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An Analysis of the Effect of the Discontinuity in a
Bifurcated Circular Guide Upon Plane
Longitudinal Waves'

Louis L. Bailin*

The problem of theoretically accounting for the scattering of sound by a semi-infinite
circular tube with a small diameter inserted axially, as a measuring probe, into a larger tube
of infinite length, is solved in a rigorous and explicit manner when the incident plane waves
are restricted to the lowest propagating mode.

The investigation follows the methods outlined by J. Schwinger and consists in solving
Helmholtz’s equation subject to boundary conditions on the acoustic velocity potential at
rigid walls.  With the aid of Green’s theorem and the Green’s function for a point source in
the large guide, an integral representation of the desired velocity potential is obtained. The
imposition of the boundary conditions leads directly to a homogeneous integral equation of
the Wiener-Hopf type, which is solved by transform techniques. The results of this solution
are shown to be related to a distance d, which is the length the inner guide must be extended
to account for the disturbance occurring in the immediate vicinity of the discontinuity
caused by the excitation of higher mode fields.

Another satisfactory method of representing the effect of the discontinuity is by the use
of equivalent circuits, by means of which a discontinuity in a wave guide is replaced by a
lumped parameter network in a set of transmission lines. The equivalent circuit for this
network is derived, and the one essential circuit parameter is related to d and to the explicit
solution of the integral equation.

Numerical results for d are given as a function of several different guide ratios and
driving frequencies of the incident waves. The results are in considerable disagreement with
approximation methods previously reported and indicate that these methods are unsatis-
factory in the present problem.

I. Introduction

The problem of theoretically accounting for the scattering of sound by a circular tube
with a small diameter inserted axially into a larger tube as a measuring probe (see fig. 1) is
merely a specialization of a general class of problems dealing with the effects of obstacles on the
propagating modes of both acoustic and electromagnetic waves in guides. It has been shown
by J. Schwinger [1] 2, in a series of theoretical studies, that the special class of boundary-value

z=0

Ficure 1.

problems; where waves are incident upon a number of semi-infinite parallel metallic structures
(structures with parallel axes) of zero thickness and perfect conductivity, can be formulated
mathematically as an inhomogeneous integral equation of the Wiener-Hopf type [2]. Because
of the discontinuity, the imposition of the particular boundary conditions that the field com-
ponents must satisfy leads directly to one or more intregral equations of the type

.(l(x):fomK(x—y)f(y) ay, x>0,
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where f(z) is unknown while K(x) and g(x) are known functions. In the electromagnetic
problems f(z) is the surface current density on the obstacle while, in the acoustic case, it repre-
sents the discontinuity in the field variable on opposite sides of the obstacle. Generally ¢(z)
is determined by the boundary conditions and the incident fields; it is zero in the present
acoustic problem. The components of the field vectors at all points in space can be readily
related to the Fourier transform of f(x), which is obtained when the above equation is solved
by the transform techniques of the Wiener-Hopf method.

Schwinger [1] also points out that if incident dominant mode waves fall upon an obstacle,
the effect of the obstacle is to generate a far field of scattered or reflected lowest mode waves
and a local field that is a result of the excitation of the attenuated higher modes. Although a
complete description would include both fields in detail, as a practical guide problem, only
the far field effect on the propagating modes need be considered. Another satisfactory method
of representing this effect is by the use of equivalent circuits, by means of which a discontinuity
in a wave guide is replaced by a lumped parameter network in a set of transmission lines.

It will be the purpose of this paper to apply the above methods to an infinite circular
guide with a concentric semi-infinite circular bifurcating cylinder and to study the effect of
such a discontinuity upon plane longitudinal waves by replacing it by an equivalent circuit.
By a consideration of the equations that govern them, the unknown parameter in this network
will be shown to reduce to one single essential parameter. This parameter will then be related
to a distance d, which is the length the inner guide must be extended to account for the dis-
turbance occurring in the immediate vicinity of the discontinuity caused by the excitation of
higher mode fields. By this extension, we are able to introduce a new reference plane, the
“virtual plane of bifurcation.” Here the one essential parameter vanishes, and the equivalent
cireuit reduces to three transmission lines in series as shown in figure 6. Thus all measure-
ments made at a distance will indicate that the bifurcation occurs in the virtual plane that is d
units from the mouth of the inner guide, provided we assume that the discontinuity produces
no disturbance.

The solution to the problem will be obtained by solving Helmholtz’s equation subject to
boundary conditions on the acoustic velocity potential at rigid walls. This is to be done with
the aid of Green’s theorem and the Green’s function for a point source in the large guide.
From the integrals in Green’s theorem, we obtain an integral representation of the desired
velocity potential. This integral we shall solve in its Fourier integral form with the aid of the
homogeneous integral equation that is obtained when boundary conditions on the inner guide
are applied to the integral representation. The homogeneous equation is of the above-men-
tioned Wiener-Hopf type; since ¢(z)=0, a solution by Fourier transforms is possible and
vields an explicit expression for the transform of the unknown function. As the transform of
the unknown appears in the Fourier integral form of the integral representation, the solution of
the Wiener-Hopf equation permits a rigorous result for the velocity potential anywhere in all
three regions (large guide, small guide, and coaxial guide).

It is also noteworthy that an alternative integral equation formulation [3] of the problem
can be given. This originates with the division of the space interior to the large guide into
the two regions » >a, 7<a,where a is the radius of the smaller guide. Green’s theorem is then
applied to each region with its appropriate Green’s function, and each velocity potential is
then expressed for z< 0 in terms of its radial derivative on the surface »=a; here z is a distance
along the guide with z=0 at the mouth of the inner guide. The requirement of continuity
for the velocity potential on crossing this surface provides an inhomogeneous integral equation
of the Wiener-Hopf type for the determination of the common radial derivative.

Thus if we place the inner guide at z= 0, then, for z< 0 and large, the integral representa-
tion reduces to linear expressions involving transmission line parameters and, for z >0 and large,
it is given in terms of expressions from the Wiener-Hopf solution as well as a linear combination
of transmission line parameters appropriate to the region considered. When the solutions to
the right and left are then transformed back to the reference plane at the mouth of the inner
guide, we find that the discontinuity can be represented as a six terminal network and that the
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one essential parameter and the distance d can be also expressed in terms of these Wiener-Hopf
results.

To simplify the problem to a considerable extent we are going to restrict the driving fre-
quency to permit only one mode plane wave propagation in all three regions. In order to insure
this type of propagation in the different regions, we must carefully examine the eigenvalues
that arise in the solution of Helmholtz’s equation in these regions. For the present problem
where the normal derivative of the velocity potential vanishes at rigid walls, such a study
will indicate that if we wish the propagating mode to be the lowest “axially symmetric” mode,
we must have 0<k<x/b where x; is the smallest zero of the Bessel function ./,(z). Since
n<1=3.832, . . ., we may therefore select =/b as a working upper limit to guarantee only
principal-mode propagation in all regions.

II. Description of Physical Quantities

In studying the effect of the discontinuity upon a plane acoustic wave in an infinite circular
guide, radius b, which contains a concentric semi-infinite coaxial guide of negligible thickness,
radius a, we will assume that all the walls are perfectly rigid. Accordingly, the radial com-
ponent of the particle velocity vanishes on the rigid walls. Thus, the scalar velocity potential
® satisfies the wave equation

0P

=0, (M)
where ¢ is the velocity of sound propagation in free space, and the partial derivatives of ® with
respect to the coordinates are the respective components of the velocity. A solution under the
assumption of harmonic time dependence and complete angular symmetry about the z-axis
can be given as

B(r,z,t)= ¢(r,z)e "t (2)

where
2
k==
A

and A=free space wavelength. KEquation (1) then becomes the scalar Helmholtz equation

’¢ , 1 06 , 0%
2 O N GO S (I 20
subject to the boundary condition
r==>0 for all z
—gi’=0 at { (4)
2 r=a for z>0.

Once ¢ is known, we can calculate the other important acoustic quantities from the classic
relationships between the velocity potential, pressure, density of gas, and condensation.

We now formulate the equation which expresses the field variable in terms of the dis-
continuity of ¢ across the surface of the inner guide (surface current density in electromagnetic
case). To do this, we are going to make use of Green’s theorem to construct the Green’s func-
tion for the structure at hand out of a more readily obtainable one, which in our problem is
the one for the empty guide of radius . Thus we are considering the inner guide as an obstacle
embedded in the space of the other. The appropriate Green’s function which will aid appreci-
ably in the solution of the differential equation in ¢ satisfies a similar but inhomogeneous
equation with the simpler boundary condition

oG 3
5——0 at r=2> for all z. (5)
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Therefore, Green’s function for the velocity potential, with no angular dependence, satisfies

the equation

o(r—r’)
r

(V+EHG(r, 7', 2—2")=— 8(z—2’). (6)

Here 6(z—2a’) is the Dirac delta function and is zero everywhere save at z—az’, where it becomes
infinite in such a fashion as to make

j d(x—x)dx'=1. (M)
4
————————————————————————————————————— =
1 L S e L 4
6 3
| b __________________ =
- s
2 o

' i LA

z=0

Ficure 2.

In applying Green’s theorem,{we take the region under consideration as that which is
enclosed by the dotted line in figure 2 and write

[ 6@+ ko= o +iq1av— [ (6 95—6 20) s, ®)

where n’=outward normal to the bounding surface. Although dV”’ represents an element of
volume enclosed by the dotted line and dS” an element of surface area, the problem can be
reduced to two dimensions by immediately integrating with respect to the angle, since there is
complete circular symmetry. This integration merely brings in a factor of 27 on both sides of
the above and removes the angle dependence from all subsequent equations. @ here is an
appropriate Green’s function that satisfies (6) and (5).

To evaluate (8), we impose boundary conditions (4) and (5) together with (3) and (6).
Since the volume integral reduces to ¢(r,z), Green’s identity yields

s, [ (6. 25—430) as, ©

where S’ is determined by the six regions in figure 2 and »’ measures distance along the out-
ward normal to the surface enclosed by dotted line. By writing G~ (r, 7/, z—2’) astheasymptotic
form of Green’s function for z’ large and negative and G*(r, ', z—2’) as the asymptotic form for
2’ large and positive, (9) becomes the sum of the six integrals,

[ oo g-o] e
o] o
oo 3],
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(minus in front since n’ = —7r’),

)
f J[G* - D(H:I r'dr’
el =k
S R e -
L_J_L,[G W-tpa—,_ﬂ:hbm —0
j f |:(’ :I ks (10)

(minus in front since n'=-—2")

Since it will be shown later that all integrals taken along transverse surfaces are independent
of L or L’ as the case may be, we may now let L and I — = and write (10) as

ST NP IR 06 _, 06"
¢>(l,~)——' A (pt— )<Or'>,r-u(”[ -+—11121m|:[ <(* L — )

(@ o) =[O seer), 7] -

The difference of the velocity potential on the inner and outer surfaces of the small guide which
appears in the first integral of (11) is a consequence of the oppositely directed normals at
these surfaces.

III. Derivation of the Appropriate Green's Function

To obtain the solution ¢(r,7",z) of (6) in the total space interior to the larger guide, we
shall apply standard Fourier transform techniques. Thus, we transform z out of (6) by de-
fining the Fourier transform in z as

fa’(r,r',;:[ e~ Q " 2)dz, (12)

where we have written z instead of z— 2/, since this binomial appears explicitly in the solution,

4 now satisfies the equation

=B )
7

(O,_+— +7)(/’(H 0= (13)

where y*=k*—*; @ is subject to the boundary conditions: (1) that it be finite at the origin
and (2) that its normal derivative vanish at »=b. Thus, we must seek a solution of Bessel’s
equation of order zero, since there is angular symmetry, which satisfies these boundary con-
ditions and is continuous at r=7'. Following Courant-Hilbert [4], the solution of (13) can
be given as

G (r,r, ?):g ji((fi [Jolyr) Ni(vb) — Noy(yr)Ji(vb)] @>r)
T (14)
} G (r,r', ) =2 4] [Jo(y?")Ni(yb) — No(yr") Ju(yb)].  (r<r)
2 Ji(vb)
By the Mellin inversion, these then yield ¢ in the form
23 8 B J
G= [ s DD [T Ny b)— Nyrs) Jieb) (15)
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where the integration contour is a straight line in the region of regularity of the Green’s func-
tion transform and r-, r_ symbolizes the larger and smaller of the coordinates r, »’ respectively.

To determine the region where the integral in (15) converges, we must first determine
the form of G and then apply it to (12) which defines @ (¢). From our fundamental assumption
of only one mode propagation, we know that

G~ Ae”‘"‘—%—V‘IB,f K, 2| (16)
n

It can be easily shown that for a & of this form, the integral in (12) has no region of regularity
unless £, the propagation constant, has an arbitrarily small positive imaginary part (which is
eventually set equal to zero). This corresponds to a small attenuation of the sound waves
traveling in the guide. Thus, if we let k=Fk, 4- 7e and introduce the coordinates in the ¢-plane
as (=&+ in, (12); converges in the strip [9|<e {(Im k). Consequently, the inversion given
in (15) can be performed, if ¢ is restricted to this same strip.

/}_\ Z>0
~

l
e e _.s LR —
4 ~ ~
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\\ _33 Ly // f'z FiGure 3.
~ ~ Z<0

1 - PLANE

The integral in (15) may now be evaluated by computing the residues inside the semi-
circular contours pictured in figure 3. The poles of (15) which are given by the zeros of J; (vb)
are all complex for e>0. Thus, if we let J;(y,b)=¢i(2,)=0 for n=0,1,2,3, . . . and {,=
k*—~2, compute the residues inside I'; and I';, and then let e—0, we find that the solution of (6)

b(?COm(’S
Y oik|z—2’| m JO (In >J0<Tn ) —Kpl2—2'
e’ + b b

e =~ K, b2J2(x,)

(17)

Here we have insured only one mode propagation by restricting £ to be less than /b and
defining the attenuation constants by Ko=(2,/b)?>—k? where Kj=(2,/b)2—k? is the smallest.

The Green’s function which is appropriate to this problem must give a physical descrip-
tion of waves incident upon and reflected from a discontinuity in a guide. Since (17) repre-
sents a wave traveling outward from a source, the appropriate Green’s function requires a
superposition of (17) and its complex conjugate which is the solution of (6) representing a wave
traveling inward to a sink. Thus if we take one half of the sum of (17) and its conjugate and

simplify the results, we obtain
<1/n b> J(] ('rll b) e~ Knla=2'|

sin k|z — =
ka kb II; Ky bi]j(rn) y (] 8)

Gor,r, z—z))=—

which has the desired physical properties.
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IV. Evaluation of Integrals

Once the appropriate Green’s funetion has been determined, we can proceed to evaluate
the integrals in (11). This is done in paragraphs (a) and (b), since the character of the results
and the evaluation techniques used differ widely. Paragraph (a) is concerned with obtaining
the far field contribution in terms of the transmission line parameters and paragraph (b) with
the setting up of the Wiener-Hopf integral equation which is a result of the first integral in (11).

(a) In proceeding, let us temporarily ignore the first integral of (11) and examine the last
three. From the explicit form of the Green’s function, (18), the asymptotic forms of @ can be
given as

sin k

k;fz (19)

7|
— 2|

G172 —2) =G, r, 2 —2) =—

Thus, when we examine (11) for L and L’ sufficiently large so that the attenuated terms may be
considered negligible, only the forms in (19) need be used. It can be shown [5] that in terms of
the propagation of acoustic waves in transmission tubes, the velocity potential and pressure
obey analogous equations to those for currents and voltages in a transmission line. Thus, for
z large, ¢ behaves as the current in a transmission line which we will denote as 7(z). Then, in

terms of the transmission line currents and voltages measured at z=0, we write
o(r,z2)~1(z)=[I cos kz—i V'Y sin kz], (20)
where
o 1
et 13
ZN0C

1s the characteristic admittance of the line and p is the density of the air or the gas in the tubes.
Using (20) for each of the three regions under consideration, we note that as z— — «
o (r,z)~ 1,(2)=[1, cos kz+1V, Y, sin kz], (21)
while for z— o and for r<a
o (r,2)~I(z2)=[1; cos kz—1V;Y; sin kz], (22)
and for z—w and for b >r>a
o (r,2)~ I(z2)=[1, cos kz—1V, Y, sin kz]. (23)

Thus, the last integral of (11) becomes

T S e B D) ;
wE s s ] 2
since
o} ; T E A sin k(z—z’) oG~ 1 ’
b?:k(_ll sin kz’+iV, Y, cos kz’), G-=—"2 Z;('bz ), 527 —pzCos k(z—2).
Likewise,
; s dp  OGH , a?\ I,(2) )
+9¢ s | 2 £312) ;
llill I:J“ (G 55 ¢ 27" )y’ ([I:I (bz,) 2 (25)
and
) oL O oG+ o ] Desa™ L@) R
JI,II,I;[J(.<G b:’_d) Oz’)lr:L'd' ]7( b2 ) 9 (26)
since
o) { R p : sin k(z’—z) oG* o0s k(2'—z
ajzk(——];,sm kz—iV,Y; cos kz’), sz_imik(,b?,,,), ,,a?,:__‘osv_,,éz l,



Thus (11) becomes
sro=[HE(3) deti[ Ho+(P5E) roHERe ] en

H(z)=a[¢" (r,2)r-aro— ¢~ (,2)r=a-0l. (28)

where

Since (28) is independent of L and L’ we, therefore, note that all the integrals taken along
transverse surfaces yield propagating terms which depend only on z. Equation (28) represents
the velocity potential at all points in the large guide in terms of the potentials of the three
far fields and the potential of the unknown scattered field which is given by the integral.

(b) Since H(z) is as yet an unknown function, (27), the equation we referred to in our
introduction as the integral representation of the desired velocity potential, is an inhomo-
geneous integral equation.  When we impose the acoustic boundary condition

09
— = 220,
[al‘]r=a 0, for _0

this equation becomes readily soluble by transform methods since it is homogeneous and of
the convolution type.
Thus, if we call

- Q¢
V (2):<4 for z<0,
0r/ -
and since the propagating terms drop out in the differentiation, we have from (27)

NES : K(z—2z)H(z")dz’, 2>0

—C

(29)
V(z)zf_wK(z——z’)H(z’)dz’, 2<0

where the range of integration has been extended to — «, since, from (28)
0, <0

IHGE=
H(z), (0

Equation (29) is a homogencous integral equation that resembles Wiener-Hopf type, since
the dependence of @ and therefore the kernel,

0 (o6
K(z—z’):[g; {Dr’ (alr 2—2,)}1:7':;

upon z is of the form (z—27).

V. Derivation of the Lumped Parameter Circuit and the One Essential Parameter

From equation (27), we can now derive the circuit relation of a lumped parameter net-
work with which the discontinuity can be replaced, if we concern ourselves with fields far
enough away from the mouth of the inner guide so that all attenuated modes have essentially
vanished. To investigate this far field result on the left as z—— « | we let ¢(r,2) be given by
the transmission line expression (21) and define the characteristic admittances as inversely
proportional to the area:

1 RN e R ST T VRPN SN N
Z—Y‘”Tb?’ 72_12 r(b?—a?’ Z:‘_Y3 Ta’
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Thus, as we shall see later, the integral in (27) vanishes for z<Z0 and large and we are left
with

I(e)=1 [11<z>+12<s> %+13<z> f]

which becomes

ZoIy(2)+Z314(2)—Z,1,(2)=0. (31)
Now, if we rewrite the above in terms of the /’s and V’s at z=0, we have
Zo(Iy cos kz—1 VY, sin kz)+Z3(I3 cos kz—1 VY5 sin kz)—Z,(I, cos kz+1V, Y, sin kz)=0,

and since the sine and cosine are linearly independent functions, (31) becomes

Zod o+ 2313 —Z,1,=0 (32)
and
Vit Vit Vi=0. (33)
These two, together with
Z,:=2,+2Z,, (34)

a result of (30), are the defining equations for a six terminal lumped parameter circuit. Thus
we have three relationships between the circuit parameters which were deduced by examining
the effect on the velocity potential as z—— o and which represent the far field results to the
left. We will presently determine the far field results to the right and then by expressing
them in terms of the current and voltages at the zero reference plane, we will find that the
extrapolated results coming from the left and right can be represented by same six terminal
impedance network.

In general, a six terminal network contains nine impedance parameters representing the
ratios of voltages to currents for all possible combinations of the three independent voltages
and currents. However, if we make use of the reciprocity theorem (see Schwinger [1] or
Everett [6]) of electrical circuit theory the number of impedance parameters is reduced to six.
Krom the above three aquations, we further reduce this number to three, which we will call the
susceptances, By, B, and B;. Also, from (34), we notice that they must be proportional to
Y1, Vs, and Y3, respectively. If this circuit is to satisfy the above equations, it must have the
following delta form (fig. 4) with nondissipative pure reactive elements and with the power
flow arbitrarily chosen to flow into the junction from both sides.

I)

° - -
==l l >

iB| Ficure 4.

iB; Vg

I3

Since the circuit parameters are independent of the impressed currents and voltages, we
can now obtain independent relationships between the B’s as follows:

1. Open circuit lines 2 and 3. Thus [,=1;=0 and from (32), /,=0. By looking into
line 1, we see B, in parallel with the series combination of B, and B; and we have

1

el R M |
A & :()Orl:—+—+4]:0. (35)
BB D

1B+

323



2. If we terminate lines 2 and 3 by their characteristic impedance, it can be easily shown
that the impedance seen from line 1 is the characteristic impedance
(iBy+ Y9 (iB+ Yy

GBtiB,F Y, ¥ Ty (36)

Y,=iB+
With the independent derivation of these last two equations, we see that the number of
independent parameters is now one. Thus from the proportionality required by (34), we let

];]: b] )7“ Bz:: bg )72, and B3: b3 )’3.
Then from (36), we obtain

1 1 1 .
Yid—iby) Yoibot 1) T Valibyt 1) 57
and (35) becomes
1 1 1
[)71b1+)72b2+y3b3]_0- (38)
By solving (37), (38), and (34) simultaneously for the three unknown parameters, we find that
and figure 4 reduces to figure 5.
II Iz
O T >
-i BYz l V2
7 iBY, e
-iBY
iBY3 l e
[ —— l ~—
I
Ficure 5.

Thus we have shown that with respect to the far field results on the left, the discontinuity
can be replaced by the above network. To determine the effect on the right as z— + «, we
must first evaluate the integral in (27). A straight forward circuit analysis of figure 5 shows
that B is related to the circuit parameters by

i(I—1))

B=vv. V. 7:

(40)

We have now shown that the circuit in figure 5 can be used to represent the discontinuity,
when the parameters are measured from the z=0 reference plane which is at the mouth of the
inner guide. Since, there is only one essential circuit parameter which has a known variation
with driving frequency and the distance to the reference, it is possible to find a reference plane
in which the equivalent circuit susceptances vanish and, consequently, the equivalent circuit
reduces to three transmission lines in series as shown in figure 6.

This new reference plane is a ‘‘virtual plane of bifurcation”, inasmuch as all measurements
made at a distance will indicate that the bifurcation occurs in this plane, provided we neglect
the effect of the discontinuity. Particularly, if one of the tubes is introduced in order to take
measurements, the quantities will be measured in the virtual plane and not at the mouth of
the tube.

To find this virtual plane which is at z= —d, or a distance d “‘ahead” of the actual plane
of bifurcation, we follow the method outlined by Miles [7] and let n==kd and transform the
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Zt!
3 ‘l’3
P 1
L
Z=-d Z=0
Ficure 6.
impedance seen by the i-th tube (i=1,2,3,), Z,, (plane z=0), to Z’;, (plane z=—d). This
transformation is effected by the use of
+ ZT[ + Do
7 cos i sin
z A N+ sin g
i SR , (41)

ZI' . ZTL' h
+cos n+1{ = ) siny
Zi

but care must be taken to select the proper signs (both plus if the direction of the power flow
obtained by following V; then /1, is in the positive z direction) and to use a negative n since
the reference plane is being moved to z=—d. Thus, if we load terminals 2 and 3 (fig. 5) with
arbitrary admittances Yr, and Yrp,, it can be ecasily shown that line 1 sees

> 1 SN , [)77'2—{:13)72] [)773_11;)731 |
14 i A ANy A o e (42)
1 P, ¢
Thus if
Lpy—=0= )1 and  Yr,=0, e
T3
then from (42)
7 1
Loy, = o

iB(Y,— Yy

Now, if we transform the above ZTi to Z,v[ until the circuit can be given as the series com-
bination (fig. 6), namely,

v (45)
we find that
B=tan 5.

VI. Fourier Transform Solution of the Integral Equation

The Fourier transform solution of (29) will be undertaken as follows: In part (a) of the
present section, the equation linking the transforms of the respective functions V, H, and K
and the common region of regularity of these transforms will be derived. The equation follows
as a direct consequence of the convolution theorem. The regions of analyticity of the trans-
forms are obtained from the asymptotic forms of the functions themselves. Part (b) will
concern itself with the decomposition of the transform of the kernel, K, into the quotient of
two functions which will convert the equation of the transforms into a single integral function.
This integral function will, in part (c), be shown to be constant since it satisfies the conditions
of the Liouville theorem. Thus from (70), we will be able to find an expression for the trans-
form of the heretofore unknown function H(z), and thereby, in part (d), we will obtain ¢(r,z)
from the inversion integral.
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(a) The solution of the extended Wiener-Hopf integral equation (29) by Fourier transform
methods can be facilitated by the theorem of convolution which permits us to write the trans-
form of the product of two functions as the product of the transforms. Hence, the transform
of (29) becomes

¥ (§)=H(5) H1D), (47)
a@)=[ e[ 2(E)]  de—-{2(29)]__. (48)

and 77(¢) and 7 (¢) denote the Fourier transforms of the respective functions, H(z) and V(z)

where

in the form f({)= f f(x)e **dr. For the transform equation (47) to have significance, there

must be a common domain of analyticity of the transforms in the ¢-plane. To verify the
existence and location of this domain, we examine each transform with the aid of the growth
order of their corresponding functions V(z), H(z) and K(z).

Previously, we showed that % (¢) exists only if £ has an imaginary part. However, .7({)
involves differentiation with respect to » and »” which eliminates the propagating term and,
consequently its region of regularity is || <x;.

The quantity which we have called H(z), given explicitly by
[¢("72)r=a-i—0h¢(r;2) r=a—0]a’

has the same asymptotic form, for z— =, as the velocity potential on the inner and outer sur-
faces of the smaller guide and, therefore, can be given as H(z) ~ Ae**+ Be= . From this, we
infer that #°(¢) has only simple poles on the rveal axis at {= +k, and is regular in the lower half
plane n<C0, since

@< [T IHE e (49)
0
is bounded in this region.
If we study the defining equation for V(z), (29), by inserting the explicit expression for

the asymptotic behavior of the kernel, namely K(z—z’)~e %1721 we see that the real part
of V(z)~ef1? as z—— o since H(z) is the entire function (traveling wave) given above.

Thus
*0 ) g 0

y (‘()NJ e~ izt K 12([2 :f e—ifz-}—(ﬁ-I\'l)zdz (50)

and exists for n >—x;.
n »(3)
T R At et — 4+ - ———-
H(3)<€ 3
}COMMON REGION
B
< - PLANE
H(8)

FiGcure 7.
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Collecting results, we find (fig. 7) that the strip —&;<#<C0 is a common region of regu-
larity for the transform equation (47). It will now be convenient to designate the region
n>—k; and 7<_0 as the upper and lower half planes respectively.

(b) In order to solve the transform equation (47), we now seek to represent .#(¢) as a
quotient of functions K_(¢) and K, (¢) such that a simple transposition will make each side of
the equation regular and not zero in separate half planes with a common strip. By writing (47)
as

7 (OK = A#()K _=integral function, (51)

we will see that each side of the equation is the analytic continuation of the other and there-
fore will represent the same function. Together they will then define an analytic function
throughout the finite {-plane. If, in addition, this analytic integral function turns out to
be bounded in the whole plane, then, as a consequence of the Liouville theorem [8], it must
be equal to a constant and the transforms #(¢) and 77 (¢) are simply related to K, and K _.
Although there are general methods for the decomposition of the kernel which are both
rigorous and forceful and have been successfully [3, 9] used, in our present discussion however,
a simpler and more direct approach will suffice as it has in other problems [10]. Thus we
consider
2O e 90| =5r[ 00| IeoNah—rebNael  62)
and write each factor as an infinite product of the form (a*—6* which we will simply split
into terms which have simple zeros in one half plane or the other.

Thus to convert (52) to infinite products, we start by letting
J)=Jilya)Ni(yb)— Ji(vb) N\(va). (53)

From Whittaker and Watson [11], this may also be written as

f=01 (1-25), (54)
n=1] 711
nw 1 ) :
where 7,,:b_a+() . ) are roots of f(y,)=0, provided that

(1) f(y) 1s an even function
(2) f(O)=C
(3) f(0)=0.

A careful analysis of these restrictions will show that they are satisfied, if ¢=(b*—a*/(rab).
Thus, we can now write

ke g =y

_br_qg2e L2 if) _Lf,(,';;rjw m(\/ B it +gg,r§;u) s

it(b—a)
nm

where ¢ are inserted as absolute convergence factors, without which the infinite products
are only conditionally convergent [12]. Similarly, if we expand

O R
S ,}L{l_ﬁ}’ (56)
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where J,(x,)=0, then from (56)

Ty =41 (109

i
axkz §2m<\/ kz zg—a) (!ra) (\/1_L 7§‘a> (zra
and
2@ 252 ith 272 Ligh
Ty =8 (\/1_k2+z§b>ﬁ S (\/ Eb zg‘b o ot
275 2 oz,

Hence, we may have
) o

9 e {_& e}, w {1 B2 _ia] bl
2 b? 111 1 vrn—*—x,, A III : 2 a7 .
Sl AEE e R i S
//(g_): 1 Ve Qs : 1 o Tn ' . (58)

© 2L2 . __ibm 7.9 x _zg'—b
[H{\/I—A b+&§e "'H{\/l—-kb ﬂ;;""]
1 ‘rn Ly 1 .l'n L

(¢) Now, if we define, as shown in (58),

m):ﬁé E‘;; (59)

where K_(¢) is regular and not zero in the lower half place, <0, and K, (¢) is regular and not
zero in the upper half plane, > —e¢,>—x;, our transform equation (47) becomes (51) which
satisfies the requirements of the Liouville theorem because 7 (¢) K, (¢)is regular for n>—e;, and
A (¢) K_(¢) isregular for n<C0 and the strip 0>>7>>—¢, >k, preserves the continuity.

We must now study the growth order of both members of (51) as [¢{|—=«. Thus for
7 (¢) and #(¢), we examine the transforms

)
¥ ('f)zj_me"'“V(z)dz (60)
%(g‘)zﬁwe‘mH(z)dz. ©1)

The behavior of V(z)z[%%) (i, 2)] as z—0, can be obtained by examining ¢ in the region of

the sharp edge (zero thickness). In this region, where the values of z are very much smaller
than a wave length, ¢ satisfies Laplace’s equation which can be solved by static methods.
This is done by transforming the potential field about the sharp edge to the uniform region in
the upper half plane with the aid of Schwarz-Christoffel [13] transformation, W?=2z. From
this transformation, W~ z"? and the field which corresponds to V(z) as z—0 at the sharp edge
is [dW/dz|~2z=Y2. Therefore, V(z) which is related to the component of the particle velocity
along the cylindrical radius at the inner pipe has an integrable singularity of the form z~'/2
and

)Nf —7 dz~(@§)72 as |¢|— o for n>—e;. (62)
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Also from the above transformation, we see that F/(z) which behaves as the velocity potential
itself can be given by H(z)~z"? as z—0 and

,//"<§)~f0°°e—m(zw>dz b (’iﬁi aa B[ oy 020, 63)

Thus, from a consideration of the physical nature of V and H, we find that #" and 7 behave
in a purely algebraic manner as |¢|—> . Therefore, the acceptable results of the decomposi-
tion of the kernel must behave in a similar fashion to permit the integral function to be
bounded.

To properly decompose the kernel, we choose

- 272 . ith
[\/]_k b @] o nm ox®
1 xn Ly
: [\/l_kicf_z‘w] S s [\/ _EB ] o’
1 ik £Ly / 1 YRy

g ;i
) o
e , € ,and e

are inserted in each case as absolute convergence factors and the arbitrary factor ¢x© is put
in to remove the exponential growth and thereby insuring the algebraic behavior of the
K’s by the proper choice of x(¢). This choice will be determined from the asymptotic form
of K_(¢) [or K4(¢)] as |¢|—w for n<0.

We then find that A, has an infinite number of poles on the negative imaginary axis for
4 ) - ] o

s e

and zeros for n <—x, and is therefore regular and not zero in the upper half plane » > —¢,.
By removing (63) from (58), we have left

R Y B
- 1___ == Dig ux II ]_, —200, nw X ¢
( 1 J’n + €Ly 1 '}’i +'Yn o
® SiFaL ite _igh ’
]I {\/1_kb lgib}(, nw
1 ‘I‘n Ly
which 1s regular and not zero in the lower half plane, <0, and has only simple poles and
zeros in the upper half plane >0. We note, however, that K_ and K, have a common
region which is at least as large as ¢;. )
For the purpose of evaluating the asymptotic behaviors of K and K, we may write
v.~nmw/(b—a) and, since Schwinger [1] proved that the infinite products in (65) must be inde-
pendent of £ as |¢|— <, the square roots behave essentially as unity. Therefore, as [{|— =,

we may use the Weirstrass [14] definition of the I' function and the Sterling asymptotic for-
mula [15] for T'(¢) to write, as a typical example,

i((h-a)
Iy 1-E+ e L e, <, (66)

e(c l)I t+1/2 277'

K, (9= (63)

where again

K-(§)= (65)

where 2=1¢(b—a)/m and C'=Euler’s constant. Similarly,
© e AT ita
H{\/1_ﬁf’~+'§“}e"ﬁ~ I'(5/4) : (67)
! Ln " e VI (y+ D 2r(y+)
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where y= iy
™

Thus as |¢|—0, we have

(k? ;)(b? > (““) e /2215;12.0;(; —— o
21¢

V2ita(b—a) b—a)

which approaches (i¢)*? provides that
(g)ﬁ— [bInb—alna—(b—a)ln(b—a)) (69)

to insure the algebraic behavior of both K_ and K. Likewise, we may show that
K, (§)—(—2{)* or that o (§)—

Collecting results we see that 7 () K. (¢)is bounded as |¢|—=>= for n > —e¢, and # ()

K_(¢) is bounded as |¢|— « for n<0. Thus, we have shown that both sides of (51) define an
analytic function which is regular everywhere including a common strip of width ¢, and is
bounded at infinity. Therefore, by the statement of the Liouville theorem, (51) becomes

F(OR(O= S (DK A= (70)

If we were interested in the difference of the velocity potential on either side of the inner
pipe, we could now obtain it by evaluating

Sk Oe”zdz
R bz G (f)

where Br is an infinite contour within the strip of regularity [y|<x,. (d) We are now in a
position to evaluate the Fourier integral form of (27), which we may write as

L o [0,
d)(r}z):ﬂ i de H(g‘) W (7‘,7’ )g-) o (71)

and where we recall 4 exists in the strip— K< n <K, and 7/(¢) exists for n< 0. Therefore
the path of integration must be taken in the region 0 >7 >—K,.
If we concentrate for the moment on »< 7/, we have from (14)

(32),_ =57 P (= Ha@Nab) + Nitya) S (72)
and
H©)=3 7 9D (100N~ Niaa) T b
2 @
9
Bhe ot ot ik b the rasio
)2,
then
°6__ Jam) K_(0) o

o' ydi(ya) K (¢)
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Now the integral in (71) becomes

1 it d{pmJ/(f)K () [ Jolyr)]

27 )ig—w ; K. (%) [J1ly )]

(76)

which has simple poles at {=+k(y=0) and {= +ix,.

The contributions at the poles on the i i 1 they contain
e Kulil For 2<0, we closed the path of integration by an infinite contour in the lower half
plane. Since the poles enclosed are all on the imaginary axis, the contribution to the integral
vanishes as z—— « and the result claimed in section V is established. For z >0 and large,
we use a contour in the upper half plane which encloses {=-+k and (71) becomes

N—iD ¢~ ikz ikz él 5 7Z:3 - sl
d)(ry@)*' {QAK IL) 9AK+(’L)} [Il(‘)'*'Zl ]2(4)+Z! ]3(~)]’ (”}

since only the residues at the poles on the real axis contribute as z— . Likewise, if we con-
sider 7 >7/, it can easily be verified that the result is the same as (77) with a different constant

D.

VII. Expression ''d" in Terms of Infinite Series

In (77), we have evaluated the integral representation (27) from its Fourier Integral
form (71) and we can now obtain the far fields to the right. For now, as z— o, ¢(r, 2)—15(2)
in region 3 and /»(z) in region 2. In terms of the parameters at z=0, we have similar results
in regions 2 or 3 with different constants A namely

ikz

e cos kz

K. KAA)]* [“’/ ’“+/1 :I
xm /L~

—1 - [V3Y3+ V. Y,— VY. (78)

Iy 5c08kz—1Y,3Vossinkz= A,

If we, again, equate coefficients of sin and cos, we have the far fields results extrapolated from
the right as

il Z, Zs y o 0] ~
(g (1 itz 1) s @9)
and
oo LRSS TSI i
l:—”“m)'z,a"f‘g(V:;}H“'z)’l—‘”l) :I Az s KW_K I(A) (80)
+

Recalling that the results from the left gave the circuit equations (32) and (33), we apply
them to the above and find that

1 1
oIl = 40| 578 ) (81)

and
. r 7 g it vl R N L, a 41 =5 71 .
— (Va3 Y,,3+ V1Y) = lez'sl:K+(—k‘)+K+(k)] (82)

By simply dividing these two equations, we see from (40), that the left side is merely the one
essential circuit parameter b discussed in section V and hence with (46), we have

K, (k)— K, (—k)
K. (k)+ K (—k)
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=tan (kd), (83)



where the reciprocal of K, (k) is

i BT ) 5 ika S 0) 2 ik(b—a)
N e

1 L3 Tie Ty 1? Vo' Vs (84)
K. (k) ﬁ{\/l_k%z mb} o

1 P Ta

By writing the bracketed terms in (84) as exponentials, for these are of the form cos §—17 sin 6,
we see that (83) becomes

Tt mten | B (I Bl G- (2=}

(85)
where y, are the roots of
Ji(Yn) N1(ay,)— i (agpn) N, (yn)=0 (86)
and z, are roots of J,(z,)=0. For ease in computation, we have made the following parameter
changes:
1. Let a=b/a.

2. From our initial restriction on the driving wavelength, let k=y=/b, where 0< n< 1.
3. Let (v,a)=yx.

Since we now have an analytic expression for d, it is of considerable interest to determine
d as a function of frequency and the radii of the tubes. To evaluate d numerically, mustwe
find some way to get an accurate result for the above infinite series which is of the form

S {lsin~ (X — Yo} = 35 {lsin'(Xn) — (X.)+ (X, — Y}, (87)

n=

The first two terms can be written as

> [sin{(X,)—Xa] + B, 88)

n=1

where N is some arbitrary finite number. Thus by calculating /N simple values and bounding
the remainder, we will be able to evaluate these sums  Writing sin™! as an infinite series,

Rn=§ [sin—l(Xn)—anzél [+% (X2t (X,I) +112 X))+ .. ] (89)

N+1

we have a series which converges rapidly for X,<C1.
If we now define Uy, as
sin L D=y ]

LRGN O BN ©0)

we see that the numerator is the largest term in the remainder and that Uy, approaches 1/6
as N grows large. Now from the series expansion, (89), it can be easily verified that

Sin_l (XN+1)—‘YN+ 1 >Sin-l (1YN+1)—XN+1
(Xn)? . (Xy40)?

O — ], 2, 3, Sill(‘e AYN+124YN+1Z-

’ 91)
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Thus from (90) and (91)

Uy 41 (Xn11)* > sin™! (Xy 1) — Xu 4 (92)
which means that
B Uy oo XM, (93)
N+1

Also from the series, we have, by dropping higher order terms,

s
Rn> Z 6 ( 11)3; (94)
NT1
which together with (93) bounds R, as
j ) . @ .
6 Z (‘Yn)3<lin< L N-+1 Z (" n)d- (9:)
NF1 NT1

Thus, we can easily determine a numerical value for E,. The remaining sums of (87) may be
easily obtained since lim (X,)=1Y,.
Nn— o
The infinite sums in (85) were evaluated by the computation laboratory of the Institute
for Numerical Analysis, National Bureau of Standards, for 5, the frequency parameter, assuming
the values of 1, .8, .6, .4, .2 and 0. Although =0 has no physical meaning in the present

acoustic problem, for completeness the mathematical lim #d/b was evaluated to show that d
7—0

is a smooth and continuous function of n for n=0. Thus since

lim sin™! 17,= =)
0 C C

equation (85) becomes

wd 1 s ™ T ™ =
TZ[III a+<&_ 1) In (O(—l):l—‘ 1,;1 a.r"—}*"‘}‘;?/"] (9‘)

as n—0. The values of a used were 1.05, 1.2, 1.5, 2, 3, 5, and 10, while «a=1.0 and « would
mean that there is no inner guide; consequently d=0. The computations were intended to
be accurate to four decimal places, but with the methods outlined greater accuracy could have
been obtained. The eigenvalues y, (table 1) for small n were obtained from Muskat et al
[16] with corrections given by Miller [17] and for large n were computed with the aid of a
formula give by McMahon [18]. The results of (85) are exhibited in tables 1 and 2 and in
figures 7 and 8.

TABLE 1
Un
o | Tn
”\\‘j 1.05 1.2 1.5 2.0 3.0 5.0 | 10.0
Bt s i ik gt 7h SR BN |

1 62.837 | 6.3218 3. 1966 1. 6356 0.84715 | 0.39409

2| 125666 12. 586 6. 3124 31789 |*  Lel 73306

3| 188497 18. 863 9. 1446 17381 2383 | 190748

4| 251,329 25, 143 12. 581 6. 3028 162 | 14189

5| 314160 31,424 1. 720 7. 8696 39454 | 17643

6 376, 922 37,706 18, 860 9. 4375 | 21107

7| 430824 109. 938 13, 988 21999 | 11007 | 24578

8 125. 666 50. 270 25141 | 12.576 28052

9 56. 553 | 14146 31529 | 9.

10 62, 836 31, 422 15.716 35010 | 32190
11 34. 563 17, 286 3.8492 | 35332
7 11975 38. 475
n 4. 5459 11,617
14 14,8944 44,759
15 5. 2430 47,902




TABLE 2

wd ]
b
B
\\
n
L \\ 1.0 .8 6 4 2 0 a
= e \ —_ }.\
0. 9524 0. 2061 0.1902 0.1828 0.1787 0.1767 0.1760 1.05
. 8333 . 4802 . 4384 L4171 . 4051 . 3988 L3967 1.2
. 6667 . 6527 . 5936 . 5620 . 5436 . 5339 . 5310 | 1.5
. 5000 . 6682 . 6069 . 5740 . 5549 . 5446 L5415 [ 2.0
. 3333 . 5530 . 5036 . 4780 . 4633 . 4555 . 4532 ‘ 3.0
. 2000 . 3731 . 3428 . 3207 . 3216 .3173 | .3163 5.0
. 1000 . 1948 . 1844 L1795 L1767 L1752 .1751 } 10.0 l
7j‘1‘rlll|m ITIAV!V/__“V\ TTT T rrIn) -7L!\\ L L 00 L L L ) o L R L 2 L L
£ E / n=.6 \\ 8 . = 5 //]
e - 3 B L —— T «-2.0 5
- n=1.9 T §<\\ 3 = ’ =]
.5 5
- o \\\ 1 : aicg] 2o ]
4 gl o4
g s // \ ] el @ :5.0 | —
NIEY S / \\ . = -
2 - / - 2| =1.05 -
= 2 .
= / 3 = «©=10.0 3
al \/ i | ]
o{x‘:|xx| P 0 i) o T S 1 M oLt lyraliy § 10 e e e R T S N
o T SR s T s RO 0 G 5 7 8 .9 10
1va n
Ficure 8. Fraure 9.

VIII. Conclusion

In (85), we have obtained a rigorous and explicit solution for the parameter d. An approx-
imate solution of the above problem was first reported by J. W. Miles [7], who showed by
using impedance concepts developed in earlier papers and the variational principle of Schwinger’s
that the equivalent circuit elements can be related to the analogous change of cross section.
Thus by considering the bifurcation as a mere change of cross section, he obtained his equation
(53) which contained only the leading term of an infinite series. A comparison of the results
given in table 2 and the values given by Miles indicates, that for this problem, this type of
approximation is very poor. Attempts have been made to improve this method of approxi-

“mation by considering two terms of the infinite series and only slightly better results were
obtained. An explanation of these discrepancies between the exact results given here and
the approximations is to be given by Miles [19].

The author is deeply indebted to Professor Alfredo Baifios, Jr., for the guidance that he
has so graciously given throughout all phases of this research and to Professors Bafios and
David S. Saxon for the suggestion of this problem, as well as the benefit of their experience
in the Radiation Laboratory of Massachusetts Institute of Technology.
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