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Solutions of Ax-2Bx'

M. R. Hestenes? and W. Karush®

The problem is to determine characteristic numbers and vectors for the problem

Ax=\Rzx, where A, R are nXn Hermitian matrices.
From a first approximation x,, a second approximation z;=xz,+an is determined.

A generalized gradient » is defined.
Successive

approximations, with appropriate alphas, converge to a solution.

1. Introduction

Let A, B, be Hermitian matrices of order n with B
positive definite. Then the characteristic vectors of
the equation

Ax=X\Bx (1)

are the eritical points of the “Rayleigh quotient”

\ (z, An)
“(J)ﬁ(r, Bz)

z#0, (2)

and the corresponding values of the quotient are the
characteristic values N\. In particular the minimum
(maximum) of u is the least (greatest) characteristic
value of (1). Our purpose is to discuss a method of
finding the solutions of (1) that is based upon this
observation and that avoids a transformation of the
problem.

The method is an iterative one that may be de-
scribed briefly as follows.*  With each non-null vector
x we associate a vector n(x) that is in a certain sense
the gradient of wat 2.  We then pass from one approx-
imation z to the next 2’ by means of the formula

' =x—an, a >0,
where the scalar « may depend upon 2. The gradient
used here is determined by the equation

Gn=Ax— u(z) Bz, (3)

where @ is an arbitrary positive definite Hermitian
matrix. In computational practice ¢ would be se-
lected so thatits inverse G~ 'is known (e. g., /=1, the
identity matrix). Insection 4 it will be shown that this
method is convergent if the scalars a(z) are appro-
priately chosen, and in section 6 two feasible schemes
for this choice will be described. In general, con-
vergence is established only to some, possibly inter-
mediate, characteristic value (and vector). Under
special hypotheses this will be the least characteristic
value (see section 5).
The method has several computational advantages.

1 The preparation of this paper was sponsored (in part) by the Office of Naval
Research.

2 Univ. of California at T.os Angeles and N BS at Los Angeles,

3 Univ. of Chicago and N BS at Los Angeles.

4 It is an extension of one used by the authors in the case that A is real sym-
metric and B is the identity matrix. See for example, A method of gradients for

the calculation of the characteristic roots and vectors of a real symmetric matrix,
J. Research NBS 47, 45 (1951) RP2227,

It avoids a transformation of problem (1).° It
minimizes round-off errors by beginning each step
with a new initial vector. The calculations at each
stage of the iteration are simple and identical in
form with those of the preceding one. The method
is thereby particularly suited to high-speed auto-
matic computing machines. However, it appears to
converge too slowly to be of use for hand calculation.

When one or more characteristic vectors are known
the method may be modified so as to yield a new
characteristic vector (see section 7). This is achieved
by appropriately altering eq. 3 for the gradient.

For arbitrary complex matrices A, B it is of in-
terest to know when the problem

Cx=\Dx 4)

may be transformed to one of type (1). Several
characterizations ® are given in section 8, some of
which are of computational value.

2. Preliminary Results

In this section we shall state some definitions and
assemble some well-known facts on matrices. No
proofs will be given.

By a vector we understand an n-tuple 7= (a,
ay, . . ., a,) of complex numbers. We deal with
the space of such vectors over the scalar field of
complex numbers.  We let
(I,y):a1b1+azbz+ B +anbn; U= (bl, bz, . .y bn),
where ¢ denotes the complex conjugate of the scalar
c. Thus (z,y)= (y,z). The length of z is [2]= (z,x)}.
If O'is an arbitrary matrix then

(2,Cy) = (C*x)y)

where Oy has the usual meaning, and C* is the
conjugate transpose of . A matrix /7 is Hermitian

if and only 1f
15 =51,

In this case (x,f2x) is a real number. We shall say

5 Such a transformation may, for example, involve finding the inverse of A or
B. A more feasible scheme computationally is to write B= L L* with L triangular
(L*=conjugate transpose of L). The latter method is discussed on p. 159 to 160
of Fox, Huskey, and Wilkinson, Notes on the solution of algebraic linear simul-
taneous equations, Quart. J. Mech. and Applied Math. p. 147 to 173 (1948).

0 These results are closely related to some of H. Wielandt, Zur Abgrenzung der
selbstadjungierten Eigenwertaufgaben. I. Raume endlicher Dimension, Math.
Nachrichten 2, No. 6, 328 (1949).
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that two vectors z and y are H-orthogonal in case
(x,Hy) = (y,Hz)=0.

Two sets of vectors are H-orthogonal in case each
vector of one set is -orthogonal to each vector of the
other. By orthogonality 1s meant /-orthoganality,
with 7 the identity matrix.

A matrix G is positive definite in case it is Her-
mitian and

(x,Gx) >0 whenever 0.

Let G be positive definite. There exist positive
numbers m (@) and M(G) such that

<M(G)|z|2. (5)

m(@)e] < (,Gr)
Also, we have the inequality
| (2,Gy)|* < (&, Gr) (y,Gy). (6)

the equality holding if and only if # and y are linearly
dependent. Further, the matrix G~! is positive
definite, and there exists a positive definite matrix
@G, such that G=G%.

We turn now to problem (4), where (" and D are
arbitrary matrices. The number N is a character-
istic number (root, value) of (5) in case there is a
non-null vector y” such that

Cy'=NDy'.

We allow the characteristic value = o ; in this
case Dy’=0. We say that 3 is a characteristic vector
belonging to \'.  For a problem of type (1), where A
is Hermitian and B is positive definite, every char-
acteristic value is finite and real. Let

M <N

be the k distinet real characteristic roots of (1), and
let L;=L(\;) be the characteristic manifold belonging
to \;, that is, linear subspace spanned by the char-
acteristic vectors belonging to ;. Then any two
subspaces belonging to distinet Ms are B- and
A-orthogonal, and have ounly the null vectors in
common. Further, every vector z has a unique
decomposition of the form

:~1+~2+ ks 2]€LJ'.

For problem (1) the important extremum principle is

N;=min u(x), z B-orthogonal to L,, . . ., L;_,,
70
N,=max u(z), z B-orthogonal to L,, . . ., L, ..

270
In particular,

N S (r) SN, x7#0.

3. The Gradient

The direction for which the directional derivative
of the function, u given by (2), is a maximum will
now be calculated. This optimal direction will be
determined relative to the inner product (x,Gy)
corresponding to an arbitrary, fixed positive definite
matrix . The generality of an arbitrary inner prod-
uct has computational significance as well as
theoretical interest; in practice it 1s limited to
matrices G whose inverses are known. The iteration
method and convergence theorems that are to follow
later depend only upon the final formula that will be
obtained for the maximizing direction, not upon the
derivation of the formula; the derivation is intended
to suggest the motivation for the method.

For fixed vectors z#0 and 6x5£0, consider the
function u(z-+eox) for real e. By a simple calculation
we find that at e=0,

de  (z,Bz)

du_2R{5z,9)}

where

E:g(r):fll‘_“(":) Bl") :(’#07 (7)
and R{c¢} denotes the real part of ¢. We therefore
seek that vector éx for which

R{ (6z,¢) } =max, (bx,Gox) =1. (8)
7 is defined by the equation
Gn=t=Ax—u Bx. 9)
Then, using (6),
R{ (6x,8) } =R{ (82,G) } <|(6x,Cm) |

< (8x,Gox)% (n,Gn)i= (n,Gn)%.
It is an easy matter to verify that sx=n/(n,Gn)% is
the unique normalized vector for which equality
holds between the first and last terms above. Hence
this vector is the desired solution of (8). Introducing
a change in normalization for convenience, 7 is
termed the gradient of u (with respect to G).

We shall have occasion to use the gradient relative
to a side condition

(@R =), z fixed. (10)

Here we wish to solve (8) relative to (10). ¢ is
defined by the equation

Gr=t+hz=0Gn+hz

where A is determined so that (¢,z)=0. Thus

_ (=)
hm—(ﬁG 12,2) (12)

Then, in light of (10), (éz,§) = (52,G¢).  As before, it
follows that the maximizing vector is p10p01t10n‘11

to ¢, and this vector is chosen to be the gradient.
More generally, with several independent side
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conditions
(6'1"y21) :0) (6'1.y 2‘.’) :()v

is as the gradient the vector ¢ is obtained, where

G§:£+h1€1+’1232‘+" (13)

with the A’s determined so that ¢ is orthegonal to
each of the z’s.
Thus the A’s are the solutions of

b (G '21,20) + b (G 125,2) +
b (G 121,22) +ho (G220, 22) +

- —(7]’21)

—(n,z) (14)

in which the determinant of the A’s is nonzero, by
the positive definiteness of G=' and the independence
of the z’s.

The change in u when we pass from a vector
2#0 to the vector z—an, will now be computed

where « is some real number and »(z) is given by (9).
Assume that z is not characteristic, 1. e. 730.
Direct calculation leads to
7,0
W) —ule—an) =BG fa @), w#0,00,
(15)
where
o A2—psa) "
flo, =5 B (16)
with
(n, Bn) R{(z Bn)! _(n,Bn)
P=(0,Gn) 1= (a,Br) " (w, Bay “TH )

Our iteration procedure takes the following form.
An initial vector z, is given. Then the sequence
{x,} is determined by

Lip1=xi— (17)
where the real number «; is to be specified at each
step. In order to be sure that (17) determines a
well-defined sequence we must verify that z;0 for
every ¢. To this end suppose that for a given j,
z;7#0; notice that from (9)

(x;,Gn;) = (G, 77j) =0
Hence by (17)
(J'ijGfJ—q»l) — (~‘fj|G'rj> +a?(7]jv(;77j> >0,

i, ni=n(x,),

(18)
since @ is positive definite. Hence z;,,70. Since
2,7#0, the sequence is well defined.

From (15) we have

4. General Convergence Theorems

In this section and the next will be established
convergence theorems under a certain general as-
sumption on the real sequence {a,}. 1in the section
following these two we shall describe two effective
ways of meeting these conditions. For the present,
we assume that the sequence has the property that
there exist real positive constants b, and ¢ such that

(20)

To simplify our discussion we wish to dispose of
the trivial case in which 5,=0 for some first index j.
In this instance z; is a characteristic vector belonging
to the characteristic value g;, and z,=uz,, ij. The
results to be given in this, and the next, section are
now immediately verifiable. Hence we shall pro-
ceed on the basis that

0#a;<by, and 0<c¢ < fi(a;) whenever n, 0.

n:#0, 1=0,1,2, .. ..

In particular (19) holds for every 7.

Theorem 1. Suppose that the sequence |a;| satisfies
(20).  Then w,=u(x,) 1s a decreasing sequence that
converges to a characteristic value of (1). Also
Lim (2, Gr,)=d>0;in particular the lengths |x,| are

i—
bounded and bounded away from zero. FEvery accum-
ulation point of |x,] is a characteristic vector in L(X).
To make the proof, we notice first that by (19)
and (20) that the sequence {,u,} is decreasing, since
B and G are positive definite.  Since this sequence is
bounded from below by the minimum characteristic
value \;, it follows that it has a limit, call it u’.
By (5), (19), (20) there is a positive constant ¢ such
that
Gl
LSeula)—m(a)), =10,

Hence t,—0; in fact

gri<w. (21)

From (18) we derive

(@i41, Gy 41)=(T0, Gy) ,Ho(l +ajt;).
==

It is well known that the product on the right con-
verges if D> ait; does.
0

(20) and (21). This establishes the existence of the
limit d and the asserted property of |z /.
It now follows that 7,—0 and hence, by (9),

The latter condition holds by

AJ‘l—uiB.l‘i%O. (22)

(n:, G2 Let y’ be any limit point of {x;}; there exists at least
p(@)) — p(Ts41)= (*”* 7f(at) fila)=f(zi, a), one. Then g’ is a non-null vector which, by (22),
tisfies
(19) sa
this equation holding whenever »,70. Ay’ —u' By’ =0.
970822—52— 4 473




Thus ' is a characteristic value and %’ belongs to
L(y/). 'This completes the proof.

Theorem 2. Let (20) hold. If the sequence {x;} has
an isolated accumulation point vy, then {x;} converges to
y. Consequently if the characteristic root N of the
preceding theorem 1s simple (i. e., dim L(N)=1), then
{x;} converges to a characteristic vector.

Let y be an isolated accumulation point and let
P be the set of remaining accumulation points. Let
S, and S, be open sets with disjoint closures with »
in S; and P in S,. There is an 7/ such that for 7>’
z; lies in the union of the two open sets. Let d’ >0
be the greatest lower bound of |u—»| for » in 8,
v in S,. Since 7,—0 by the preceding proof, we
may, by (20) and (17), choose an i/’ >4 such that
| —x,|<3d" for i>4/. Hence if z, is in S,
124", then z,, is in S;. It follows that for some 7,
x;is in 8 for all ©>35. Thus P is null. This estab-
lishes the first conclusion of the theorem.

Let X be a simple root. From Theorem 1 every
accumulation point y must satisfy (y, Gy)=d. There
are exactly two vectors in L(N\) which satisfy this

condition. By the first part of the theorem {z;}
must converge to one of them. This completes the
proof.

Theorem 3. Let (20) hold, and let \ be the character-
istic value of Theorem 1.  Then there s a sequence of
vectors {1y} in L(N\) such that

lim (;,—y;)=0.

i—o
For the proof we utilize the decomposition
€, =y;+2z, y; n LN and z; B-orthogonal to L(\).

Now suppose z; does not converge to zero. Then
some subsequence{z/ | converges to zz=0. The cor-
responding subsequence {/} has a further subse-
quence {z/"} which converges to y in L(\), by
Theorem 1. By the above decomposition, the cor-
responding subsequence {y/"} couverges, necessarily
to a vector " in L(\). Hence,
z=lim (i —y))=y—y".
71—

Thus z 1s both in L(\) and B-orthogonal to this sub-
space. Hence z=0. This contradiction completes
the proof.

It is worthy of notice that insofar as the iteration
described in this paper is to be used as a practicable
numerical method for finding some characteristic
vector of (1), then the conclusion of the preceding
theorem is as effective as the assertion that the se-
quence {z,;} actually converges. For the theorem
asserts that the sequence will come, and remain,
within an arbitrarily small distance of some char-
acteristic vector, this vector possibly varying with .

5. Convergence to the Least Characteristic
Vector

Because our iteration method is a gradient pro-
cedure which decreases u(z), it is to be expected that

under appropriate hypotheses on the problem (1)
and the matrix G the sequence p,; will converge to
N\, the minimum characteristic value. We shall
show under a rather strong assumption that such
convergence will take place, and further, that the
sequence {z,} will converge, whether or not A, is
simple.

In passing, we remark that although for definite-
ness the iteration so as to produce a decreasing se-
quence u; has been formulated a slight modification
in (20) produces an increasing sequence ; the change is

0 S —al<b2 aTldfi(a i) SC<0

The results of the previous section hold in this case,
and under the forthcoming additional hypothesis of
this section, convergence will take place to N, the
the greatest characteristic value, and to a correspond-
ing characteristic vector.

Lemma 1. Suppose that
AG'B=BG'A. (23)
Then problem (1) and the problem
Gr=vBx (24)

have a common complete set of characteristic vectors v,
Yo, « o oy Yu with (y,, By, =0,,=Kronecker delta.
To prove this B=I* is written with A positive
definite and Hermitian. Then (1) and (24), re-
spectively, are equivalent to H'AH 'z=Xz and
H'GH 'z=vz where z=Hzr. It is easily verified
that the condition (23) is equivalent to the commuta-
tivity of the Hermitian matrices H'AH™' and
H7'GH™'. 1t follows by standard theory that these
matrices are simultaneously reducible to diagonal
form by a unitary transformation; hence they share
a complete ortho-normal set of characteristic vectors

21, Z2, « - ., Zz. The desired vectors y, are now
given by z,=Hy,. ;
Theorem 4.  Assume that (20) and (23) hold. For

a given initial vector o, let m be the smallest integer
7 G=1,2, . . . k) for which x, is not B-orthogonal to
the characteristic manifold L;.  Then

lim I i:>\m:

i—> o

lim z,=y#0 with y in L,.

i—w®

We employ the basis of Lemma 1 to write

To=0o1 Y1+ o2 Yo+ . . . T Qon Y-

It is assumed that the basis has been ordered so that
the first », vectors span L;, the next r,—r, vectors
span Ly, etc. (We take r,=0.) By multiplying
each vector of the basis by 4 1 we may assume that

Qop >0, =y 2y 5 o o o i
Let

<< ... X7y

be the characteristic numbers of (1) corresponding

474



Thus ==
Further-
24)

to the successive vectors of the basis.

7';-1:)\1, Tr 1= . :T72:7\2, ete.
more let v, be the characteristic number of
correspouding to 7,. Thus

V= (.7/117 G?/p)>0

G~ 'By,=v; 'Yy,

and
=il 2y o o o g

Using (17), (9), (1) and the preceding equality
it 1s found that

=aulht+aplet . . .
with
Cit1,p=0ip{ 1+ aw; ' (pi—75) }. (25)
Also
@ip= (Y5 Bx,). (26)

Since z is by hypothesis B-orthogonal to each of the
subspaces L, . . ., L,_;, we have a,,=0 for g=1,
2, . . . m. By (25), a;=0 for every 1.
Hence ever v a;is B-orthogonal to the same subspaces
and by the extremum principle of section 2 we have
:U'iZ)\m-

Now for each ¢=r,_,-+1, . .., r, consider the
sequence {a;}. For i=0, ay,>0, with the strict
mequality holding for at least one value of q. From
(25) it follows that the sequence is nonnegative and
nondecreasing, since the term in braces is not less
than 1 for the present range of ¢ by (20), », >0, and
the last displayed inequality. The sequence is also
bounded, since |z, is, by Theorem 1. Thus

q:r"l—]+]7 L) rmq (27)

lim a;,=e¢,>0,

i—c
with at least one limit positive.

Let %" be an arbitrary accumulation point of {z;}
(there 1s at least one). Let {z } bv a sul)soquon( e
converging toy’. By Theorem 1, ¥’ 1s a characteristic
vector of (1). In addition it must belong to L, for
otherwise

@1,= (Yo Bas)—(y,, By )=0;

It now follows that al,—0 for p

contrary to (27).
Thus

outside the range of ¢, as in (27).

y' r=lim 5/ Z ey, #0 in L.

i—®
Tm-1+!

Since y” was aun arbitrary limit point we have the
desired convergence of z; to a vector yin L,,. Finally,

lim, _lim &n Az (y, Ay)
et e oy B2 ) < @ BY) - T
Corollary.  The condition (23) is satisfied if (1)

G=B, or (2) G=1I and AB=BA.
This is easily verified. The case G=B=1 with 4

real symmetric was studied in greater detail in the
paper by the present authors referred to earlier.

6. Construction of the Sequence {a;}

We shall deseribe two methods of constructing
this sequence so that condition (20) 1s satisfied.
Lemma 2. Let the real number b, satisfy

2 m(@)

“N—M M(B) (28)

0<b)

where N\y— X\, is the spread of the characteristic values of
(1) and the other quantities are defined by (5). Then
there is a constant ¢, >0 such that for every x7~0 with
%0 we have
fx,0)>cia for —by<a<b,.
the required conditions.
Then we may write (16)

Let z and o« satisfy
Assume further that as0.
in the form

f(z,q)

«

(2—psa)

~@—an,Be—an)@B)
Now
M(B)

|psal < m(@) (

)\A—)\l)bgz b3<2,

where we have used (5) and the extremum property
of A\, aud \.. Thus the numerator on the right side
of (29) exceeds the positive number (2—b;). Our
proof will be complete if we can show that the corre-
sponding (positive) denominator is bounded uni-
formly in z and a. By (5) it is sufficient to show
[n|/|z| is bounded. But this is an immediate conse-
quence of (9).

As a consequence of Lemma 2
ing result.

Theorem 5.
be such that

we have the follow-
Let the sequence {oy;} of real numbers

O<b1§ai§b2 (30)

for constants by, by with the latter as wn (28). Then
this sequence satisfies condition (20).
Our second method of preseribing a=a(z) stems

from the idea of maximizing f(«)=f(z, «) as a func-

tion of «, hence choosing « as a zero of f/(a). A
simple calculation leads to
(pgs—r)a®—psa+1
"()=2- foee 0 0. 31
f()=2 d—2garrar " x#0,n# (31)
A function «(z) is now defined as follows. Choose
an arbitrary fixed positive constant by. Let
first zero of f'(a) on 0 <a<by,
a(x)= ) (x#0,770).
b4, if no such zero exists.
This function is computationally simple; its con-
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struction involves only the solution of a quadratic
equation and a comparison of numbers.

Theorem 6. For a given constant by >0 and a given
initial vector x,7%0 determine the sequence {o;} by
means of the iteration formula (17) and the equation

alr,) if 9,70,

@ =

by if 9,=0,

where o(x) is gwen by (32). Then this
satisfies condition (20).

For the proof several properties of the function
(32) are established. The coefficients of the quad-
ratic expression in the numerator in (31) are uni-
formly bounded in 2. This is a consequence of (9)
and (5). It follows that its zeros are uniformly
bounded away from 0. Hence, there is a number
bs >0 such that

sequence

by<a(z)< b,

Thus the first condition of (20) i1s fulfilled. Now
f(a) is a non-decreasing function on 0 <a <a(r); for,
by f7(0)=2 and (32) its derivative is non-negative
on this interval. Select b,<’b; so that (28) holds.

Then
f(a(-'f)) Zf(bQ) >¢1 by

uniformly in 2. From this we see that the second
condition of (20) also holds. The proof is com-
plete.

7. Obtaining Further Characteristic Vectors.

Suppose that a characteristic vector 7’ with
characteristic value N\ is known. We propose to
show how the preceding iteration scheme may be
modified so as to secure a new, independent char-
acteristic vector. The procedure will be to start
with an initial vector 2, which is B-orthogonal to 3’
and maintain this orthogonality at each step of the
iteration.

Thus, let

Z=I8y (33)
and suppose we have a vector 270 such that
(x,2)=0. We wish our'next approximation 2 —a{ to
be orthogonal to z, i. e., we require i

(¢, 2)=0. (34)

In order to select the direction ¢ in an optimal man-
ner, according to section 3, it is chosen proportional
to the solution of (8) with the side condition (10), 2
as in (33). We thereby determine ¢ by (11) and

(12). Notice that by (11),
(&, GO)=(, 6, (2, Gr)=0 (35)
using (34) and (7). Now suppose ={(z)s0.

Then a straightforward calculation using the first
equation of_ (35) shows that equations (15) and (16)
are valid with 5 everywhere replaced by ¢.

The iteration formula (17) is now replaced by

i1 =2 — iy (36)
with the corresponding formula (18) valid by the
second equation of (35). Our present sequence
however has the additional property
(s, By’)=0. (37)
An examination of section 4 shows that with one
necessary verification, to be remarked on soon, the
three theorems of that section remain valid. We may
now add, however, that the characteristic accumula-
tion vectors y in Theorem 1 and 2 are B-orthogonal to
y’, and that the vectors y; of Theorem 3 have the
same property. The required verification is to estab-
lish the equivalence of ¢(x)=0 with 5(2)=0 and
¢—0 with n,—0. Here, of course, n is given by (11).
We shall prove only the second equivalence; this will
suggest the proof of the first. That {;—0 when
n,—0 is immediate from (9), (11) and (12). Suppose
¢—0. We note first that (£,y)=0; this follows
from (7), (37) and the fact that y” is characteristic.
Hence by (11)

(Gg‘ir?/,> :ht(lg]/,,y/),

where h; of (12) has the obvious meaning. Hence
h;—0. It follows by (11) that &—0 and hence
7,—0, as desired.

The constructions of section 6 remain valid under
the present iteration (36). It is only necessary to
verify the uniform boundedness of [¢|/|z], =30,
¢#0. This is an immediate consequence of (11),
(12) and (9).

To maintain the validity of Theorem 4 of section
51in the present context it is not necessary to modify
the iteration procedure from (17) to (36). The
earlier method is adequate. For, by (25), we see
that if the initial vector z, is B-orthogonal to ¥/, so
is each vector z;, and hence the limit vector 3.

If several characteristic vectors y’, y”’, . . . with
characteristic values \’, \”/, . . . are known then
the iteration (36) is to be used with ¢ determined by
(13) and (14), where z, =8y, =By"’, . . . . The
resulting sequence {z;} will be B-orthogonal to the
known characteristic vectors and hence all limit
vectors will have this property. It may be easily
verified that the preceding remarks concerning the
validity of the results of the previous sections remain
in force.

The iteration z—af determined by (13) and (14)
is theoretically equivalent to the following procedure.
First form the vector 2’ =r—an=r—aG-— 1§, and then
determine ki, ks, . . . so that

=2+ kG2 G L (38)
is B-orthogonal to v/, v/, It is easy to verify
that 2”’=z—af. However the procedure just de-
scribed has the computational advantage that the
vector x; formed at each stage is accurately B-
orthogonal to the known characteristic vectors. In
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the alternative procedure (36), B-orthogonality of
may be gradually lost through round-off errors
(although this may be remedied by the additional
work of occasional B-orthogonalization).

It would also be extremely convenient for the
determination of the £’s in (38) (or the A’s in (13)) to
have (G~'z;,z,) =0 for j#m. This may be achieved
by successively orthogonalizing as additional charac-
teristic vectors are accumulated. Suppose ¥’/ has
been calculated with 3" known. Then with z,= By’
define z, by

ze=By’"' +1z

with [ chosen so that (z,,G7'z)=0. Then the G~'-
orthogonal set (z,2,) may be used in (38) (or (13)).
Suppose now that a third independent characteristic
vector '’ is calculated. Put

53‘]5‘?/”/+[131+l:222

with 7, 1, chosen so that (28,G7'z)=(z;,G"'2,)=0;
this determination is simplified by the (;*1—0111100—
onality of (z,2z). The new G '-orthogonal set
(21,22, z3) may now be used in (38). The extension
to more vectors is clear

8. Problems Equivalent to (1)

We leave now the calculation of characteristic
vectors and values and raise the question of when a
general problem of the type

Cr=X\Dz, with |C—\D|#0 in ), (39)
1s equivalent to one of type (1), that is, one with A
Hermitian and B positive definite. For the moment
we impose no additional conditions on the complex
matrices C'and D. Clearly (39) has at most n char-
acteristic roots (including the possible real value
A= =), where 7 is the order of the matrices.
Consider a second problem
Ra=2\Sx. (40)
By asserting that problems (39) and (40) are equiva-
lent we mean that there is a nonsingular matrix A
and one-to-one correspondence between the distinet
characteristic values of (39) and those of (40) with
the following property: if X" of (39) corresponds to
N’ of (40), then y” is a characteristic vector of (39)
belonging to N\’ if and only if /=Ky’ is a character-
istic vector of (40) belonging to X’”.  If b is a number
such that |C—bD|50, then (39) is equivalent to
(C—bD)x= (N—0b)Dx, and hence to

1
\—0b

Ex=yFx, with E=D, F=C—bD,v=

(41)

Notice that »=—= « isnot a characteristic \aluoof (41).

Lemma 2. Let \;, j=1, 2, . be the dis-
tinct characteristic values of (39) and let H be the space
spanned by the spaces L;—L(X)).

Then
k
2 dim L(\)) =dim H.

=1

It is sufficient to make the proof for the equiva-
lent problem (41), where »;=1/(X\;— b) and L;= L(v;).
It may be assumed that the characteristic values so
ordered that if »=0 is a characteristic value, then
»=0. Let H,be the space spanned by L, L, ..., L,.
Any two spaces L; have only the null vector in
common. It follows that the statement

i
> dim L,=dim H,

=1

(42)

is valid for j=2. Assume that (42) holds for j=m <k;
we shall show that it is then valid for j=m-+41. If
(42) were false for j=m-1, then there would exist
a vector ¥y, ,#0 of L, ., such that

?/m+1:?/1+?/2+ L) Jr?h;, thGLl,
W=l o o o o 40
with not all the terms on the right null. From
Evy,= vy, is obtained
12'?/rr¢+—1:1"(1’1?/1+ LI +Vm:'/m)-
But Eyni1=vms1FYms1. Since |F|#£0,
Vm+1ym+l:ul:’/l+ ... +mem7
so that
(w——1>ﬁ+ (”"—4>ym:m
Vm 41 Vi 1
since v, .,7#0. But (42) holds for j=m. Hence
each term on the left above must vanish. At least

one y,, say ¥, is not null. Then v, ., =/, ! <m.
This contradiction completes the proof.
From the lemma it is clear that the condition

k
S dim L,=n

=1

(43)

or (39) 1s equivalent to the assertion that every
vector may be written uniquely, apart from order of
terms, as a sum of characteristic vectors belonging
to distinet characteristic values.
Our main theorem is the following.
Theorem 8.  For a problem (39) each of the following
conditions implies the other.
1. Problem (39) is equivalent to one of
type (1).
11. The characteristic
real and (43) holds.
IIT. There exists a positive definite matria P
such that CPD* is Hermitian.
That IT follows from I is a consequence of the well-
known fact that for problem (1) condition II is
valid. To show that IT implies 111 we construet the

values of (39) are
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nonsingular matrix } whose columns are the =
linearly independent (by Lemma 2) characteristic
vectors of (41). Thus KY=FYA, where A is a real
diagonal matrix comprising the characteristic roots
of (41). Hence A=Y 'F'EY is Hermitian, that is

WEYASY N = Y g,
Hence
R =R

IP= ), (44)

From the definition of £ and Fin (41) is obtained
DPC*=CPD* (45)
as desired.

Finally, to show that ITT implies T we observe first
that (45) implies (44). Problem (41) is equivalent to

EPF*:—yFPF*:,  ¢—PF*z,

which is of type (1). This completes the proof.
Corollary. The following condition may be added to
those of Theorem 8.
IV. There exists a positive definite matriz P
such that C*PD is Hermitian.
For the proof we need only observe that 11 holds
for (39) if and only if it holds for

OSN3,

and then apply III to this problem.
If our theory is limited to real vectors over the

field of real numbers, then the following specializa-
tions occur. The matrices A and B are to be taken
real symmetric and the matrices € and D are to be
taken real. The matrix P of III and IV is real
symmetric and the condition of reality in II is
superfluous.

If the matrix P of 11T or IV is known then the
transformation of (39) to (1) involves only matrix
multiplications and hence is computationally feasible.
For example, in case of I1I with |[D|0 we write

CPD*z=\DPD*z, p=/ZJF3.

From the solutions z of this problem we obtain the
solutions z of (39) by a direct matrix transformation.
If |50, we write

DPC*2—vCPC*z, x:%, 2=PC*z.

In the case of IV with, say |D|0, we write
DERCx—=ND*PDx;

which is of type (1) with solutions exactly those of

(39). In the case of either I1I or IV with |C|=|D|=0,

we first transform to (41) and then apply the preced-

ing technique indicated for |D|>0.

Los ANGELES, September 11, 1950.
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