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Random Determinants’
R. Fortet

Determinants whose elements involve random variables are discussed and expressions
derived for the first and second moments. Applications are made to n-dimensional geometry,
especially, to finding limiting probabilities for the event: ‘“‘a given point lies above a random
hyperplane”, under fairly general hypotheses. The random variable A,h— B is considered,
where 4, and B are certain minors of the determinantal equation of the random hyperplane,
and h is a coordinate of the given point.

An asymptotic expression for E{ A’} is obtained, and it is shown that FE{ R?} is of the
order of (1/n) E{ A%}

il E(A,)=0.

: . ) ; Also
. In this section real random variables X', depend- A2 =142 X2 +Z‘41J‘41k‘\11‘ "
ing on two indices i and j and having the following | 7
properties are considered: Now

Let Ay, Ay, . . ., A; be krandom variables chosen

from the X,’s. Then we make the assumptions E ZAUAM X1 X} =
that S . \“E{AUAW\]]F(\,AIA“,AM,‘ ey

(a) for any i and 7, for any £, and for any choice
of the A/s, the conditional mathematical expecta-
tion From (a) E(X},

EX A, ..., A)=0,

Ay, A1y, X1;)=0; hence
B8} =2 B4 ) =D E{ALEX A},

if X, is not one of the A,'s.
(b) For any i, 5, for any k&, and for any choice of

the A/’s, the conditional second order moment and from (b) this reduces to
E(X3| Ay, o~ . ., A)=0dF, 1Bl A Y =S BIAG) (1)
J
(where o, is a constant that depends only on 2) pro- ) ) i
vided X;; is not one of the A/'s. N.ow Ay is a A, _y, which depends only on those X,
Consider the following random determinant: with 1521, If we assume that the formula
X X2 . .. Xu, ‘ noo
L & e E{Az}=n!>]q¢? (2)
i=1
Xao Xo...ZXo '
. is true for n=1,2, . . ., r, (1) shows that (2) is also
A, = valid for n=r+1; on the other hand (2) obviously

holds for n=1. Thus (2) is established by induc-
tion, and the proof of the lemma is complete.

an 5 5 " Xnn Xy X2 .. . i
We have the s oo o Zon

n
Lemma: E(A,)=0 and E(A2)=n! 1] o7 )=
i=1 K

Proof. Let A,; be the cofactor of X;; in A,; we

g X « oo £ .
can write nl nn
\
A= Z,Auu 1j
J

Nonrandom real numbers z;; and the determinant
are now considered.

E@"):;E{“111'14"("\'11{‘111)}' Suppressing the & rows T, T2 . . ., % IN dy a
rectangular matrix is obtained with (n—#%k) rows;
From (a), £(X,,|A4:,)=0; hence T[zmg, .o ., ig;d,) is called the sum of the squares

Th i L AN LR of all determinants of (n—£k)th order deduced from
"he preparation of this paper was sponsored (in part) by the ice of the Air . o
Comptroller, USAF. this matrix.
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Let D, be the following random determinant:

T+ Xy 2+ Xie . - - Tt Xia
L1+ Xy

) — '
'/lf‘n1+‘ nl 'I'n2+Xn2 s o o xnn+Xnn

D, can be written as a sum of elementary determi-
nants, the elements of which are either z;; or X, but
never z;;+ X, One of these elementary determi-
nants is d,; all the other elementary determinants
are random determinants. Let S be one of these
random determinants: S consmts of k& rows of
X./’s (k>1) and (n—Fk) rows of z;,’s.  For instance,
suppose that the first row of S consists of the Xi;; S
is a linear homogeneous form in the Xi/s, the
coefficients of which are independent of the Xl,

Thus amordmg to (a) KE(S)=0; consgqucntly
E(D,)—d, -
Let 1y, ’LQ, C. i,, be the k rows of S consisting

of some X,/’s, that is, row 1; consists of the X, 9
row i, of the X, ; etc. Employing the L‘Lplaco
dcvolopment of S in terms of these k& rows 7,, i,
, 1, we can write S'in the form:
S:E*Ak(jlvj% 5 o o ’jk>B(jl7j2y DI 7jk)x
where A;(j1,72 . - ., jx) 18 a determinant of the

preceding A type, the elements of which are those
Xy with 1 € 9, 1 . ey e J € Ty - e ey Tk

B(jy,j2, -+« 5 Ja) 18 the algebraic complement of
Av(71J2y - - - ,7:); and the summation 2* is extended
over all combinations (91,92 - - - ,]k) of order k
taken from the n integers 1, 2, . . ., n. For two
different combinations we have:

E{Ak<jlrj27 7.71»)Ak(.7;v oo oo '.71;)}:07 (3)

s1nce there is at least one j., 7, say, which is not a
]B, so that the product Ac(zy, . . ., A, - ..,
J0) is a homogeneous linear form in X, ;, X, ,,

, Xy, and (3) follows from (a). Consequently
E(SQ):Z*IJZ(]I; CEE 1]1»)E{Af(.71; DI ).jk)}7

and by the lemma,

BEY=SBG, - - 40k 11 a2
:kzill o? [S2*B (i, - - . 00l

But obviously,
SEB(jy, . .o, g =T, . . ., txdy).

Hence we have

E(S?)=

k

A d)k! T o?

a=1

T(y,ta . - -

Consider the product of two different elementary
determinants S; and S,. There is at least one row
consisting of some X ;; that appear in S; and not in
Sy, or in S, and not in S;.  For example, suppose the
first row in S, consisting of the X;,’s,does not appear
in S; then the product S;S; is a linear homogeneous
form in the X,;s, the coefficients of which are
independent of the X,,’s. Consequently by (a),
E(S;S,)=0 and E(D?) reduces to the sum of the
squares of all the elementary determinants. This
gives us the following:

Theorem 1: Under assumptions (a) and (b),

ED,)—d, (4)
E(D:>:§ RS i, - - i) n o2). (5)

In (5) the summation X* is extended over all combi-

nations (iy, 75, . . . . Jr) of order k of the integers 1,
2, . . . n;for convenience we put
T(1,2, ... nd,)=1

An interesting feature of formulas (4) and (5) is
that these formulas do not depend on the probability
laws of the X';;’'s.  This fact remains valid even if the
o.'s depend on 7, but (5) becomes more complicated ;
on the other hand it is possible to compute the higher
moments of 1), by using similar reasoning and suit-
able assumptions. However, the formulas seem quite
complicated. It also appears difficult to obtain the
probability law of D), even under such hypotheses as
that the X';; are normally distributed.

Of course if o,=0,— . =o,=a, where ¢ 1s a
constant independent of 7, (5) reduces to:

E(Di):é} Tod,)klo™, (5)

where
@ )=ZT 1, o« o o 5 U @)

From (5) certain interesting results may be deduced,
which are perhaps already known. These results are
connected with the geometricalinterpretation of the co
efficientsof (5). Let £,beann-dimensional Euclidean
space, with orthogonal coordinates. The n numbers
Ty, Ty, . . . , L may be regarded as the coordinates
of a point P, in E,, and z4+Xu, 2eot+Xe, . . .,
z:+ X, can be considered as the coordinates of a
random point M, in £,. That d, is invariant under
orthogonal transformations is well known. If

(0,P,P, . P,) is the volume in £, of the paral-
lelepiped formed by the vectors 0P, 0P, . . .,

07, we have:
=40, PP, ...P,).

An analogous interpretation holds for I, and
0, M\M, . . . M,); hence E(D?) is invariant under
an orthogonal transformation. If the X;;’s are nor-
mally distributed, this property also persists. The
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o, remain unaltered also. We conclude that the
coefficients 7'(4y, . . . ,; d,) are invariant.
TG, . .. ,u;d,) dependsonlyonP;, . .. P,

IA_;
consider the set of points 7, ’,, . . ., P;, defined
as follows:

01)1{1:01)1‘1

OI){ZZ 01)i2+ )\2101)1'1

OP,-(k’:Ol)ik—*—)\klO[)il_*— oo N x—1OP

ik—l’

—_— —_—
where the X\;, are such that the vectors 0P, 0F;,

]

.+, 0P are mutually orthogonal. From a classical
property of determinants we can replace P, ..
P, by P, ..., P/ withoutaltering 7(i,, . .

The invariance of 7'(iy, . . .

4 3)
- ailr; ([n)-
, ix; d,) under orthogonal

—
transformations implies that the vectors 0] (a=1,
..., k) can be taken as coordinate axes. Then it
becomes obvious that

e G o ’ 2 \2

TGy, ...y 9 d)=(0,P; ... P,
the volume (0, 2/ ... P!) being considered as a
volume in a k-dimensional subspace of £,; but it is
also obvious that

0,Pi ...PFP)=(0P,P,...PY
and we have established:
Theorem 2:
TG, ..., u;da)=(0,Py ... P, (6)
and consequently,
Tda)=23%0,P; ... P (7)

On the other hand, considering P;,. . ., P, as fixed
points in f7,, and © as a moving point, (2, Bl o w5
P.)? and Z* (2, Py . .. P)* are given by (6) or
(7) under a simple change of the origin of coordinates.
If one puts

(Q, Py. . . P)*=C (8)
and
Z¥Q, Py. . . P,)=C", (9)

where C"and (* are any positive constants, then eq
(8) and (9) define quadries Qi ,. . ., i.; ) and Q.(C*),
respectively, of ellipsoidal type. Thus it follows
from (5) that the relation

E{ (QJ J‘Il o o nln)Z} =¢, (10)

where ¢ is some positive constant, also defines a
quadric @} (¢) (which is in general an ellipsoid).

2.

In Euclidean n-space with the coordinates defined
as above consider 7 fixed points Py, Ps,. . ., I”,, and
a fixed point S on the axis 0z, with coordinates
(0,0, ..,0,h). Let M, M,. .. M,benrandom
points, and consider the random plane II, (i. e., an
(n—1)-dimensional linear variety) defined by (M,
M,,. . ., M,). The equation of II has the following
determinantal form
z; T,

Ty gyl

Tn+Xn 1’12+X12 e Tl,n—]+4\’],n--l 26l

W=

Ly + AX’nl

xn, n—1+‘\n,n—l -1\7nn 1

Developing this determinant in terms of the elements
of the first row and their cofactors, one obtains

n
LY2241I.I‘}—13:0. (1 1)

=l

For convenience we set
Iy[j:f”+1\'i, (121, 2,. 0 .,’Ilv,'.}.: ], 2,. . .,71—]).

Let M. be the point (Y, . . Y., 1, 0) and V the
linear variety of n—2 dimensions defined by

2,=0 U=0, (12)
and let 77; be the orthogonal projection of M, or
M. on V. An elementary computation shows that,
in absolute value,

)

R, 2
Z‘J‘/A‘IJ: szirz!i_Q FZI‘/L ' (13)
H.,M! H,M | Ay

We now suppose that:

(A) the distance between P, and P, is equal to 1,
for any 7 and j. In this case the n pomts P, form a
regular polyhedron in the variety z,=0; this poly-

. M. PR —
hedron admits ( lc) linear varieties V', as varieties of

symmetry, V;; being defined as that (n—2)-dimen-
sional variety formed by the points in 2,=0 which
are equidistant from /, and P, (i#7). Now suppose
that V' is a moving (n—2)-dimensional variety, and
consider the quantity

s=max (distance from V to P,).
i
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s attains its minimum value when Visa V;, in which

1
case s=5-
one point P;such that the distance from V to P, is at

Consequently in all cases there is at least

1
least 5

Now suppose that n tends to + « with condition
(A) always holding; we make the following assump-
tions:

(B) lim Pr{Max |X,-,,|<e}=1 for any €>0;

n—ro

' .- 1 .
(C) there exists a positive number a<§ and inde-

<at}=1.

If for instance the distance from P, to V is a maxi-

pendent of n such that:

lim Pr{Max Z

n—w

mum when i=1, then except in cases of small
probability:

S

H1M1>§—a7
and

IXlnl <€ .
Thus we have:
Theorem 3: Under hypotheses (A), (B), and (C),

lim Pr {\/2A2>0}

e |4

Remark: Assumptions (B) and (C) are not particu-
larly restrictive. They are satisfied, for instance if
the X,’s are independent and normally distributed
with

EX:)=2 (14)

) beinor<l and independent of 7, 7, n; also when the

M, are independently distributed with uniform
probability density over the interior of the sphere

. 1
of center P, and radius p<§~

Denote the center of gravity of Py, . . ., P, by G,
with coordinates (¢, . . ., £,) given by
il & .
EJ:ﬁgwih (]:172; LU ,71), (15>

£,=0. Let K be the center of gravity of M,, . . .

‘M, with coordinates ¢;,+7; (j=1,2,. . ., n). Put
It 2 .
i=1

We make the following assumptions:
(D) the distance OG remains bounded as n— -+ « ;

(E) the X,; satisfy assumptions (a) and (b) of
section 1, with
D'is%}

Yy

where p? is a constant independent of 7 and n. The

algebraic distance L from G to II is equal to:

n—1
121 Asg—
L=

B
Ne
=
K belongs to 11, so that
|L|<GK.

But the coordinates of the vector G—I){ are the Z,’s
defined by (16). From (E) it then follows that

E@GK) <2

Hence GK and a fortiori L tend toward zero in prob-

ability. Write (17) as
n—1
; Af E]‘B B B 4‘1”
A, — a1
Vi S
j=1 | | 1
| Al ll=F IAnF
n—1
;Aa‘ £
+ = =
24
1
|44 1+m2‘

We have by the Schwartz inequality

n—1 =l n—1
2 A5 1S4/ 22 A?'\/Z &
j=1 j=1 =1
so that
Va4
: IA"\
= \/; El ==
A Z A?
| 1
IAn{ 1+4‘An[2 1+[A ‘2

T G
Now 4/ > & 1s bounded and \/Z A1 A, tends to
i=1 I

zero in probability. Therefore under the assump-

tions (A)—(E) we have:
Lemma: As n— o, |[B/A,| tends to zero in prob-
ability.

The algebraic distance from S tolIlis
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nele e

> A S a

= l‘4n[ 1+T117;\2
()T

2,47

AT

Suppose that A>>0; then S is above 11 if A4, >0, or
what is the same thing, (hA2—BA,)>0. We may
write this last expression as

B
h—— >0.

Thus according to the above lemma (and under the
same hypotheses, viz., assumption (A)-(E)):

Theorem 4. If h >0, the probability that S is above 11
tends to 1 when n—-+ o :if h< 0, this probability tends
to zero.

The case h=0 is not clear-cut. But if, for in-
stance, the M,’s are independent with the same con-
tinuous probability law which is symmetric about
the plane r,=0, then clearly Pr{S >r}=3.

3.

Keeping the notations of section 2, we assume that
P; P;=1 for any 4, j and that the X;/’s satisfy con-
ditions (a) and (b) of section 1 with ;= . .. =0,=
p/yn where p is a constant independent of 7 and n.
The other assumptions, (B), (C), and (D) of section
2, will not be required. We wish to obtain some in-
formation about the random variable:

H=A,h—B. (19)
Theorem 1 implies immediately that
E(H)=V,h, (20)

where V, is the determimant

L1 Li2 . .. T1,n-1 1

L1 Loz o oo Lo m—1 1
Vo

L1 1'712-”]771,”—1 1

V., as we have seen, is given by
"7n::!:<])ly )‘ZPS ..
That is to say (ef. formula (33) of the Appendix)

L 1Bk

n
2u—l

1/Yn =4 (2 1)

Let w, be the determinant

ST Tige o «T1,n—-1 0
Z o e Xo -1
znl .. -xn,n—l 0

For E(H? we have at once:
| E(H)—h2E(A2)+EBY). (22)

Since B is a determinant of the form 1), (section 1)
formula (5a) gives the result that

n 2k
E (B)="3)T:(w,) k!%- (23)
k=1

A, is not exactly of type D, but in entirely similar
fashion we find

. n=1 , p2k
E(A;)zkg(}Tk(Vn)k!W- (24)

T/(V,)is the sum of the minors of order (n—Fk) of
V', obtained without suppressing the last column of

V,. For instance
T.(iry e o oy in; Va)=(Py, Py, Py . . P, ),
where 7y, 7s,. . ., ju—r run through all the numbers
1,2,...,n except iy, ig,. .., 1, JHence
s s 7 n —k I
Jk(?/ly 5 1 .,’l};; I Il): 712; _’\':2717:1\‘—”2 (20)
and
Ti(V)=(} ) =By 2-"+2+ (26)
Substituting this expression into (24) one finds
F(A2 S )2 ntkt1, J p*
(=3} )m—b2rtkily
n "= (n—1)...(n—k),, .
= BB (27)

If we suppose that 2p<1,(27) yields immediately:

1 n

2 ~N————— . ——
E(‘lln 1_2p2 2n—1’

(27a)

as n—>x,

B is of the form D,; we know that @,(C*) is a
quadric, and it must have as planes of symmetry the

(g) planes of symmetry V', of the polyhedron
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(Py, P, ..., P,). Consequently the center of Q.(C*)
is @, and @Q.(C*) is a sphere since (g) > n, and

we can write:

Tw,)=N(n) OG>+ T¥(w,,), (28)
where T3 (w,) is the value of 7%(w,) when 0G—0.
On the other hand

Tk('ily o Q /Lki ) (0 P]1P n-k)’
where 7, 72, . . ., ],L . are all the numbers 1, 2, . ..
n except iy, 1o, . . ., 1. 1f O=G, we find (cf. appendlx
formula (36)):

. k
T*(?,l, N 2 w")=nT""‘
and ;
Sl T\ L
THw)=(}) 727
Hence
n 2% i n—k+1
STtk 2=t S 20 D g ey,
(29)
If 2p2<1, (29) becomes asymptotically
L e p* 1 lp
kzZlT,c(wn)k! w2 =27 (29a)

We can now compute the value 77 (w,) of T\(w,)
for P,=0 (cf. appendix, formula (38)). Writing

T3 (w,)=M0)GP, + THw,),
we have an equation which determines \; (n); we find

nn—2)(n—3)...n—k)

Ni(n)= (k__l)!zn—k—l

and

nn—2)(n— 2)
n¥

T‘)\k(n)lc 7 _ 12 - —h) o o

(30)

Asymptotically this expression becomes, for 2p?<1,
1 2

/;M(Ttv)k!%—k on— 1(1 9 2)2'

We verify that K(B?) is of the order of (1/n)E(A2),
which agrees with the lemma of section 2. In the
particular case when G=0, E(B?) is of the order of
(1/n’) E(A7).

(30a)

Appendix

Given n points Py, ..., P, in an (n—1)-dimensional
Euclidean space E,_; such that P.P;=1 for any 7 and j
(257) (that is, these points are the vertices of a regular poly-
hedron P,) we wish to find an expression for the volume

{2560 -

(1/n!) |V,| of P, in E,—,. Let G; ke the center of gravity of
the points P, P_, .. P“ h, the distance hbetween G,—; and

P,; and d, the d]stance between G, and any P,. We have
[Val =halVaul
(n=—1) G,Gn1+G,P,=0. (31)

G-y, G,, P, are on thesame “‘straight line’’ (one-dimensional
linear variety); and P,G,— P, is a right triangle; hence:

1=P,P,=P,G._+ G P..

It follows that

i) — 71—2)2 -
h=1 (n_l B,

Clearly h; is known; the recurrence equation (32) can be
solved for h,:

(32)

1 [ n
=g Va1
It follows by recurrence from (31), |V being equal to +/3/2.
that:
1all =
[Val V2"- (33)
On the other hand, o
do=L [r=1 (34)
NEA D
and
2 1 1 n 1
G"G"_I_Z(n—l)n_§<n—l_z>' (35)
We now compute the volume (G,, P\Ps ... P,_z). If L.

is the orthogonal projection of G, on the linear variety
P,_;), we have:

(Gu, PrPy . . . Ppp)?=

G|V n=il2.
But L,;=G@G,_;, so that

G L2 =G GGyt . . . + GGk
As in (35),
GuLni=3 (n k n) 2n(n %)’
and so
k
(G . Pn_k)2:n_2m. (36)
We can also compute (P,, PiPs . . . P, ;):
(P,,, P1P2 coo oo Pn_k){":P"LikiVn—k[Z
Pl . =PhGs 1 - GimGa B G
~l<
2
Therefore
(Pn, Pl v e n-— )2 w (37)
on—k
From (37) it follows that
== —k+1
T =(321) ek (38)

Los AxceLEes, January 11, 1951.
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