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Harmonic Output of the Synchronous Rectifier

Paul Selgin

If a sine-wave current or voltage of generic frequency f is admitted into a switching
device that inverts its polarity with frequency F, the output will contain all the positive

frequencies +f+ NF, with N an odd integer.

This fact, as well as the amplitude and phase

of each component, results from the expansion of the output in a complex Fourier series.
Application to particular cases illustrates the behavior of the synchronous rectifier in cases

when the input contains nonsynchronous components.

In particular, the selectivity and

damping associated with the synchronous rectifier are made the object of comparative

considerations.

1. Use of the Synchronous Rectifier !

Rectification based on the unilateral conductivity
of semi conductors, of gas or vapor discharges, and of
vacuum tubes, is a comparatively recent develop-
ment. Rectification based on mechanical switching,
timed to coincide with the inversion in polarity, is
much older: its first example was the two-pole
commutator used in the early permanent magnet
dynamos. Mechanically operated synchronous recti-
fiers present a problem when they are required to
handle considerable power because of the difficulty in
mechanically commutating large currents, although
there are ways of overcoming this by interrupting
the circuit at the instants when the current is at a
minimum; so-called “contact rectifiers”, studied and
used chiefly in Germany, are based on this principle.

In the measurement field * synchronous rectifiers
are useful chiefly in combination with “choppers”; to
permit the use of a-c amplifiers to handle a d-c¢ signal.
Ordinary unidirectional rectifiers, such as diodes, do
not discriminate between the desired signal and
noise, and the only way to reduce the voise present in
the output is to insert a selective band-pass filter
somewhere in the system. The output of synchro-
nous rectifiers, on the other hand, contains d-c¢ only
when the input contains the synchronous frequency
itself or an odd multiple thereof. Therefore ouly
discrete infinitesimal portions of the noise spectrum
will contribute to the d-¢ level, and because of the
random phase the net total of an infinite number of
these infinitesimal contributions will be zero. In
other words, the synchronous rectifier d-c¢ output is
unaffected by noise. While this is a very desirable
feature, it does not eliminate the need for filtering;
a-¢ components of the output have to be reduced to
prevent them from masking the d-¢ component.
This is easier to achieve than the selective transmis-
sion of a narrow band; however, if the a-¢ compo-
nents are cut down below a certain point the system
becomes very sluggish and slow to respond to
changes in the d-c level. Basically, the difficulty is
the same whatever the system used; it is impossible

! “Synchronous rectifiers”, as discussed here, include types wherein the recti-
fication is due to mechanical interruption of a circuit at the synchronizing fre-
quency. The analysis applies only approximately to synchronous detectors,
where a synchronizing voltage is applied, together with the signal voltage, to
suitable points of a diede or vacuum tube circuit.

? Walter, Zeitschrift f. Tech. Physik 13,363 and 436 (1932). Morton, Trans.

Faraday Soc. 46,818 (1934); Astbury, J. Sci. Inst. 17,25 (1940). Michaels and
Curtis, Rev. Sci. Instr. 12,444 (Sept. 1941).

to eliminate noise entirely without sacrificing the
ability to follow arbitrary variations in d-c level.

Aside from the specific application mentioned
above, it is of some interest to investigate the
behavior of the synchronous rectifier generally, taking
as the starting point the Fourier analysis of the
output when a sine-wave input of arbitrary frequency,
phase and amplitude, is impressed upon the rectifier,
which 1s assumed to do nothing more than invert
periodically the polarity of the imput at a giveun
fixed frequency F.

2. Initial Steps in the Fourier Analysis

Consider a harmonic time function whose phase 1s
changed by 7 at uniform time intervals. The phase
inversion may be regarded as the effect of multiplica-
tion of the harmonic function by a ‘“square wave”
function of value +1, the sign changing periodically.
Let f be the frequency of the harmonic funection,
hereafter called the “input’, and F'that of the square
wave; let F be designated as the “‘synchronous
frequency”.

In general, f and F will be incommensurable. We
will suppose, however, that their ratio is rational.
This does not, in effect, limit the scope of the analysis,
since it will appear that the components of the output
approach a limit as the input frequency approaches
any arbitrary value through a sequence of rational
numbers (with reference to the synchronous frquency
taken as unity).

We can therefore write

L e
and, in setting up the Fourier analysis, we can ignore
the actual frequencies in the interest of simplicity in
writing, and use instead the two numbers m and M,
assuming that within the time interval 27 the input
function goes through m complete periods, and the
square wave function through M periods. The
situation is illustrated in figure 1. We can see that
the output will be periodic, of period 27. This time
interval is, in fact, the least common multiple of both
the mput and synchronous periods.

Our substitutions enable us to write the input
function in the form:
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v(t)=V, cos (mt+®)=a cos mt+b sin mt  (2)
[Vizan—i— b?%; tan ¢=g]

and the output in the form of a complex Fourier
series: ®

W)= >3 Ce™™, (3)

n=—co

which 1s equivalent to the more familiar, but less
convenient in this case, Fourier series with real
coefficients:

vo(t)zi (a, cos nt+b, sin nt), (4)
n=0

provided the complex coefficients C, in (3) and the
real coefficients a, and b, in (4) are mutually bound
by the equations

Cu=5 (au—iby)
(5)

1 :
C—n:§ (a/n +?'bn)

The square-wave synchronous function of figure 1
may be designated provisionally by S(¢). The out-
put may, therefore, be written also in the form of a
factor:

v({t)=S®)v,(t)=St)(a cos mt+ b sin mt), (6)
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Ficure 1. [Illustrating the relationship between the ‘‘input’”

and ‘““ square wave”’ functions.
hence the coefficients €, of eq 3 take the form:

g L f po()e—imtdt—
27 )«

QLJ\R S(t)(a cos mt+b sin mt)e="'dt, (7)
™ by 2
and, expanding:

O _a—@b

fs ¢t =g+
a+zb

f S(e- (8)

3. Complex Fourier Coefficients

The function S (f) simply resolves itself into a 4
or — sign if we divide each of the above integrals
into partial integrals, each extending over a half
period of the synchronous frequency. Thus

r
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it 6_”i(m_")§2€”i1%—2627 ”-’71+263”i%— .+2e(2M_”ﬁm“—’"—l—e“”’”"‘)} 9)
m—n
Let us temporarily, for convenience, write:
e”ﬂ;Tn—a (10)
and rearrange (9) as follows:
f; S(t)e“’”_"”sz—_in a_M{I—a—{—a2—a3+a4— X —aZM_1—1_2a2M} (e

3 See for example, Churchill,”Fourier series and boundary value problems (Mc¢Graw-Hill Book Co., Inc., New York, N. Y., 1941).
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Recalling the identity:

1—(12M
l—at+ad?—dPtat— ... —a®M 1= ”1+a (12)
equation (9) becomes
i i(m—nyt__ i e e oAy vl—a
f_TS(t)e Py (a a )—-—I—Fa (13)

and restoring the original notation for «:

—2i[sin m(m —n)] l:tsm %r mi—ln:]

The==11)

f S(t)ei(m-n)l:
i (14)
We can now write an expression for (,, the complex

Fourier coefficient, from equations (8) and (14):
for brevity we will use the notation

[sin = (m+mn)) I:tan g ﬂi‘—;n]ﬁ
I =Ps
- (15)
[sin 7 (m—n)] [tang 7n4}12 i
w(m—n) o e
thus obtaining
Ca=3 [apn—g)+ibpatall:  (16)

4. Harmonic Spectrum

The real Fourier coefficients, giving the phase and
amplitude of each harmonic in the synchronous
rectifier output, may now be written, using eq 16
and the relationships (5). The steps simplify be-
cause of the identities:

P-n=0qn
(17)
q—n=Dn

implicit in eq 15. Using these, and eq 5, we_have:

a,= Cn+ 0_":% [a(pn _Qn+Qn_,Dn)

+40(pn+ ¢at+ @2+ P4)]
=—b(p.—qn) (18)
. 1
bn:l((jn T C—n): “E [a'(pn == 0n +pn)
+18(Pat @n— g —p0)]
:_a(pn_‘Qn)y (188')

where a, and b, are the Fourier coefficients relative
to the nth harmonic; the nth harmonic, that is, not

of the input frequency nor of the synchronous fre-
quency but of that frequency whose period is the
least common multiple of the two; or, in other vords,
the nth harmonic of the frequency at which there is
a recurrence of phase coincidence between the input
and square-wave functions.

We can readily express the amplitude and phase
of this nth harmonie: (see eqn 2):

/

Va=+a2+b2 =02 +¢2) (@®+ b)) —2p, qu(a*— b?)

=ViVDi+ @ —2pagucos2 ¢ (19)
pn“(ln

tan ¢, = (cot =, 20

ald) (0 ¢>pn+g:: ( )

where V,and ¢ are the amplitude and phase of the
input. The analysis of the harmonic spectrum is
simplified by the fact that for a given harmonic of
order n, the coeflicients p, and ¢, do not generally
exist together, one or the other being zero except in
the particular case when f and F, input and syn-
chronous frequencies, are commensurable.

Considering, in fact, eq 15, we see that, since both
m and n are integers by definition, both p, and q,
are zero, because of the vanishing of the sines except
when (m-+n)/M or (m—n)/M are odd integers, in
which case the tangents are infinite and p,, or ¢,,
respectively, takes an interderminate form that has
finite nonzero value.

Consequently, p, and ¢, can coexist only when
both (m+n)/M and (m—n)/M are odd integers.
But if this is true, the sum and difference of these
numbers must be even integers, from which we con-
clude that both ratios m/M and n/M are integers;
which means that the input frequency f must be a
multiple of the synchronous frequency #, which then
becomes the fundamental frequency.

This special case will be considered later. Let us
first assume that f is not a multiple of F. The
harmonic spectrum then divides into two families:
(a) harmonics corresponding to (m-+n)/M=N with
N an odd integer; (b) harmonics corresponding to
(m—mn)/M=N with N an odd integer. In terms of
actual frequencies, the frequency of a particular
harmonic of order n will be

F
Fa=ngp (21)

since F/M is the fundamental frequency (fig. 1).
Hence the frequencies of family (a):

4 F T
A== ARV 0

where /N must be an odd integer greater than f/F.
For the frequencies of family (b) we have, likewise:

Js =S NE,

where N must be an odd integer greater than —f/F.
The grouping of the two families is illustrated in

(23)
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figure 2. As for the amplitude and phase values:
for family (a) we have

a
(sin =N M) (tan%r N )
s TNM r (24)
q,=0 )
and for family (b):
p;/ A0 0 N
(sin =N M) (ta‘n%r~ N> it (25)
b TNM

The common value of p, and ¢, is given in inde-

terminate form and must be evaluated. This can
be done by L’Hopital’s rule; the result is
i w_ 2
pn—m Qn _“7‘_]\7 (26)

We can now tabulate the frequency, amplitude and
phase values for the two families in the general case
when the input and synchronous frequencies are
incommensurable:

Family (a)
fi=—J+NF

(N> F,Nodd) (N\—— N odd>

Family (b)
fi=J+NF

Frequency:

; : »_2Vi w_2Vi
Amplitude: V, N V. = o
s 10}
’ ™ rn
Phase: =59 =

¢tg5; (N>0)

The following deductions can be drawn from an
examination of the data of figure 2:

1. The amplitude of the harmonics does not de-
pend on the phase of the input.

2. Family (a) may be regarded as a ‘“reflection”
of family (b) at the axis of zero frequency, accom-
panied by a reversal in phase.

3. The two harmonics of greatest amplitude are
symmetrically spaced about the frequency f if f>F,
about F if f<F.

4. The counclusions reached may be extended to
the case when f is not rational. 1f, in fact, the in-
put frequency approaches a value P uratlonally
related to F' in such a manner that its subsequent
values f,, £, f5,.-., are all rationally related
to F, the mth harmonic of the output will take on
values +fi+NF, +f,--NF, :l:fﬁ—NF . which
tend to -=f+NF as alimit. The restriction 1mposed
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Harmonic spectrum in a generic case, showing the
presence of two distinet “‘families’”.

Ficure 2.

at the start of the analysis, that f/F be a rational
number, may thereforz be removed.

5. There is no d-c output in the general case when
f1s not a multiple of #. This can be deduced from
figure 2 by inspection. Only frequencies that are
odd multiples of the synchronous frequencies con-
tribute to the d-c output.

5. Commensurable Case

In the particular case when f/=mF, F becomes the
fundamental frequency, and M is equal to unity.
The expressions for p, and ¢, (eq 15) then become:

~

[sin 7(m —+n)) [tang(m +n):|

P w(m—+n)
e (27)
[sin 7(m —n)) l:tan%r (m —n)]
L m(m—n) 4

and we find that both p, and ¢, exist for the same
values of n: specifically, if m is odd, p, and g, exist
together for every even value of n; if m is even, for
every odd value.

We therefore have only one family of harmoniecs:

those of frequency:

with the understanding that n can be any positive
odd integer when m=f/F is even, and any positive
even integer, or zero, when m is odd.

The evaluation of p, and ¢, can be carried out as
before; we obtain:

2

p":r(m—l—n)
(29)
R 2
g"_vr(m~n)

hence the amplitude of the nth harmonic (eq 19):

4V, y/m? sin® ¢-+n® cos? ¢

Vors 7 (m*—n?)

(30)
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q. AMPLITUDE
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Ficure 3. a, Harmonic spectrum for the case m=1; b,
harmonzc spectrum for the case m=/.
and its phase (eq 20):
n
¢ﬂ:——n tan ¢. (31)
7

Figure 3 illustrates the harmonic spectrum in the
two cases of m=1 and m=4. It is worthy of note
that the amplitude of each harmounic 1s now depen-
dent on the phase of the input, which is not true in
the general case. This apparent contradiction may
be explained if we think of the two families (a) and
(b), which exist separately in the general case, as
merging into one in the particular case when f is a
multiple of F' (the commensurable case). Depend-
ing on the relative phase of the two families (hence
on the phase of the input, fig. 2) the resultant of
each pair of merging harmonics will vary in ampli-
tude.

In particular, note that the d-c component appears
in the case of m odd except when the phase of the
input is zero or a multiple of = (that is, when the
input goes through a maximum, or minimum at each
reversal of polarity). This may be verified by making
n=0 and sin ¢=0 in eq. 30; V,, vanishes under these
conditions.

6. Correlation between Time Constant and
Selectivity

One feature of the synchronous detector is of
particular importance; its rejection of nonsynchro-
nous input components. To achieve this, however,

R
SYNCH
INPUT A
T c OUTPUT
Ficure 4. OQutput circuit of synchronous rectifier.

it becomes necessary to eliminate the a-c output of
the synchronous detector. The foregoing analysis
shows, in fact, that if the input contains, for example,
the frequency F-+AF, slightly higher than the
synchronous frequency, the output will contain all
the frequencies F'+-AF+ NF and —f—AF+NF, and
in particular, the frequency AF, which, being low,
cannot be eliminated without a network which will
also delay amplitude changes in the synchronous
signal,

In order to study this situation quantitatively,
let us assume that the input frequency is capable of
varying within a range and let us ask what time con-
stant will be required, if we use a synchronous recti-
fier in conjunction with a resistance-capacitance
(R-C) network, to achieve the same degree of se-
lectivity as would be obtained with an ordinary
rectifier preceded by a band-pass filter or the equiva-
lent of selectivity ¢,. What we are looking for
specifically is a correlation between r, the time
constant of the R-C network, and @), the selectivity *
of the equivalent band-pass filter. Suppose the
input signal, of amplitude V7, changes from the
frequency F to F'4+AF. Assume, on the one hand, a
band-pass filter such that this frequency deviation is
accompanied by a reduction in half of the input
energy. This filter will have selectivity of value:

F

QO:W'. (32)

On the other hand, consider the synchronous rectifier.
Before the shift this produced a d-c¢ output of ampli-
tude:

2V;
. (33)

{/'0:

After the shift there will no longer be a d-¢ compo-

nent, but there will be a component of frequency AF
(the harmonic of family (b), fig. 2,{for N=—1).
This will have amplitude:
S 2

T 0*_‘2"‘_"_ ¥, (34)

Now suppose the synchronous rectifier is connected
to the circuit of figure 4. The change in peak voltage
across the condenser due to the frequency shift will
be due entirely to the discriminating action of the
R-C circuit, because aside from this the d-c¢ and a-c
peak values, as given by eq. 34 and 35, are the same.

4 Selgin, Electrical transmission in steady state, pp. 180 and 295 (McGraw-
Hill Book Co., Inc. New York, N. Y., 1946).
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The peak voltage will therefore change in the
ratio:
T=_—l—___*; (3 5)
V1+47%A 22
where 7 is the time constant of the R-C circuit. We
are assuming that the condenser is not shunted by an
appreciable load.
If we require the synchronous rectifier, with its
R-C circuit, to be as selective as the band-pass filter
previously considered, the above ratio must be

equal to 1/+/2, resulting 10 the equation:

4m?Afri=1 (36)
which, combined with (33), gives
Qo=rFr (36)

or, expressing the period 7" of the synchronous
frequency:

Q=r 7 (37)

We therefore achieve, with the synchronous rectifier,
an equivalent @, equal to the ratio between the time
constant and the period, multiplied by =. This
result may serve to correlate selectivity with what
we might call the ‘“‘damping”” of the synchronous
rectifier: if instead of changing frequency we were
to suddenly drop the amplitude of the input, the
capacitor voltage (fig. 4) would fall exponentially,
and the decrement (neglecting the source impedance
of the input circuit which we assume to be small)
would be

O

o= (38)

3 ™
T_Q()T
It is significant to compare with this the decrement
associated with the build-up or decay of energy
within the resonant circuit of selectivity ¢, which,
coupled to a nonsynchronous rectifier, was con-
sidered as an equivalent device. This second value
of decrement may be derived from the equation

_1 (O}

=

Q0_2 o

which relates selectivity to the real and imaginary
parts of the oscillation constant (decrement and
angular frequency of the free oscillation). (See
footnote 4). The decrement «, is therefore given,
identically, by

R T
QT

What this means in practice is that the length of
time required before the system reaches a new
equilibrium after a change in input amplitude is the
same whether we use a synchronous rectifier with
R-C network filtering or a nonsynchronous rectifier
with a selective band-pass filter.

The gain in selectivity made possible by the use
of synchronous rectifiers is largely due to the fact
that very selective stable filters are difficult to realize,
particularly at very low frequencies.

WasHINGTON, September 20, 1950
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