and -
N

6.3. Single Mean Test (¢ unknown)

For notation see section 6.1. In this case the well
known Student’s statistic f=+/N(Z—pu)/s where
s* is the unbiased estimate of %, is used to accept or
reject H,. Tables for determining the sample size
for detecting a given value of A with preassigned «
and B are given in [1] and operating characteristic
curves for the same are given in [2]. To obtain a
convenient formula for the sample size we proceed
as follows:

Consider P{t>k}=P{[(F—pn)— (ks/yYN)]I>0}
where k is a certain constant. The quantity Z=
(T —pw) — (ks/4/N) consists of two parts: (Z—pu,) is
normally distributed (0, ¢*/N) under [77,, and
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(uy—p1, o*/N) under I,; and for fixed N, ks/+/N is
a constant multiple of s where s is apploxlmatelv
normally distributed (Cio, Cio/y/2(N—1)) and
and (), are certain constants less than 1.* It wﬂl
be assumed for the purpose of this discussion that
both C; and (, are equal to unity. The dual nature
of these assumed approximations to the distribution
of s should be noted. Therefore,

EZH)=Z=—%
N

N

V

Z2:(P~2-‘

0_2

ag
VO=NtNsv—1)
For 77> A as the critical region we obtain (see sec-

v j\?

\]\\/1+2(N

A— =
<Mz M1 '\]\Y )4 X

— — 43
wN\h+ﬂN )

Eliminating A from the above two equations we get

A 1/ [
KT+KJW\/ o= s

where A has been previously defined (section 6.1).
This is a quadratic in N and could be solved for N
if & were known. We now determine & from the
consideration that A is to be independent of o.
After simplification we obtain

o AK, k

K +Kﬁ \:’\7
The right-hand side will be independent of o if
and only if the quantity in parentheses vanishes.

a

4 The general e\py(}wnns for Cy and C: are:

Ca=+2(N-1)(1-C3).

2 0.798 0.852
3 . 886 . 927

4 .921 . 954
5 .940 . 965
10 973 985
25 . 990 . 995

Therefore,
—K.AVN (35)
K.+ K

whence A=0 and is not only independent of & but
actually takes the originally intended value in the
inequality P(Z>0). Substituting  this value of %k
in (34) we finally obtain

Vbt Vb—4a (36)
2a

(i)
and b:<1+a (1—{-%))

Similarly
A ( . ,T( Kﬁ))”z
— (N’—-N{(1+== S
JN=1 +5 (37)

If we replace N—1 by N, the above two formulas
reduce to somewhat simpler expressions of the form

where

KB:—Ka+

\’:<—:;+%Ki>+ 1 (362)

2\ 1/2
ng (37a)

K3:~KQ+A<N-—

For any given A, «, and B, values of N from (36)
are compared with the Neyman-Tokarska ® Tables
[1] are given in table 1. These values will be found
to be approximately the same.

As pointed out in the previous paragraph (34)
was obtained under the assumption that k& is un-
known. The classical procedure employs k=t. (n)
where n=N—1. Therefore if the probability points
of t are not available, (35) furnishes an approxima-
tion to such points t,. We have cousidered the ac-
curacy of such £ points in relation to t, in terms of
Plt>z]=a(x). Values of t., k, a(t.), and «(k) are
given in tables 2a and 2b for different N’s and for
different o and . Strictly speaking a(t.)=«, but
when ¢, to only three decimals is used, «(f,) may
differ slightly from « as shown in tables 2a and 2b.

We notice that k& values are in general conservative
t, estimators and that the values of a(k) are con-
sistently greater than the corresponding value of
a(te). In this sense a user of our formulas is likely
to declare slightly too many significant results.
The danger, if it can be so called, is not very great,
but it is still there.

The question is asked: 1s it possible to eliminate
this “danger” and still utilize formula (36) for N?
It should be noticed that we can not utilize the
available percentage points of ¢ in the derivation of
(36). However, (34) can still be solved for N as-

5 Neyman-Tokarska's p is equal to our A\l\ Since the standard table of

probe 1b111ty points of ¢, [18] table 4, gives the two-tail probability points of £, our
ta(n) corresponds to the entry given there for 2« and n degrees of freedom.
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TABLE 1.

Comparisons among different methods for obtaining necessary sample sizes

[Single ¢ .melv one-sided mean tost]

=05
\ B=.20 ‘ =10 ‘ B=.05
A S 1 o
—Ta . (36) ‘ (38) | (25) ‘ N-T (36) (39) L (25) ‘ N-—T (36) ‘ (38) (25)
2 3 | 3 4 2 4 4 4 2 5 4 | 4 3
1 8 8 8 6 10 10 10 9 12 12 12 11
5 26 2 2% 2 36 36 36 34 45 45 45 43
295 100 100 100 99 139 138 138 137 175 175 175 173
125 308 397 397 396 550 550 550 548 694 694 694 693
a=.01
A B=.10 B=.05 8=.01
» e \
2 6 6 7 3 7 7 7 4 8 8 9 5
1 16 16 16 13 19 19 19 16 24 24 25 22
.5 55 55 55 52 66 66 66 63 89 89 89 87
.25 211 211 211 208 255 255 255 252 349 349 | 349 346
.125 837 836 836 833 1012 1012 1012 1009 1388 1388 | 1388 1388

a N~
cluded here for purposes of comparison with the other three for ¢ unknown.
section 6.5.

TasLe 2a.* Comparison of the accuracuy of the different
percentage pomts of t and k values for the same A

T refers to values obtained either directly or by interpolation from Neyman and Tokarska Tables [1].

Values under ““(25)" are for ¢ known and are in-

For a relation between the comparison of sample sizes for o known and unknown see

TasrLe 2b.* Comparison of the accuracy of the different
p(’rccntaqe points of t and k values /(n the same A

a=.05
Neyman and Tokarska This paper

N L ta a(ta) N {5 a(k)
3 2. 920 0. 05000 3 3. 338 0. 04958
B=.50_____ 4 2. 353 . 05000 4 2.110 . 06270
12 1. 796 . 05003 12 1.753 . 05370
3 2. 920 . 05000 3 2. 458 . 06659
B=.20_____ 8 1. 895 . 04996 8 1. 840 .05412
26 1. 708 . 05012 26 1. 691 . 05163
B=.10 { 4 2. 353 . 05000 4 2. 235 . 05575
B chinin 10 1. 833 . 04999 10 1.783 . 05414
B=.05 5 2.132 . 04995 4 2.110 . 06270
T 12 1. 796 . 05003 12 1. 753 . 05370
B=.01 { 6 2.015 . 05003 6 1. 959 . 05370
e s sl 1. 746 . 04995 17 1.718 . 05250

= Values of P({>k)=a(k) and P(t>ta)—a (ta) for N<21 were obtained by
interpolation in “Student’s” Table I [6] and for 22<N<31 by interpolation in
Table XXV of [7].

suming k£ to be known, say equal to t,(n), resulting in

(@e+1)+ v (a—1)’+2atzZ (n)
2a

Values of N from (38) corresponding to different
t«(n), A, a and B are also given in table 1. Since the
values of N as given by (36), (38) and the Neyman-
Tokarska Tables are approximately the same, it is
recommended that (38) be used in con]uncmon with
the t-tables. This will save the labor of calculating
k values.

Since any symmetric two-sided test may be re-
garded as a combination of two one-sided tests,
values of N and k& may be obtained from the cor-
respondmg single-tailed formulas by substituting

K,/2 for K, and t,/2 for t,, in which case the “g8” de-
duced from the resulting value of Kz will over-estimate

= (38)

a=.01
This paper
N ta a(ta) N k I a(k)

J 4 4. 541 0. 00997 5 4. 371 0. 00594
B=.50____ 8 2. 998 . 01003 8 2.912 . 01130
l 24 2. 500 . 01250 24 2.473 . 01322

B=.20 { 5 3. 747 . 01000 6 3. 531 00833 |
""" 13 2. 681 . 01002 13 2. 644 . 01070
B=.10 { 6 3. 365 . 00996 6 3.277 . 01099
° - 16 2.602 | .00996 16 2. 571 . 01064
B=.05 { 7 3.143 . 01003 7 3.120 . 01033
oL 19 2. 552 00974 19 2. 528 01043
B=.01 { 8 | 2998 . 01003 8 2.912 . 01130
e 24 ‘ 2. 500 . 01250 24 2.473 . 01322

a Values of P(l>k) a(k) and P({t>ta)=a (t.) for N<21 were obtained by
interpolation in “Student’s” Table I [6] and for 22<N<31 by interpolation in
Table XXV of [7].

the true Value of B, the probability of accepting H,
when py—p=Ag, by the amount 1—g" where g’ i
given by (37) or (37a) with the term in A taken
with a negative sign. Values of N obtained from
[8] and [9] and from the formulas (36) and (38) of this
paper are given in table 3. The corresponding two-
tailed values of ¢ and £ are also given in table 3

6.4. Comparison of Two Means: (common ¢ un-
known)

For notation refer to section 6.2. Consider two
samples of equal size N. Our hypotheses are F,:
w=po; Hy: u<uo.  Liet s* denote the unbiased esti-

mato Of the common variance o The statistic

" which under 77, has “Student’s” t-distribu-

e
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Tasre 3.2 Comparisons among different methods for obtaining necessary sample sizes
[Two-sided single mean test: ¢ unknown]
a=.05
B8=.30 B=.20 ‘
4 Tab
Tabu- | @) (38) taf2 k el 35) 39) £af2 k
2 4 4 4 3.182 3.190 4 4 5 3,182 2.949
1 8 8 8 2.365 2. 280 10 10 10 2. 262 2,210
.5 27 o7 7 2,056 2.038 33 33 33 2.037 2,021
.25 101 101 101 1.982 1.979 128 128 128 | 1977 1.975
125 397 397 397 1. 966 1. 965 504 504 504 1. 964 1. 964
a=.01 |
2 6 6 6 4,032 4,184 | 6 I 7 7 4,032 3.933
1 13 13 13 3.055 3.019 15 15 15 2.977 2.941
.5 42 42 42 2,701 2. 687 50 50 50 2. 680 2. 668
.25 157 157 157 2.607 2. 604 190 190 190 2,601 2,599
.125 618 618 618 2,584 2,583 751 751 751 2. 583 2, 582
|

a “Tabulated” values were obtained from [8] and [9] and ?./2 indicates the two-tailed « value of .

tion with 2(N—1) d.o.f. is used to accept or reject /1.
Consider P<t2k1)= P(Ez 7 —kl\/% s>0>where

we assume &, to be a certain unknown constant. Let
Z=(Z,—7)—k \/z s
- 2 1 1 N
We assume that s is approximately normally dis-

tributed with mean o and sd, ¢/4/4(N—1). There-
fore 7 is approximately normally distributed with

E(Z[Hl):—kl\/% .
Ia
E(Z1H2):.U-2—M1—kr\/ﬁ o

A= \/N 2N(N—1)

where ¢(Z) denotes the standard deviation of Z.
Proceeding as in section 3.3 we obtain

e ki
KK \/ NTaNwv—1) (39)
and
K.oA
A= K. +K; \/7]61 a0

If we assume ky=t.(n) where t, is the one-sided
a-point of t for n=2 (N—1) d.o.f the equation (39)
vields

N0t 2+ Va—27+2atu(n)

5 (41)

where @ has been defined in section 6.3. The reason
for such an illogical assumption about the knowl-
edge of t,(n) before actually N is determined has
been indicated in the previous section. If k; is un-

See footnote 5.

known we determine k&, from the consideration that
A is to be independent of o. The relation (40)
vields -

N K.
h=\T EAEK (42)

We substitute this value of &, in (39) and obtain

b+ vbi—8a

N= 2a

(43)
where @ has been previously defined (section 6.3) and

bi=2+4a <1+Iii

For determining the operating characteristic we
similarly obtain

Ky=—K.+A [g (1 _Z%>]l/2

We give in table 4 values of N as obtained from
(43) and Tables of Neyman® and Tokarska [1].
While (42) provides approximate values of the per-

(44)

Comparisons among different methods for obtaining
necessary sample sizes N #

TaBLE 4.

[Two means one-sided test; common ¢ unknown: A=2]

a=.05 a=.01
Neyman-Tokarska| Neyman-Tokarska
(43) (43)

B=.50 2 2 4 4

B=.20 4 4 6 it

B=.10 5 5 8 8

B=.05 6 6 9 9

B=.01 8 9 12 12|
|

a NV is the size of one of the two equal samples.

6 For this particular case p as defined in [1] is equal to A-‘/i:f
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centage points of t for 2(N—1) d.o.f, the formula (43)
may be used advantageously by utilizing the avail-
able percentage points of ¢ as acceptance-rejection
criteria.  Formulas obtained here for single-tailed
comparisons can also be used for a two-tailed test
by substituting appropriate two-tailed values of the
quantities involved. If the two populations have
unequal variances and their ratio 1s known we still
can construct a test function similar to ¢ and use the
abeve formulas. (For the structure of the test
function see [10].)

6.5. Comparison of Sample Sizes for Known and
Unknown ¢

It need hardly be emphasized that in situations in
which large sample sizes are required, the normal
test (sections 6.1 and 6.2) and 7-test (sections 6.3
and 6.4) will both yield approximately the same N
(see for example table 1). To determine the rela-
tions between the two, let N, be the number of
observations required when ¢ is known and N, the
corresponding number when ¢ is not known. After
some simplification the following asymptotic rela-
tions between NV, and N, are obtamned. For the
single-mean test, (25) and (36a) yield

- e .
A\“ 1 "’Nm 1 +5’\7*>+ 1 (4-’))
and for the two-means test, (31) and (43) vield
. . I
A\ t \'A\ m 1 +‘IL\Y,,;>+ 1 . (46)

7. Tests Concerning Variances of Normal
Populations

Tests relating to population variances fall into two
well defined categories. In one case we assume that
the variability of a certain product is known and it
is desired to find out whether a new product is more
variable than this. In the other case we are asked
to choose between two products on the basis of their
variability which is unknown. We discuss these
situations in the following sections.

7.1 Single Variance Test

Consider a random sample of size N (=n-+1) from
a normal population (m, ¢*). Let s* be the unbiased
sample estimate of ¢’ Our hypotheses are F/;:
a*=a; and H,: ¢’=Nag(A\>1). For a given level of
significance «, if x*=ns?/o; >X%, we reject H, and
conclude that ¢ >¢?.

Let Na,8,n)" denote the value of ¢%/o; for which
the probability of the decision ¢*=g5 equals 8 when
the test is conducted at the a level of significance
with n d.o.f. It canbe shown [2], [4] that the proba-
bility error of the second kind is exactly gif N(a,8,n) =
xa(m)/xi_s(n)). 1If we are testing HH,;: ¢°=o; against
H,: o*=Xe2 (A1) we have A(o,8,n)=2i_./x

7 Our Ae,B,n) is equivalent to p(e,8,n) of [4].

970822—52

Curves for the operating characteristics of such
testing procedures are given in [2] and [4]. Eisenhart
[4] has also given extensive tables for \(«,8,n).

The problem of determining a direct relation
between large # and any given set of values of \, «, 8
was first considered by Wallis [1, footnote of p.

278].  Assuming normality of s (see section 6.3) and
applying the results of Section 3 we obtain
1 (K. ) -
71:»{5 KiKJ\)\ (4()
& viA—1
A= N )‘U()(Aai%l\d) (48)
Ka+ \‘ija
- 57 \2
Na, 8, ;z,)=<5:f3 ‘f‘) (49)
\V2n —IXB

To compare the accuracy of this formula with the
Tables [4] consider the following situation: if a deci-
sion o= o0, 1s a serious error from the practical view-
point when ¢=1.500 ¢, and it is desired to keep the
risk of such an error below .05 when the test is con-
ducted at the 5-percent level of significance, how
many d.o.f. will be needed for s*? The formula (47)
gives n=233.8 and from [4] we find that 34 d.o.f. are
needed. Table 5 presents the calculated values of
n from (47) and table 6 presents the calculated
values of X from (49). For a comparative discussion
on the use of these formulas in relation to others see
next section.

7.2. An Alternative Formula for the Single Variance
Test Based on the Distribution of Log s®

As pointed out by Bartlett and Kendall [11] the
distribution of log s * depends on ¢* only through the
term ¢ in its expected value. Consequently the
choice of the critical region based on the distribution
of log s in place of s has obvious advantages. In this
section we explore the possibility of using some
formulas based on the distribution of log s.

The cumulant funetion K(f) of log s is given [11]

: it ) n (mtat o n
I\(f):;z (log o*—log 2)—{—!0g I <f—2~>—~log I <2~>

which yields the following expressions for the first
two cumulants

Klzé (log a*—log Z)-{—‘]) NG (g)

d
dr

8 All logarithms are to the base e.

where W(z)=-—log I'(z). The results of Section 3
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applied to log s yields

2

log = -
Ko(n) = " 7y (50)
K.+ K
K log 041 K, log. v)\ oo, 1 (ﬁ)_ Q)
A= RAE, —I—2<\I/ 5 log 5
(51)
)\(agﬁ’n):ez\/ﬂw(Kc&Ks). (52)

These formulas assume no other approximation
except that of normality and in that sense may be
regarded as exact relative to (47), which assumes
dual type of approximation for the distribution of s
(see section 6.3). While the accuracy of (50) and
(52) does not depend upon the accuracy with which
we estimate x;, it does depend upon the compli-

cated expression ¥V’ <g) For a given «, 8, and X the

only way in which we can utilize (50) for finding
the necessary sample size is to approximate the

TasLe 5a. Comparison of the sample sizes (n=N—1) for the
single variance test

a=.05

B=.05 B=.10

» Tab l ‘ Tab
an | 6y | g | @D | 6y | h‘uti
“i |
2 46.0 46.1 16. 4 34.9 | 36.7
2.5 26.7 26.8 26. 6 20.0 | 214
3 18.8 18.9 18. 8 13.9 15.2
35 14.7 14.8 14.6 10.8 | 119 ‘
|

TaABLE 5b.  Comparison of the sample sizes (n=N—1) for the
single variance test

asymptotic expansion of ¥’ <g> [12].

As a first approximation if we set x;~1/[2(n—1)]

we obtain
- K.+ Kz\?
n_1+2<Tgx > (53)

log xw\/ (K.t Kp). (54)

In tables 5a and 5b values of n from [4], and values
calculated from (47) and (53) for different wvalues
of «, B, and \ are compared. In table 6 we give
values of N(«, 8, n) to reemphasize the nature of
approximations based on the distribution of s and
log s. In this connection for the application of (52)
values of x;(n) were taken from [11].

It appears that for the customary values of the
probabilities of errors of the two kinds a=g=.05
and a=B=.01, formulas (47) and (53) provide very
good approximations to n for small sample sizes.
If the percentage points of the x*distribution are
available, (47) 1s preferable because it is easier to
compute n from (47) than from (53). Even for such
a small value as n=>5, (47) errs on the safe side in
this sense that it gives (at least for a=f) a sample
size which will be always sufficient to detect this
difference. The formula (53) also shares this prop-
erty with (47). In the absence of the percentage
points of the x*-distribution it perhaps ought to be
emphasized that on comparison of the critical regions
for s and log s (ef. (48) and (51)) there is not much
basis for choice. The choice of the critical region
based on the distribution of log s has certain theo-
retical advantages, but the computation of the criti-
cal region is somewhat more complicated since it
involves the approximation of ¥(n/2).

The effectiveness of formulas (47) and (53) varies
when « and B are not equal. It appears (see table

5 and table 6) that for B>« it is safer to use (53)
a=.01 because 1t is always likely to err on the safe side in
— T the sense of the previous paragraph. However, if
(= ‘ (= B<« it appears that it is safer to use (47) because
A I (53) 1s likely to give a value of 7, which will actually
(47) 63) | Tabu- |y 3 | Tabu- be 1 han th - le si )
D ated | | lated e less than the necessary sample size.
]
\ \
2 oo | oon1 | o4 ‘ 63.1 66.6 | 64.3 i i i
2 e g1 ‘\ L ‘ - 7.3. Comparison of Two Population Variances
3 37.7 ‘ 36.9 37.6 | 250 27.1 | 256 - 5 N
ss | a0 2.6 2.7 ‘ 103 | 201 | 188 Let of and o3 denote the variances of the two
normal populations and let sf and s3 be their inde-
TasBLe 6. Comparison of the tabulated and calculated values of N (e, B, 1)
a=.05
p=.25 } B=.05 ; p=.01
n | |
(49) ‘ G | o ) Tabulated ‘ W [ 2 ’ (54) |Tabulatedl 9) (2 | (3 | Tabulated
S DR P I S | S
5 3.734 ‘ 5.073 5.155 4.139 10. 037 10. 01 10. 239 ‘ 9. 664 ‘ 33. 065 16. 14 | 16.577 19.972
10 2. 595 2,977 2,984 2.717 4. 681 4.700 4715 4. 646 8. 126 6.476 | 6501 7.156
15 2.199 2. 401 2.403 2. 265 3 454 3.463 3.468 | 3. 442 5.109 4.479 | 4. 487 4. 780
20 1,990 2122 2122 2.033 2.900 2906 | 2907 | 2.8% 3.973 8625 | 8627 3.802
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pendent sample estimates based on 7, and n, d.o.f.
respectively.  Our hypotheses are /;: oi=o7 and
H,: ¢2>¢2. The statistic F'=si/s3 is used to accept
or reject H,. For a given level of significance e,
if F<F, we accept IL and accept I, when F'>1F,.
Let ¢ denote the true value of 0,/0“,. It has been
shown in [2] and [4] that the probability of an error
of the second kind will be exactly g if

F (nly n?)
f —ﬂ(n’lr ’ﬂg)

(e, B, m1, M) = Fo(ny, my) Fg(ngyny).  (55)

The operating characteristics (¢, B) for one-sided
alternatives have been given in [2] and [4].  We shall
develop here certain approximate formulas for ¢
in terms of «, 8, 71, and 7,.

By taking one-half the logarithm of (55) we obtain

1
5 log ¢ =2z (11, n2)+ 25(12, 1) (56)

where z, denotes the a-probability point of Fisher’s
z-distribution. For purposes of approximation, (56)
has decided advantage over (55) in that it enables
us to make better use of the Cornish-Fisher approxi-
mation [13] since the z-distribution approaches
normality relatively faster than the F-distribution.
We shall employ the following approximations [14]
for the cumulants of =z

@ x= 2<7l2 n

. 1/1 1

(i1) =75 E'*-E

o (s 1 (_])L,>

) =5 (Gt 1) 6>
Let z, and 2z, denote the mathematical ex-

pectation of z under /71, and FH, respectively.
Consequently we have

21*2 <—'——

Zg
=3

)+ log ¢

bt

By applying the results of section 3 to z, it is found

that
[ log ¢ \?
( ny) \ Kot KB)’ o)
which may be rewritten as
g pe e i) (58)
Vh

2n4m; . 1
2. By using xp=( —— i
LRl L Mo—1  ny—1

where h=

there results

1 log ¢ .
2('n1%1 hé—l) (K +Ix3> (68)

Directly applying to (56) the Cornish-Fisher ap-
proximation [13] for the percentage pomts of the
z-distribution in conjunction with Cochran’s \-cor-
rections [15], we obtain (58) and the following twe
expressions for log ¢:

g 42 (i)

'h—X\ (60)
=

K, KB >
log % = — I{Z o
g ¢p= <‘h_ a+\"h—)\ﬂ>+ n; " ( )]
(61)
where A\, is given by
€ <75 .50 .25 .05 .01
Ae L5758 L5000 5758 9509 1. 4020

Formulas (58), (59), and (60) are not changed when
ny and n, are interchanged. Formulas (60) and (61)
are identical when either a=g or n,=mn,, or both.

Comparison of the calculated (formula 61) and
tabulated values of ¢ («, B, ny, 1)

TABLE 7A.2

a=.05, f=.05
N |
' 713\\"1 5 |10 ‘ 15 ' 20 } 0 | 60
—sd e S
5 {2(;.312 | 15.674 i 13.082 11. 918 ; 9.839
25.51 15.75 13. 40 12. 36 10. 49
10 { 15.674 ‘ 8.910 | 7.240 6.486 | 5.130
15.75 8.870 7.237 6.513 5.223
15 { 13. 082 7. 240 5.787 5.130 3.937
13.40 | 7.237 5.777 5.128 | 3. 967
2 { 11. 918 6.486 5.130 4.516 | 3. 390
12,36 ‘ 6.513 | 5.128 4,512 3. 402
30 { 10. 844 5.787 4.516 3.937 | 2. 866
: 11. 39 5,844 4,527 3.939 | 2. 869
60 [ 9.839 5.130 3.937 3. 390 \ 2.355
1 10.49 5,223 3. 967 3. 402 1 2. 354
|

s Figures in bold face type are taken from [4].

TaBLe 7B,* Comparison of calculated (formula 61) and
tabulated values of ¢ («, B, Ny, ns)
a=.01, 8=.01
N
o 5 10 15 20 30 60
\ - TR I | P .
‘ { 135.047 | 57.720 | 43.294 | 37.428 | 32.304 | 27.816
120. 3 56. 65 44,29 39.19 34,69 30.72
10 { 57.720 | 23.893 | 17.434 | 14.791 | 12.474 | 10.436
56. 65 23.51 17.35 14. 84 12. 65 10.74
e { 43.204 | 17.434 | 12.474 | 10.436 | 8.650 7.082
. 44,29 17. 34 12.41 10. 41 8.679 7.168
50 { 37.428 | 14.791 | 10.436 8. 650 7.082 5.697
39.19 14. 84 10. 41 8. 630 7.082 5.731
a0 { 32.304 | 12.474 8. 650 7.082 5. 697 4.471
: 34,69 12. 65 8.679 7.082 5. 693 4,479
- { 27.816 | 10.436 7.082 5. 607 4.471 3.372
30.72 10. 74 7.168 5.731 4.479 3.372

a Figures in bold face type are taken from [4].
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Tasue 7c.  Comparison of calculated (formula 61) and
tabulated values of ¢ (e, B, M1, N2)
a=.05, 8=.25
\\ N
i o
g 5 10 15 20 30 60
. { 9.742 7.371 6.674 6.338 6.012 5. 603
2 9.569 7.507 6. 900 6. 609 6.327 6. 052
10 6.345 4.632 4,112 3.837 3,607 3.359
6. 285 4,620 4,123 3. 882 3. 646 3.614
- 5. 464 3.192 3.432 3.195 2.959 2.722
5.469 3.902 3,428 3.197 2,969 2,741
2 5.061 3. 578 3.116 2. 886 2. 655 2,421
5.102 3.577 3.113 2,885 2,658 2,429
30 { 4.682 3.264 2.815 2. 590 2.361 2.125
: 4.759 3.273 2,815 2,589 2.361 2.127
60 { 4.325 2. 964 2. 526 2.303 2.072 1.828
4.439 | 2,987 2.533 2,306 2,073 1.828
TasLe 8. Values of ¢ (a, B, ni, ny) from log ¢=
1 1
Ko+ Kp) \/ 2
(Kot Kp) m—l+n2—l
[7 — 1
a=.05, B=.05 |
|<f o o
| n\"\‘ 5 10 15 20 30 60 }
BN N —] |
5 26. 83 16. 37 13.98 | 12.93 11.96 11.06 |
10 16.37 8.963 7.299 | 6.570 5.901 5. 284
15 13.98 7.299 5.803 5.148 4.545 3.987 |
20 12.93 6.570 5.148 4.524 3.048 | 3.412 |
30 11.96 5.901 4.545 3.948 3.393 | 2.872
60 11.06 5. 284 3. 987 3.393 2.872 | 2.355
I
a=.01, B=.01 ‘
| 5 104.9 52.15 41.70 37.33 33.43 29.95 |
[ 10 52.15 22. 24 16. 63 14.33 12. 31 10.53 |
15 41.70 16.63 12.02 10.15 8. 511 7.072 |
20 37.33 14.33 10.15 8.455 6. 973 5.673
30 33.43 12.31 8.511 6.973 5. 629 4.447 |
60 29.95 10.53 7.072 5.673 4.447 | 3.358 |
\
a=.05, 8=.25
5 10.17 7.178 6. 421 6.076 5.752
10 7.178 4,694 4.061 3.771 3.496
15 6. 421 4.061 3.455 3.175 2. 908
20 6. 076 3.771 3.175 2. 898 2.633
30 5.752 3.496 2,908 2.633 2. 366
60 5. 445 3.23¢ | 2651 2.376 2,104
|
‘

I - SIS O S

It appears on the basis of several computations
(not given here) that formula (58) is likely to give
values of ¢ that are much lower than its tabulated
values [4], and consequently the sample sizes given
by it will fall below the minimum desired. For
a=f formula (61), then equivalent to (60), gives
values of ¢ which are much closer to its tabulated
values (table 7). This is also true of (61) for g >a.
If in addition to a=p, n,=mn,=n, then from (60)

n=>Aa-+W¥

Kot K Kﬂ>2. (62)

log ¢

We have not found any formula which will give
an approximately correct answer for degrees of
freedom as small as, say, n,=n,=5. The question
of finding appropriate sample sizes for n,n, cannot
ordinarily be answered without the help of tables.

In such a situation, however, the experimentalist
has no choice in the determination of n, and n,. If
it 1s decided in advance to maintain a certain ratio
between m; and m, (this appears to be more often
the case in practice) a formula would be more
practical to use than the existing tables. Since
formula (61) seems to be very complicated to use,
we recommend the use of (59). Values of ¢ as given
by this formula are given in table 8. It appears
that for a=pB=.05, formula (59) will always give
sufficient sample sizes; but for a=pg=.01, it will
give values slightly less than actually needed.

This paper could not have been written without
the constant encouragement of Churchill Eisenhart.
The author acknowledges with pleasure the help
given by Lola S. Deming and Celia S. Martin for
doing the enormous computations. Thanks are also
due to Elizabeth Shuhany of the Statistical Labora-
tory, Boston University, for some computational help.
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9. Appendix. Tabular summary of single-sampling formulas for testing hypotheses

is,fcttégél Form of population 1 null héplothcsis altcrnativl{{fypothesis Criterion for rejecting i
=1 -1P
1 | Singlebinomial, mean P » P=P, | gpg ZBEE ‘/P,‘+K sin~t 4Py
. Sample mean p =B (P,>P)) K,+Kg
where §=2 sin-! vy p
4.2 Two binomials, means R
- P and P* JE=EE PR e
Sample means p and p* V2N
I O~y B SN
I | Single Poisson, mean m m=m where §'=sin-! yp*—sin-! yp
o Y i _y =M,y ——— —
Sample mean & m=m, T = Ka Vmg+ Kg~/my
3= Vi s A
5.2 Two Poissons, means M “ £
and M* M=M* * — C
Sample means # and 7* : A VI — VI ,2 N
H=k L=l
6.1 Single normal, mean u ol=o} (uy>my) Kouat Kgpuy
(known) o=’ (known) K.+ Kg
Lot < Ko(po—p
6.2 Two normals, means g, ol% gl alz;é;e Ty > ;, ;K D
g and 271 @ 8
£ (both known) (both known) )
= K #2-#1)
; Two normals, means LI Hy <ty Ty
o and p, L ol=ol=0} oi=ot=0} T K. K
(known) (known) .
(E—p1) —k——=>0,
Single normal, mean y; VN
6.3 variance o2 - = o
s2=estimate of o2 w=py Hhy where f= KaAVN
(unknown) (1y>uy) K, +Kgp
S i)
(IZ_I‘)_k‘VVs>0
6.4 Two normals, means g, o .
and g, =k <y where & _'J U
1 2 K,tKg
_ Single normal. variance
7.1 K . ot=0? o=Ao? 8>V’“’o“‘a+5ﬂ)
s?=estimate of o2 ()\>1) Kot x Ka
T Kglog o+ KylogyX o
7.2 do do a Kyt Ky
° A3
2\ ¥\ 2 €3
do do
.2 do do
Tw 0 normals, variances
7.3 o} and o} o olma? N o 1 K,
8} and 82—e5tlma es 0 v- 1 2 >0} log Sis>1 log
and o} s? 'n2 K + Kpg
7.3 do do do do
7.3 do do do do

Formula for determining N

Formula for determining Kg

Notes

Nlf KotKs N3
2\ sin-1 yP*—sin-1y/P

N—1 K.t+Kp
A Yma— v
1 a+Kﬁ 2
V< VM- m)

2
AE(M)
A
- = S
N=(£ﬂ>
d
-\ 2
.=2< i"fﬁ."j)
A

e
=b+x/b da

N
2a

a+14 v/(a—1)*+2at

= 20

o
b+ \212 Sa’ or
_a+2+ v/ (a—2)*+2ata(n)
Vs caasE VA S Jaia TG

Ko R NS
n=N—1= L ( Kot Kav2
2 VA-1

o 2
e
n)= ————
<M=\ Kt i,
K, Kg\3?
n=1+2 (ﬁ)
log ¢=(K 1 Kg)
VA TR
X ni—1 mnz—1
Ko Ks
1°”=2<\/h—xa Ny

Kg
log ¢=2

vh)\

N=

(:——) ik

Nt K. +Kg 2|
4\ sin-1/ Py—sin-1 vV Py

Ks= 2N (Y-

K=

K,

Kg=2+/N(sin! yP,—sin-1 yP)) - K,

Kg=+2N(sin-1 yP*—sin-1 y/P) — K,

Kg=2N (ym,—ym)— K
VM)—-K,
Kg=AYyN-K,

Kg=yNd—-K,

Kp=ay/ Y-k,

A K« \ 1%
N:—N 1+—)] =

_ll. ( 2

VN

1 i
= [F(as) ]

K, ++2n\2
N(ehBhm)=(—
V2n—Kjg
2 /;,(n) (K _+K g
ANa,B,m)=e i

log)\-—.v el (K + Kpg)

Ho—py

%
_EaTHy
Voital

Hy—Hy

A 2

b=1+a (1—,—*—)
(Ka+ KB)

bl=2+a(1+%§)

n=N-—1
02

5
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