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Random Determinants l 

R. Fortet 

Determill a n ts whose cle ments involve random variables are discussed a nd expressions 
derived for the first and second moments. Applica t ions are made to n-dimens iona l geo metry , 
esp ecially , to findin g limi t in g proba bili t ies for t he event: "a give n point li es a bove a random 
hyp erplan e", under fairly general hypot heses. The random variable AD h - B is cons idered , 
where An and B a re cer tain minors of t he determinan tal equat ion of t he random hype rplane, 
a nd h is a coordinate of the given poin t . 

An asy mptoti c expression for E[A;! } is obtained, a nd it is shown t hat E[ 8 2 } is of t he 
order of (l In) E [ A~}. 

1. 

In this section reill random variables X,j depend
ing on two iudices i and j and having the following 
properties a re considered : 

Let AI, A 2 , • • ., .fh be Ie random variables chosen 
from the X i/So Thl'n we make the assumptions 
that 

(a) for any i n.nd j , for any Ie , and for a,ny choice 
of the A I'S, the condi tional mathematical expecta
t ion 

if X ij is no t one of the A/s. 
(b) For any i, j , for any Ie , and for any choice of 

the A/s, the conditional second ordCf momen t 

E(X;JI A l , .' .. , Ak)= O"; , 

(where O" i is a eonstall t that depends only on i) pro
vided Xi j is not one of the At's. 

Consider th e following random determinant : 

We have the 
n 

L emma: E (D.,, )= O andE(D.! )= n ! II 0";. 
;=1 

Proof. Let A t} be the cofactor of X ij in D. n ; we 
can write 

E (D. n ) = ~E{ Al jE(Xl jI Al j)} . 
j 

I T he preparation of t his paper was sponsored ( in par t) by the Offi ce of t he Air 
Comptroller, USAF. 

Also 

Now 

From (a) E (X lk IAlilAlk, X lj) = 0 ; hence 

E { D.~} = ~E{ A~i X~i} = ~E{ A~iE()ni I Alj) }, 
j ; 

and from (b ) this red u ces to 

E { D.~ J = O"~~E(A~i) ' 
j 

(1) 

Now A l j is a D. n _ l , which depends only on those X ij 

with i ,e. 1. If we assume that the formula 

n 
E {D.!} =n!~O": (2) 

;= 1 

is true for n = l , 2, ' .. , r, (1) shows that (2) is also 
valid for n = r+ 1; on the other hand (2) obviously 
holds for n = 1. Thus (2) is es tablished by induc
tion, and the proof of the lemma is complete . 

Xll XIZ .. 

XZn 

Xn l Xnn · 

N onrandom r eal numbers Xu and the determinan t 
are now considered . 
Suppressing the Ie rows iI, iz, . , . , i k in dn, a 
rectangular matrix is ob tained with (n - k ) rows; 
T[i 1,i2 , . •• , ik; dnl is call ed the s LIm of th e squares 
of all determinants of (n - k )th order deduced from 
this ma trix. 
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Let Dn be the following random determinant: 

Xll +.LYll XI2 + X I2 

XZI+X21 

Dn can be written as a sum of elementary determi
nants , the elements of which are either Xij or Xi j but 
hever X ij+ X ij . One of th ese elementary determi
nants is dn ; all the other elementary determinants 
are random determinants. Let 8 be one of these 
random determinants: 8 consists of k rows of 
X i/s (k?:'1) and (n-k) rows of Xi/So For instance, 
suppose that the first row of 8 consists of the Xl j ; 8 
is a linear homogeneous form in the XI / s, the 
coefficients of which are independent of the XI/S. 
Thus according to (a) E(8) = 0; consequently 
E(Dn)= dn. 

Let iJ, i z, .•. , i k be the k rows of 8 consisting 
of some X i/s, that is, row il consists of the X iIi> 
row i2 of the X i2j , etc. Employing the Laplace 
development of 8 in terms of these k rows iI, i z, 

. , i k , we can write 8 in the form: 

where i1k(jl,.j2, ... , jk) is a determinant of the 
preceding i1 type, the elem ents of which are those 
X i} with i E iJ, i2, .. . , i k , j E jl, ... , jk; 
B(jI,j2, . . . , j k) is the algebraic complement of 
i1k(j l,j2, .. . ,j,J; and the summation ~* is extended 
over all combinations (j1,j2, .. . ,jk) of order k 
taken from th e n integers 1, 2 , ,n. For two 
different combinations we have: 

since there is at least one ja, j l say, which is not a 
j~, so that the product t::.k(jI, ... ,jk) ·i1 k (j;, . .. , 
j~) is a homogeneous linear form in X ilj l , X i2J1 , 

.. ,Xlk }!, and (3) follows from (a). Consequently 

E(82) = ~*B2(jl' . .. , j k)E{ i1~(jl' ... , j k)}' 

and by the lemma, 

But obviously, 

~ *B2(jl ' ... , j k)= T (i I,i2, ... , i,;d n). 

Hence we have 
k 

E(82)= T(i I,i2, ... ,ik;dn)k! II IT7a· 
0: = 1 

Consider the product of two different elementary 
determinants 8 1 and 8 2 . There is at least one row 
consisting of some X Ij that appear in 8 1 and not in 
8 2 , or in 8 2 and not in 8 1 . For example, suppose the 
first row in 8 1, consisting of theXt/s, does not appear 
in 8 2 ; then the product S I 8 2 is a linear homogeneous 
form in the X u's, the coefficients of which are 
ind ependent of the Xlj's . Consequently by (a), 
E(8I8 2) = 0 and E(D! ) reduces to the sum of the 
squares of all the elementary determinants. This 
gives us the following: 

Theorem 1: Under assumptions (a) and (b), 

In (5) the summation ~* is extended over all combi
nations (iI, i~, ... ,ik ) of order k of the integers 1, 
2, ... ,n; for convenien ce we put 

T(l ,2, ... ,n;dn)= 1. 

An interesting feature of formulas (4) and (5) is 
that these formulas do not depend on the probability 
la ws of the X i/ s. This fact remains vali d even if the 
IT .'s depend on j, but (5) becomes more complicated; 
on the other hand it is possible to compute the higher 
moments of D n by using similar reasoning and suit
able assumpt ions. However, the formulas seem quite 
complicated . It also appears difficult to obtain the 
probability law of D n , even under such hypotheses as 
that the X ij are normally distributed . 

Of course if 0"1= 0"2= ... = O"n= IT, where IT is a 
constant independent of i , (5) reduces to : 

n 
E(D~)= ~ Tk(dn)k!IT 2k, (5a) 

k~ O 

where 
Tk(dn) = "2:.*T(iI ' . .. , ik; dn) . 

From (5) certain interes t ing results may be deduced 
which are perhaps already known. These results ar~ 
connected wi th the geome tri cal interpre ta tion of th e co 
efficientsof (5) . LetEn bean n-dimensional Euclidean 
space, with orthogonal coordinates. The n numbers 
XiI, X i2 , • . . ,Xin may be regarded as the coordinates 
of a point P i in E n, and Xil+ X iI, X I2+ X i 2, .. • , 

X in + X in can be considered as the coordinates of a 
random point M n in E n. That dn is invariant under 
orthogonal transformations is well known. If 
(O,PIPZ . •• P n) is the volume in E n of the paral-

--+ 

lelepiped formed by the vectors OPI, OP2 , ' •• , 

OP n we have: 

dn = ± (0 , p]P2 ••• P ,,). 

An analogous interpretation holds for D n and 
(0, MIM2 ... 1\IIn) ; hence E(D~) is invariant under 
an orthogonal transformation. If the X I/S are nor
mally distributed, this property also persists. The 
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(f i remain unaltered also . , Ve conclud e tha t the 
coefficients T(i1, ••• , i k ; cl n) are invariant . 

T(i 1, ••• , i k ; cln) depend s only on P i I' . .. , P i k ; 

consider the set of points P';p P'; 2' .. . , P:k defined 
as follows: 

---+ 

OP: 2= OPi2+ A210Pil 

---+ 

OP:k= OPik+ AklOPi,+ . .. + Ak.k- 10P i k _ 1 , 

---+ 

--- ------------

(10) 

where e is orne posi tive co nstant, also defines a 
quachic Q (e) (whic11is in gencral an ellipsoid ). 

2. 

In Euclidean n-spaec with th e coordinates defin ed 
as above consider n fixed points P I, Pz, . .. , P n , and 
a fixed point S on the axis Ox" with coordinates 
(0, 0, ... , 0, h) . Let Ni l, Ni2 , • • • , lI([n be n random 
points, and consider the random plane II, (i. e. , an 
(n- l )-dimensional linear variety) defined by (Nil, 
M 2, • •. , M n). The equation of II has the foll owing 
determinantal form 

Xn-l 

where the AiJ are such that the vcctors OP:1 , OP:2 , U= = 0 
---+ 

... , OP:k are mutually orthogonal. From a classical 
property of determinants we can r eplace PiJ, ... , 
Pik by P:1, • •• , P:k without altering T(i l , ... ,it; cl n). Xn l + X nl 

The invariance of T(i l , . •• , i k ; cl n ) LUlder orthogonal 

transformations implies that the vectors OP; (a = 1, 
. .. , k) can be taken as coordinate axes. Then it 
becomes obvious that 

the volume (0, P;l'" P:) being cons idered as a 
volume in a k-dimensional subspace of E n; but it is 
also obvious that 

and we have established: 
Theorem 2: 

T(i l ; ••• , i k ; cln)=(O, Pi1 . .. Pij, 

and consequently , 

(6) 

(7) 

On the other hand, considering P I,' . . , P n as fixed 
points in E n, and Q as a moving point, (Q, P i . . . 

1 

P ik)2 and 1;* (Q, P i1 •.• P ik)2 are given by (6) or 
(7) under a simple change of the origin of coordinates. 
If one puts 

(8) 
and 

(9) 

where C and C* are a ny positive constants, then eq 
(8) and (9) defin e quadrics Q (i1 , · • . , i k ; C) and Qk (C*), 
r espectively, of ellipsoidal type. Thus it follows 
from (5) that the r elation 

D eveloping this determina n t in term of the clemen ts 
of the first row and their cofacLors , one obtains 

n 
U= ~Ajxj-B= O . 

j~ l 

For conveni ence we set 

(11) 

(i = 1, 2, .. . ,n;j= l , 2, . . . ,n - l ). 

Let M ; be the point (Yi2,' . . Y i,n-l, 0) and V th e 
linear variety o f n - 2 dimension drfined by 

U= O, (12) 

and let Hi be the orthogonal proj ec tion of M i or 
M ; on V. An elementary compu tation shows tha t, 
in absolute valu e, 

I~A; -V j~ l M ;M i [X i ,,[ 

H JYi ;=H iM; 
(13) 

We now suppose that: 
(A) the distance between P i and P j is equal to 1, 

for any i and j. In this case the n points P i form a 
regular polyhedron in the variety x,,= O; this poly~ 

hedron admi ts (7;) lineal' varieties V ij as varieties of 

symmetry, V ij being defined as that (n- 2)-dimen
sional variety formed by the points in x,,= O which 
are equidistant from P i and P j (i~j). Now suppose 
that V is a moving (n- 2)-dimensional variety, and 
consider the quantity 

s=max (distance from V to P i)' 
t 
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s attains its minimum value when V is a V iii in which 

case s=~, Consequently in all cases there is at least 

one poin t Pi such that the distance from V to P t is at 

least .!. 
2 

Now suppose that n tends to + 00 with condition 
(A) always holding; we make the following assump
tions: ' 

(B) lim Pr{Max IX tn l<f{=l for any f>O; 
n--+co 5 

(C) there exists a positive number a<~ and inde

pendent of n such that: 

lim Pr{Max t X l;< a21= l , 
n-I>(X) t 1= 1 S 

If for instance the distance from P t to V is a maxi
mum when i = l , then except in cascs of small 
probability: 

and 

Thus we have: 
Theorem 3: Under hypotheses (A), (B), and (C), 

R emark: Assumptions (B) and (C) are not particu
larly restrictive, They are satisfied, for instance if 
the X t/s are independent and normally distributed 
with 

(14) 

p being<~ and independent of i, j, n; also when the 

AI; are independently distributed with uniform 
probability density over the interior of the sphere 

of center P i and radius p <~, 
Denote the center of gravity of PI" " P It by G, 

with coordinates (6" "~n) given by 

(j=1,2, ... ,n), (15) 

~n= O. Let J{ be the center of gravity of M I , ., 
M n with coordinates ~j+Zi (j= 1,2, ' " n). Put 

'Ve make the following assurrlptions: 
(D ) the distance OG remains bounded as n + 00 ; 

(E ) the X ij satisfy assumptions (a) and (b) of 
sec tion 1, wi th 

(J' i < p- , - -vn 
where p2 is a cons tan t independen t of i and n. The 
algebraic distance L from G to II is equal to: 

J{ bclongs to II , so that 

IL I:::; GJ{ . 
--7 

But the coordinates of the vector GJ{ are the Z/s 
defined by (16) . From (E ) it then follows that 

E(GK2) < p2. 
-n 

Hence G J{ and a fortiori L tend toward zero in prob
ability. Write (17) as 

n-l 

L: A j ~j-B 
j= l 

We llave by the Schwartz inequality 

so that 

~n=J ~~I Now :?: ~; is bounded and L: A; I A n! tends to 
J=l 1 

zero in probability. Therefore under the assump
tions (A)-(E) we have: 

L emma: As n --7oo, IB / A nl tends to zero in prob
ability. 

The algebraic distance from S to II is 
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hA l1 - B 

~ttA~ 

(18) 

Suppo e that h> O; then S is above IT jf llA ,,>O,or 
what is the same thing, (hA~ - BA l1 » O. We may 
write this last expression as 

Thus ;l,Ccording to the above lemma (and tmder the 
ame hypotheses, viz ., assumption (A)-(E )): 

Theorem 4. If h> O, the probability that S is above IT 
tends to 1 when n ---7+ co; if 11, < 0, this probabili ty tends 
to zero. 

The case h= O is not clear-cut . But if, for in
stance, the Nl;'s are independent with the same con
tinuous proba biEty law which is symmetric about 
the plane xn = O, then deady Pr{S > 1l" }= t. 

3. 

Keeping the notations of section 2, we assume that 
P i P j = 1 for an~' i, .7 and that the X i/s satisfy con
ditions (a) a,nd (b ) of sect ion 1 with UL = . .. = <In = 
p/-Vn wher e p is a constant independent of i and n. 
T he other assumptions, (B ), (C), a,nd (D ) of sect ion 
2, will not b e required. W e wish to obtain some iJl
forma,tion about the random variable: 

H=AJ~-B. 

Theorem 1 implies immediately that 

where V" is the determinant 

Xu X I2 .. • Xl.n-1 

X22 '" X2. n- 1 

Xnl Xn 2' .. Xn , n- I 

V ", as we have seen , is given by 

V ,,= ±(P1, P2P3 ••• Pn). 

1 

1 

1 

(19) 

(20) 

That is to say (cf. formula (33) of the Appendix) 

Vn=± ~2~-1· (21) 

L et W n, be the determinant 

Xll XI2 • • . XI .n- l 

Xnl •.. X n,n-I 

For E(FJ2) we have at once: 

° 
° 

° 
(22) 

Since B is a determinant of the form Dn (section 1) 
formula (5a) gives the r esult that 

(23) 

A n is not exactly of type Dn, but in entirely similar 
fashion we find 

(24) 

T~ (1TII ) is the sum of the minor of order (n - k) of 
V n obtained without suppressing the last coluDm of 
V n . For instance 

where jl , j2, ... , j n-k run through all the number 
1, 2, ... , n except ii, i 2, • • • , i n _ k • H en ce 

T ' ( . . . V ) _ V 2 _ n - k 
k 'h, . . . ,~k , n - ,,-k- 2 n-k-2 (25) 

and 

T~ ( Vn)=(~) (n-k) 2 - nH+1• (26) 

Substituting thi expression into (24 ) one find 

E(A~)=~ (n- k)2 -n+k+ I.k!~ n-l (n) 2k 

k =O k n 

=~ ~ (n- l ) . . . (n - k)(2 2)k 
') n- l L....J k P . 
'" k= O n 

(2 7) 

If we suppose that 2p 2< 1, (27 ) yields immediately: 

E(~)"-' 1 _ 12p 2' 2~-1' (2 7a) 

as n-'J> co • 

B is of the form Dn; we lmow that Qk(O*) is a 
quadric, and it must have as planes of symmetry the 

( n2) planes of symmet.ry V ij of the polyhedron 
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(P I, P2 , • • • , P n) . Consequently the center of Qk(O*) 

is G, and Qk(O*) IS a sphere since (~) > n, and 

we can wtite: 

(28) 

where 1i: Cwn) is the value of Tk(wn) when OG= O. 
On the other hand 

where jl> .j2, . .. , j n-k are all the numbers 1, 2, ... , 
n ex ept i i , i 2, •• . ,ik • If 0 = G, we find (d. appendix, 
formula (36» : 

and 

Hence 

-.0T*( )k 1 p2k =_1_ -.0 k n(n-l) ... (n - k + 1) (2 2)k 
L....J k W n • k 2 n £....J k P • 
k=l n n k= l n 

(29) 

If 2p2< 1, (29) becomes asymptotically 

(29a) 

We can now compute the value T:*(wn) of T k(wn) 

for P n= O (cf. appendix, formula (38». Writing 

T:*(wn) = h(n)GP! + n(wn ) , 

we have an equation which determines Ak (n) ; we find 

and 

n(n - 2)(n-3) .. . (n- k) 
(k - l)!2 n - k - 1 

~~ ( )k 1 p2k =_1_ ~ n(n - 2)(n - 2) . .. (n - k) k(2 2)k 
.L-)" k n . k 2 n- l £....J k p • 
k=l n k=l n 

(30) 

Asymptotically this expression becomes, for 2p 2< 1, 

n p2k 1 2 p2 
~Ain)k! 'k"" 2"-1 (1 2 2)2 
k=l n - P 

(30a) 

W e verify that E(B2) is of the order of (l /n)E (A !) I 
which agrees with th e lemma of section 2. In the 
particular case 'when G= 0 , E (B 2) is of the order of 
( l /n~ E(A; ). 

Appendix 
Given n points P I> ... , P n in an (n- l )-dimensional 

E uclidean space E n- I such t hat P iP ;= 1 for any i and j 
(i r!j ) (that is, t hese points are the ver tices of a r egular poly
hedron P n) we wish to find an expression for lhe volume 

(l /n!) IV nl of P n in E n-J. Let Gi r e the center of gravity of 
t he points P I, P " . .. , P i; h" t he distance cetween Gn - I and 
P n; and d n t he distance hetween Gn and any P i. We have 

----> 

(n-l ) GnG,,-I+ GnP n= O. (31) 

Gn - I , G n, P n are on t he same "straight line" (o ne-dimensional 
linear variety) ; and PIG n-IP n is a right triangle; hence: 

It follows that 
d _ n - l h 
n- n 

n 

, (n - 2)' ? hn= 1 - n - l h~-J. (32) 

Clearly h3 is known ; the r ecurrence equation (32) can be 
solved for h,, : 

hn = ~~n:~' 
It follows by r ecurrence from (31), 1V31 being equal to -/3/ 2. 
that: 

IV n 1 = / n , (33) V 2,,-1 
On the other hand , 

and 
- , 
GnGn - 1 

(34) 

1 1( n 1) 
2 (n- l ) n 2" n - l --;;: . (35) 

We now compute the volume (Gn , PIP, . . . P n - k ). If L nk 
is t he orthogonal projection of Gn on t.he linear variety 
(PIP, •.. P n- k ), we have: 

(Gn, PIP, ... P"-k) ' = GnL~k IVn- kl' . 

But L nk= Gn- k, so that 

As in (35), 
k 

2n(n- k)' 
and so 

(36) 

We can also compute (P n, P IP , .. . P n- k): 

(P n , P IP 2 ••• Pn-k)2=PnL~klV n-kl' 

=1:. (1+_1 ). 
2 n - k 

Therefore 
(n - k + 1) 

2n - k 
(37) 

From (37) it follows that 

T **( , )= (n- 1) n - k + l 
k Un k - l 2n-k' (38) 

Los ANGELES, January 11 , 1951. 
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