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An Analysis of the Effect of the Discontinuity 
Bifurcated Circular Guide Upon Plane 

Longitudinal Waves 1 

Louis 1. Bailin * 

The problem of t heoretically accoun ting for t he scattering of sound by a semi- infi nite 
circul a r t ube wit h a small dia meter inser ted axiaUy, as a measuring probe, in to a larger t ube 
of infini te length , is sol ved ill a r igorous a nd explicit manner when t he incident plane waves 
are r estri cted to t he lowest propagatin g mode. 

The investigat ion follows the met hods outlined b y J . Schwinger and consists in sol ving 
H elmholtz's eq uation subject to boundary condi t ions on t he acoustic ve locity poten ti al at 
r)g id wall s. " Ti th t he aid of Green 's theore m and the Green's fun ction for a poin t source in 
t he large guide, an in tegra l rep resentation of t he des ired velocity potent ial is obtained. The 
imposit ion of t he boundary condi t ion leads d irectly to a homogeneous in tegral eq uation of 
t he Wiener-H opf type, whi ch is solved by t ransform techniques. T he re ults of t his solut ion 
are shown to be r elated to a distance d, whi ch is t he length the inner guide mus t be extended 
to account for t he dist urbance occ urrin g in t h e immediate vicini ty of the d iscont inuity 
caused by t he excitat ion of hi gher mode fields. 

Another satisfactory method of repre ent ing th e e ffect of the discon tinui ty is by t he usc 
of eq ui valent circui ts, by means of which a discon t inui ty in a wave guide is replaced by a 
lumped parameter network in a set of t ransmission lines. The equi valent circui t for t his 
networ k is derived, and t he one esse ntia l circui t pa ra meter is related to d a nd to t he explicit 
solu t ion of t he integral eq uation . 

N umerical res ul ts for d are g iven as a fun ction of se veral differen t guide ratios and 
drivin g frequencies of t he inciden t wa ves. The resul ts are in considerable disagreemen t wi th 
approximation m ethods previously repor ted a nd in d icate t hat t hese met hods a re unsat is­
facto ry in t he present probl em. 

I. Introduction 

. 
In a 

The problem of theoretically accounting for the scattering of ound by a circular tube 
with a small diameter inser ted axially into a larger tube as a measuring probe (see fig. 1) i 
merely a specialization of a general class of problems dealing with the effects of obstacles on the 
propaga ting modes of bo th acoustic and electromagnetic waves in guides. It has been shown 
by J . Schwinger [1] 2, in a seri es of theoretical studies, that the special clas of boundary-value 

7.=0 

FIGURE 1. 

problems, where waves are incident upon a number of semi-infinite parallel metallic structures 
(structures with parallel axes) of zero thickness and perfect conductivity, can be formulated 
mathematically as an inhomogeneous integral equation of the Wiener-Hopf type [2]. Because 
of the discontinuity, t he imposition of the particular boundary condi tions that the field com­
ponents must satisfy leads directly to one or more in tregral equations of the type 

g(x) = L <D K (x - y)j(y) dy , x>O, 
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where j(x) is unknown while K(x) and g(x) are known functions. In the electromagnetic 
problemsj(x) is the surface current density on the obstacle while, in the acoustic case, it repre­
sents the discontinui ty in the fi eld variable on opposite sides of the obstacle. Generally g(x) 
is determin ed by the boundary conditions and the incident fields; it is zero in the present 
acoustic problem. The componen ts of the field vectors at all points in space can be readily 
related to the Fourier transform of j(x), which is obtained when t he above equation is solved 
by the transform techniques of the Wiener-Hopf method. 

Schwinger [1] also points out that if incident dominant mode waves fan upon an obstacle , 
the effect of the obstacle is to generate a far field of scattered or reflected lowest mode waves 
and a local field that is a result of the excitation of the attenuated higher modes. Although a 
complete description would include both fields in detail , as a practical guide problem, only 
the far fi eld effect on the propagating modes need be considered . Another satisfactory method 
of represen ting this effect is by the use of equivalent circuits, by means of which a discontinuity 
in a wave guide is replaced by a lumped parameter network in a set of transmission lines. 

It will be the purpose of this paper to apply the above methods to an infinite circular 
guide with a concentric semi-infinite circular bifurcating cylinder and to study the effect of 
such a discontinuity upon plane longitudinal waves by replacing it by an equivalent circuit . 
Bya considera tion of the equations that govern them, the unknown parameter in this network 
will be shown to reduce to one single essential parameter . This parameter will then be related 
to a distance d, which is the length the inner guide must be extended to account for the dis­
turbance occurring in the immediate vicinity of the discontinuity caused by the excitation of 
higher mode fields. By this extension , we are able to introduce a new reference plane, the 
"virtual plane of bifurcation." H ere the one essential parameter vanishes, and the equivalen t 
circuit reduces to three transmission lines in series as shown in figure 6. Thus all measure­
ments made at a distance will indicate that the bifurcation occurs in the virtual plane that is d 
units from the mouth of the inner guide, provided we assume that the discontinuity produces 
no disturbance. 

The solution to the problem will be obtained by solving H elmholtz 's equation subj ect to 
boundary conditions on the acoustic velocity poten tial at rigid walls. This is to be done with 
the aid of Green 's theorem and the Green's function for a point source in the large guide. 
From the in tegrals in Green's theorem, we obtain an integral representation of the desired 
velocity potential. This integral we shall solve in its Fourier integral form with the aid of the 
homogeneous integral equation that is obtained when boundary conditions on the inner guide 
are applied to the integral represen tation. The homogeneous equation is of the above-men­
tioned Wiener-Hopf type; since g(x) = 0, a solution by Fourier transforms is possible and 
yields an explicit expression for the transform of the unknown function. As the transform of 
the unknown appears in the Fourier integral form of the integral representation, the solution of 
the Wiener-Hopf equation permits a rigorous result for the velocity potential anywhere in all 
three regions (large guide, small guide, and coaxial guide). 

It is also noteworthy that an alternative integral equation formulation [3] of the problem 
can be given. This originates with the division of the space interior to the large guide into 
the two r egions l'> a, l'< a, where a is the radius of the smaller guide. Green 's theorem is then 
applied to each region with its appropriate Green 's function , and each velocity potential is 
then expressed for z<O in terms of its radial derivative on the surface r= a; here z is a distance 
along the guide with z=o at the mouth of the inner guide. The requirement of continuity 
for the velocity potential on crossing this surface provides an inhomogeneous integral equation 
of the Wiener-Hopf type for the de termination of the common radial derivative. 

Thus if we place the inner guide at z'2: 0, then, for z< O and large, the integral representa­
tion reduces to linear expressions involving transmission line parameters and, for z>O and large, 
it is given in terms of expressions from the W"iener-Hopf solution as well as a linear combination 
of transmission line parameters appropriate to the region considered. When the solutions to 
the right and left are then transformed back to the reference plane at the mouth of the inner 
gltide, we find that the discontinuity can be represented as a six terminal network and that the 
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one essential parameter and the distance d can be also expressed in terms of these Wiener-Hopf 
results. 

To simplify the problem to a considerable extent we are going to restrict the driving fre­
quency to permit only one mode plane wave propagation in all three regions. In order to insure 
this type of propagation in the different regions, we must carefully examine the eigenvalues 
that arise in the solution of Helmholtz's equation in these regions. For the present problem 
where the normal derivative of the velocity potential vanishes at rigid walls, such a study 
wm indicate that if we wish the propagating mode to be the lowest" axially symmetric" mode, 
we must have O< k< XI /b where Xl is the smallest zero of the Bessel function J 1 (x). Since 
7r< xl=3.832, ... , we may therefore select 7rlb as a working upper limit to gU3.rantee only 
princip3.l-mode propag3.tion in all r egions. 

II. Description of Physical Quantities 

In studying the effect of the discontinuity upon a plane acoustic wave in an infinite circular 
guide, radius b, which contain a concentric semi-infinite coaxial guide of neglig'ible thickness, 
radius a, we will assume that all the walls arc perfectly rigid. Accordingly, the radial com­
ponent of the particle velocity vanishes on the rigid walls. Thus, the calar velocity potential 
cp satisfi es the wave equation 

(1) 

where c is the velocity of sound propagation in free space, and the partial derivatives of cp with 
respect to the coordinates are the respective components of the velocity. A solution under the 
assumption of harmonic time dependence and complete angular symmetry about the z-axis 
can be given as 

where 
cp(r, Z ,t) = c/>(r, z)e - iket, 

27r 
k=­

A 

(2) 

and A= free space wavelength. Equation (1) then becomes the scalar Helmholtz equation 

(3) 

subject to the boundary condition 

oc/> {r= b for all z 
- = 0 at 
or r= a for z> O. 

(4) 

Once c/> is known, we can calculate the other important acoustic quantities from the classic 
relationships between the velocity potential, pressure, density of gas, and condensation. 

We now formulate the equation which expresses the field variable in terms of the dis­
continuity of c/> across the surface of the inner guide (surface current density in electromagnetic 
case). To do this, we are going to make use of Green's theorem to construct the Green's func­
tion for the structure at hand out of a more readily obtainable one, which in our problem is 
the one for the empty guide of radius b. Thus we are considering the inn("T guide as an obstacle 
embedded in the space of the other. The appropriate Green's function which will aid appreci­
ably in the solution of the differential equation in c/> satisfies a similar but inhomogeneous 
equation with the simpler boundary condition 

oG 
or = 0 at r= b for all z. (5) 
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Therefore, Green's function for the velocity potential, with no angular dependence, satisfies 
the equation 

0(1' - 1" ) 
(V2+ F';0(r,r', z-z') = - O(z-z ' ). r 

(6) 

Here o(x-x') is the Dirac delta function and is zero everywhere save at x-x', where it becomes 
infinite in such a fashion as to make 

I-"'", o(x - x')dx' = 1. 

~. -, 
6: I;' ---!~---- L I ---'5=---I+-----3-L ___ n _j 4 

i ! 2 "Fa --; I 
L-~----~----------~r-------------~~~~~ z 

z=o 
FIGU RE 2 . 

(7) 

In applying Green's theorem,!we take the region under consideration as that which IS 

enclosed by the dotted line in figure 2 and write 

(8) 

where n'=outward normal to the bounding surface. Although dV' represents an element of 
volume enclosed by the dotted line and dS' an element of surface area, the problem can be 
reduced to two dimensions by immediately integrating with respect to the angle, since there is 
complete circular symmetry. This integration merely brings in a factor of 211" on both sides of 
the above and removes the angle dependence from all subsequent equations. G here is an 
appropriate Green's function that satisfies (6) and (5). 

To evaluate (8), we impose boundary conditions (4) and (5) together with (3) and (6). 
Since the volume integral reduces to 1>(r,z) , Green's identity yields 

r (01) (0) , 
1>(r,z)= ) 8' G on,-1> on' dS, (9) 

where S' is determined by the six regions in figure 2 and n' measures distance along the out­
ward normal to the surface enclosed by dotted line. By writing 0- (1',1", z- z') as the asymp totic 
form of Green's function for z' large and negative and 0+(1',1", z-z') as the asymptotic form for 
z' large and positive, (9) becomes the sum of the six integrals, 

r = fa [ 0 + 01> -1> OO+J r'dr' 
J1 J o OZ' OZ' ,'=L 

r = f L [ _1>(a _ o,z ') ~~J ad z' ) 2 Jo ur r' =a 

r = (L - [ -1>(a+o,z') ~~J ad z', 
J 3 J o ur ,' =a 
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~------------------------------------------------------------------------ -

(minus in front since n' = -1"), 

i J'b[ o</J oO+J = 0 + --,-</J --, r'dr' 
4 a OZ OZ z' ~ L 

r =f L [0 O</J -</J oOl bd z' = O J5 -L' or' or'_ r' ~ b 

l fo b [ - o</J oO--J ' " = - 0 ~- </J ~ I' dl , 
6 0 v Z v Z z' ~- L' 

(10) 

(minus in front since n' = - z' ). 

Since it will be shown la ter tha t all integrals taken along transverse surface are independent 
of Lor L' as the case may be, we may now le t Land L' -? 00 and write (10) as 

!c ro (00) .. [!Ca ( o</J oG+) </J(r,z)= (</J+- q:,- ) ---; ad z ' + Jnn O+--,-¢ --, 
, 0 01 r' =a L ->ro 0 oz oz z' =L 

L'----too 

J'b( o¢ 00+) j'b( o</J oG- ) J -+- G+-,-¢ --, r'dr'- 0 - ,-¢ -, r'd !" 
a oz OZ z ' ~ L 0 OZ oz z'=- L' 

(11) 

The difference of the vclociLy poLenLial on the inner and ouLer surface of Lh e mall guide whi ch 
appears in Lhe first inLegral of (1] ) I S a consequence of Lbe oppositely directed normals at 
these smfaces. 

III. Derivation of the Appropriate Green's Function 

To obLain Lhe soluLion O(r,r', z) of (6) in the LoLal space interior to the larger g uide, we 
shall apply standard Fourier transform technique. Thus, we transform z out of (6) by de­
fining the Fouricr transform in z as 

(12) 

where we have written z in Lead of z-z' , since this binomial appears expli citly in the solution, 
r:§ now satisfics the equation 

( 0 2 +l.~+ 2) 01(1'1" s) = - 0(1' - 1"), 
01'2 l' or "{ " l' 

(13) 

where "(2= k2 - S2; 0' is subject to the boundary conditions : (1) that it be fini Le at the origin 
and (2) tha t its normal derivative vanish at I'= b. Thus, we must seek a soluLion of B essel's 
equation of order zero, since there is angular symmetry, which satisfies these boundary con­
ditions and is continuous at 1'=1". Following Comant-Hilbel' t [4], the soluLion of (13) can 
be given as 

~tJ(r, 1", n=~ ~~~~~~ [Jo("{I')Nl("{ b)-NoC'Yr)J J"{b )] 

(1(1',1" , n=~ ~:(~~~ [Jo("{I" )Nbb)-N o("{r') J b b)]. 

By the Mellin inversion, these then yield 0 in the form 

(1'> 1") } 

(r < I") 

-1 r iu+ ro J, ("{ I' ) 
O=:;U iu_ ro e+i,zd s Jb~ [Jo()\1'» Nbb)-No("{1' » J b b)] 
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where the integration contour is a straight line in the region of regularity of the Green's func­
tion transform and r >, r < symbolizes the larger and smaller of the coordinates r, r ' ,respectively. 

To determine the region where the integral in (15) converges, we must first determine 
the form of 0 and then apply it to (12) which defines ~(r). From our fundamental assulllPtion 
of only one mode propagation, we know that 

00 

O",Aetk IZI+ ~Bne-Kn!zl . (16) 
n=l 

It can be easily shown tha t for a G of this form, the integral in (12) has no region of regularity 
unless k, the propagation constant, has an arbitrarily small positive imaginary part (which is 
even tually set equal to zero) . This corresponds to a small attenuation of the sound waves 
traveling in the guide. Thus, if we let k= kl + iE and introduce the coordinates in the r-plane 
as r= ~+ i T} , (12); converges in the strip l'ql<E (1m k). Consequently , the inversion given 
in (15) can be performed, if (F is restricted to this same strip. 

-

z>o 

---,­
I 

/ 

/~ rz 
/' 

- z<o 

s- PLANE 

FIGl:RE 3. 

The integral in (15) lllay now be evaluated by computing the residues inside the semi­
circular contours pictured in figure 3. The poles of (15) which are given by the zeros of J 1('Yb) 
are all complex for E> O. Thus, if we let J 1('Ynb)=J 1(xn)= O for n=O,1,2,3, ... and rn= 
k 2 - 'Y;, compute th e residues inside r 1 and r 2, and then let E-70, we find that the solution of (6) 
becomes 

J ( r) J ( r' ) - I( Iz-z' l ieik lz -z' l 00 0 Xn b 0 .T n b en 

0 = kb 2 + L: r b2J 2( ) n=1 K n oX" 
(17) 

H ere we have insured only one mode propagation by restricting k to be less than xdb and 
defining the attenuation constants by K 7~= (xn/b)2-k2 where Ki = (xJ /b)2_P is t he smallest. 

The Green 's function which is appropriate to this problem must give a physical descrip­
t ion of waves incident upon and reflected from a discontinuity in a guide. Since (17) repre­
sents a wave traveling outward from a source, the appropriate Green's fun ction requires a 
superposition of (17) and its complex conj ugate which is the solution of (6) r epresenting a wave 
traveling inward to a sink. Thus if we take one half of the sum of (17) and its conjugate a lld 
simplify the r esults, we obtain 

, , sink lz -z' l 00 JO(Xni-) Jo(Xn ~)e-J(nlz-z ' l 
0 (1' , r ,z -z ) = - kb 2 + L: T b2J 2( ) , (18) 

n=l K n 0 Xn 

which has the desired physical properties. 

320 



IV. Evaluation of Integrals 

Once the appropriate Green 's function has been determined, we can pl"Oceed to evaluate 
t he integrals in (ll ). This is done in paragraphs (a) and (b), since tb e character of the results 
a nd the evaluation techniques used differ widel.v. Paragraph (a) is co ncerned with obtaining 
the far field contribution in terms of the transmission line parameters and paragraph (b) with 
t he setting up of the 'Wiener-Hopf integral eq ua tioll which is a result of the first integral in (11 ) . 

(a) In proceeding, let us temporarily ignore the first integral of (11) and examine tbe last 
three. From the explici t form of the Green's function , (18), the asymptotic forms of 0 can be 
g lven as 

sink Jz - z' J 0 +(1' 1" z - - ' )= 0 - (1" l' Z - z ')= - . " ,:; , , kb 2 (J 9) 

Thus, when we examine (11) for Land L ' sufficiently large so that the attenuated terms ma.v be 
considered negligible, only the forms in (19) need be used . It can be shown [5] that in te rms of 
the propagation of acous tic waves in transmission tubes, the velocity potential and pressure 
obey analogous equations to those for currents and voltages in a transmiss ion line. Thus, for 
z large,</> behaves a tbe current in a transmiss ion [inc which we will denote as l (z). Then, in 
te rms of the transmission line currents and voltages measured at z= O, we wri te 

</>(1' , z) ", I (z)= [1 cos k z-iVr sin k z], (30) 

where 

Y=~=-.:!-
z pc 

is the characteris tic admittance of the line and p is the density of the a ir or the ga in tbe tube 

Using (20) for each of the thre,e regions under con ideration, we note that as z~ - co 

while for z~ co and for 1' < a 

</> (1', z )", 13(z)= [13 cos k z- i V 3 Y 3 sin 1c z ], 

and for z~ co and for b> l' > a 

Thus, the last in tegral of (ll ) beco mes 

lim [_fb(O- o~, (r' ,z ')- </> 00 - ) , 1" dT' J = I I (z ), 
L',_", 0 0 ,:; oz z ' =- L 2 

Ince 

o</> 0 -- sin 1c (z-z ') 00- 1 
oZ;= k (- 11 sin k z ' + i V 1Y1 cos k z' ), - - kb 2 ' oz' = 62 co 1c (z-z '). 

Likewise , 

J. [ f'U(O+ o¢ 00 +) 'd'J (a 2
) 13(z) un - ,-¢--, l' r = --:i --

L -.", • 0 o z oz z'= L b 2 
and 

[' [J'b(O ' o¢ 00+) ,'d .'J_(b 2 - a2
) J2(3) 1m r _ _ ¢ - 1 1 - -- --

L~'" U oz' oz' 2' = L b2 2 
s lnce 

o¢ 0 + sin k (z'- z) 00+ 
"' z ,= k (- 13 sinkz- iV3 Y 3 cos k z' ), = - kb? , 
U - o z' 

cosk(z ' -z) 
b2 • 
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(22) 

(23) 

(24) 

(25) 

(26) 



Thus (11) becomes 

(27) 

where 
(28) 

Since (28) is independent of Land L' we, therefore, note that all the integrals taken along 
transverse surfaces yield propagating terms which depend only on z . Eq nation (28) represents 
the velocity potential at all points in the large guide in terms of the potentials of t h e three 
far fields and the potential of the unknown scattered field which is given by the integral. 

(b) Since H( z) is as yet an unknown fun ction, (27), the equation we referred to in our 
introduction as the integral r epresentation of the desir ed velocity potential, is an inhomo­
geneous integral equation. When we impose t he acoustic boundary condition 

for z ~ 0, 

this equation becomes readily soluble by transform methods since it is homogeneous and of 
the convolution type. 

Thus, if we call 

for z<O, 

and since the propagating terms drop ~mt in the differentiation, we have from (27) 

0 = f-"'", K (Z-Z /)H(Z/)d z l, 

v (z )= f-"'", K (Z-Z I)H(ZI)d z l, 

wh ere the range of integration has been extended to - ex> , since, from (28) 

{
O, 

H (z)= 
H( z), z ~O. 

(29) 

Equation (29) is a homogeneous in tegral equation that resembles 'iViener-Hopf type, smce 
the dependence of G and therefore th e kernel, 

K(Z _ Z /) =[~. {~~ (r',r, Z-Z l)} ] , 
u l u l r = T' = a 

upon z is of th e form (Z-Z'). 

V. Derivation of the Lumped Parameter Circuit and the One Essential Parameter 

From equation (27) , we can now derive the circuit relation of a lumped parameter net­
work with which t he discontinuit.y can be replaced, if we concern ourselves with fields far 
enough away from the mouth of the inner guide so that all attenuated modes have essentially 
vanished . To investigate this far field r esult on the left as z~- ex> , we let cp(r, z) be given by 
the transmission line expression (21) and define the ch aracteristic admittances as inversely 
proportional to th e area: 
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Thus, as we shall see later, the integral in (27) vanishes for z<O and large and we are left 
with 

which becomes 
Z 21 2(z)+ Z 31 3(Z ) - Z I1 1(z )= O. 

Now, if we rewrite the above in terms of the 1's and V's at z= O, we have 

and since the sine and cosine are linearly independent functions, (3 1) becomes 

and 

These two, together wi th 

(31 ) 

(32) 

(33) 

(34) 

a r esult of (30), arc the defining eq uations fo[, a six te rminal lumped parameter circuit. Thus 
,ye have three relationships between the circui t parameters which were deduced by examinin g 
the effect on the velocity poten tial as Z---7- ro and which represent the far field results to the 
left. We will presently determine the far fi eld results to the right and then by expressing 
them in terms of the curren t and voltages at the zero reference plane, we will find tha t the 
extrapola ted results coming from the left and righ t can be represented by same six terminal 
impedance network. 

In general , a six terminal network contains nine impedance parameter representing t he 
Tatios of voltages to CUl'I'en ts for all possible combinations of the three independent voltages 
and currents. However , if we mak:e usc of the reciprocity t heorem (sec Schwinger [1] or 
E verett [6]) of electrical circuit theory the number of impedance parameters is red uced to six. 
From the above three equations, we further reduce this number to three, which we will call the 
suscep tances, B I , B2, and B a. Also, from (34) , we notice that they must be proportional to 
Y 1 , Y z, and Y 3, respect ively. If this circuit is to satisfy the above equations, it must have the 
following delta form (fi g. 4) with nondissipative pure reactive elements and with the power 
flow arbitrarily chosen to flow into the junction from both sides. 

II 
I Z 

1 
Vz 

VI FIGURE; 4. 

1 V3 

13 

Since the circuit parameters are independent of the impressed currents and voltages, we 
can now obtain independent relationships between the B's as follows: 

1. Open circuit lines 2 and 3. Thus 12= 13=0 and from (32), 11= 0. By looking into 
line 1, we see BJ in parallel with the series combination of B2 and B3 and we have 

{ i BI+ 1 1 1 J=o or [~+~+~J= o . 
--:---B + -;-B BJ B2 B3 
~ 2 ~ 3 

(35) 
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2. If we terminate lines 2 and 3 by th eir characteristic impedance, i t can be easily shown 
that the impedance seen from line 1 is th e characteristic impedance 

(3 6) 

With th e independent derivation of these last two equations, we see that the number of 
independen t parameters l S now one. Thus from the proportionality r equired by (34), we let 

B1= b1 Y 1, B2 = b2 Y 2, and B3= b3 Y 3• 

Then from (36), we obtain 
1 

(3 7) 

and (3 5) b ecomes 

(38) 

By solving (37), (38), and (34) simultaneously for the three unknown parameters, we find that 

b1= - b2=- b3 = B (39) 
and figure 4 reduces to figure 5. 

II 

1 v, 

1 v. 

F I GU R E 5. 

Thus we have shown that wi th r espect to the far field r flsul ts on the left, th e discontinui ty 
can be replaced by the above network. 1'0 determine the effect on th e righ t as z----'7 + (X) , we 
must first evaluate the integral in (27). A straigh t forward circui t analysis of figure 5 shows 
t hat B is related to th e circui t parameters by 

(40) 

W e h ave now shown that the circui t in figure 5 can be used to represen t the discon t inuity, 
when the param eter s are m easured from the z= O r eference plane which is at th e mou th of th e 
inner guide . Since, th ere is only one essen tial circuit parameter which h as a known varia tion 
with drivin g frequency and the distance to the referen ce, it is possible to find a reference plan e 
in which th e equivalent circui t susceptances vanish and, consequ ently, the equivalen t circui t 
reduces to three transmission lines in series as shown in figure 6. 

This n ew r efer ence plane is a "virtual plane of bifurcation", inasmuch as all m easurem en ts 
made a t a distance will indicate that the bifurcation OCC UI'S in this plane, provided we n eglect 
the effect of th e discon tinui ty. Par ticularly, if one of the tubes is in troduced in order to take 
m easurem en ts, th e quan tities will be m easured in th e v irtual plane and no t at the mouth of 
th e tube. 

T o find this v irtual plane which is a t z= - d, or a distance d " ahead" of the a ctual plan e 
of bifurcation , we follow the method outlined by Miles [7] and let 1) o= kd and transform th e 
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z: -d. 

FIG URE 6. 

impedance seen by the i-th tube (i = 1,2,3,), ZTi (plane z= O), to Z'Ti (plane z= - d). This 
transformation is effected by the use of 

ZTi .. 

± T; cos 1] +~ sm 1] 

(Z,) , 
± cos 1] + i ~ii sin 1] 

(41) 

but care must be Laken to selecL the proper signs (bo th plus if th e direcLion of th e power flow 
obtained by following V i th en 1 i is in the positive z direction) and to use a negative 1] since 
th e reference plane is being moved to Z = - d. Thus, if we load terminals 2 and 3 (fig. 5) with 
arbitrary admittances Y 1'2 and Y 1'3' it can be easily shown tha t lin e 1 sees 

(42) 

Thus if 

(43) 

th en from (42) 

(44) 

Now, if we transform the above 7.1' j to Z"l' i un til the circuit can be given as the sen es com­
bination (fig. 6), nnmely, 

(45) 

we find tha t 
B = tan 1]. 

VI. Fourier Transform Solution of the Integral Equation 

The Fourier transform solution of (29) will be under taken as follows: In part (a) of th e 
present section, the equation linking the transforms of the respective functions V, H, and K 
and the common region of regularity of these transforms will be derived. The equation follows 
as a direct consequence of the convolution theorem. The regions of analyticity of the trans­
forms are obtained from the asymptotic forms of the functions themselves. Part (b) will 
concern itself wi th the decomposition of the transform of the k ernel, K , into the quotient of 
two fun ctions which will convert the equation of the transforms into a single integral function. 
This integral function will, in part (c), be shown to be constan t since it satisfies the conditions 
of the Liouville theorem. Thus from (70), we will be able to find an expression for the trans­
form of th e heretofore unknown function H(z) , and thereby, in part Cd), we will obtain c/>(r, z) 
from the inversion in tegral. 
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(a) The solution of the extended Wiener:Hopf integral equation (29) by Fourier transform 
m ethods can be facilitated by th e theorem of convolution which permits us to wri te the trans­
form of the product of two functions as the product of the transforms. Hence, th e transform 
of (29) becomes 

(4 7) 
where 

1(S) = f 00 e -inz -Z ' ) [~ (O~)J d(z - z' ) =[~ (~ ~)J 
- 00 01 01 r ~r'~ a or 01 r~r ' =a 

(48) 

and Y"t'(S) and '~Cr) denote the Fourier transforms of the respective functions, H (z) and V(z) 

in the form f(n = ,Looj(x)e- i,Xdx. For the transform equation (47) to have significance, there 

must be a common domain of analyticity of the transforms in th e s-plane . To verify the 
existence and location of this domain, we examine each transform with the aid of the growth 
order of their cOl'l'esponding functions V (z ), H (z) and K (z). 

Previously, we showed that 0'Cr) exists only if k has an imaginary part. However, offen 
involves differen tiation with respect to rand r' which eliminates the propagating term and, 
conseq uently its region of regularity is I 'YJ I < K[. 

The quantity which we have called H (z), given explicitly by 

l </> (r ,z ) r=a+o- </>(r,z) r=a-ola 

has the same asymptotic ~orm, for z-..,. (Xl , as th e velocity potential on the inner and ou tor sur­
faces of the smaller guide and, therefore, can be given as H(z) rovAeikZ+ B e-ikZ. From this, we 
infer th at Y"t'Cr) has only simple poles on th e real axis at s= ±k, and is regular in th e lower half 
plane 'YJ < O, since 

(4 9) 

is bounded in this region. 

If we study the defining equation for V(z), (29), by inserting the explicit expression for 
the asymptotic beh avior of the kernel, namely K (z-z ' )rove-J(llz-z'l, we see that the real part 
of V(z) ", eJ(lZ as Z -'Jo - (Xl, since H (z) is the entire function (traveling wave) given above. 

Thus 

(5 0) 

and exists for 'YJ > -Kl' 

7' - - - , - - - - - - K, - - - - - - - - - -

:...-- - '--- --- -K, ---

'S - PLANE 
;('(S ) 

FIG U RE 7. 
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Collecting results, we find (ftg. 7) that tbc strip - Kl < 7J < 0 is a common r egion of r egu­
larity for th e transform equation (47). It will now be convenient to designate th c l'.:;g ion 
7J>-Kl and 71 < 0 as th e upper and lower half planes rcspectively . 

(b) In order to solve th e transform equation (47), we now seek to reprcsen t X(O as a 
quotient of functions K _(t) and K +m such that a simple transposition will mu,ke cach side of 
the equation regular and not zero in separate half planes with a common strip . By wriLing (47) 
as 

(5 1) 

we will see that each side of th e equation is the analytic continuation of th e other amI there­
fore will repTesent the same function . Together they will then define an analytic function 
throughout the finite t-plane. If, in addition, this analytic integral function turns out to 
b e bounded in the whole plane, th en , a a consequence of the Liouville th eorem [8], it must 
b e equal to a constant and the transformsJlt'm and 7/(t ) are simply related to K + and K _. 

Although there are general m ethods for th e decomposition of th e kernel which are both 
rigorou and forceful and have been successfully [3 , 9] used, in our present discus ionllowever, 
a simpler and more direct approach will uffice as it ha in other problems [10]. Thus we 
consider 

Jtm=[~r {o~, q;m} J, _,' - a =~ 1'2 [~:i~~~J [Jba)N1(l' b)- J b b)N1(l'a)] (5 2) 

and write each factor as an infini te product of the form (a2- b2) which we wi ll simply spli t 
into term which have simple zeros in one half planc 01' th e other. 

Thus to convert (52) to infinite products, we start by letting 

From Whittaker and Watson [11], this may also b e written as 

where I'n= bn:.a +o(~) are roo ts of j(l'n)= O, provided that 

(1) j (l') is an even function 

(2) j(O)=O 

(3) 1'(0)= 0. 

(53) 

(54) 

A careful analysis of these r estrictions will show that they are satisfied , if c=(b2- a2)j(-/rab ). 
Thus, we can now write 

(55) 

±i\(b-a) 

where e n,.. are inserted as absolute convergcnce factors, without which the infinite products 
are only conditionally convergent [12]. Similarly, if we expand 

(56) 

327 



where J ,,(xn) = O, then from (56) 

J 1('Y a)= a'Y IT (1- ('Y~)2) 
2 1 X n 

and 

Hence, we may have 

(c) Now, if we define, as shown in (58), 

(57) 

(59) 

where K - U") is regular and not zero in the lower half place, 11 < 0, and K +(t) is regular and not 
zero in the upper half plane, l1> -el> - Kl, our transform equation (47) becomes (51) which 
satisfies the requirements of the Liouville theorem because nf"(r)K+(.I) is regular for 11 > -e1, and 
X(t) K _(r) is regular for 11 < 0 and the strip 0> 11 > -e1> K1 preserves the continuity. 

We must now study the growth order of both members of (5 1) as I r l--c'> ex>. Thus for 
r (n and fen, we examine the transforms 

(60) 

(61) 

The behavior of V(z)=[~~ (1', z)] r ~a, as z--c'> O, can be obtained by examining cp in the region of 

the sharp edge (zero thickness). In this region, where the values of z are very much smaller 
than a wave length, cp satisfies Laplace's equation which can be solved by static methods. 
This is done by transforming the potential field about the sharp edge to the uniform region in 
the upper half plane with the aid of Schwarz-Christoffel (1 3] transformation, W 2= 2z. From 
this transformation, Till "-' Zl/2 and the field which corresponds to V (z) as Z--c'>O at the sharp edge 
is id W /d z I "-'2 Z- 1/2. Therefore, V( z) which is related to the component of the particle velocity 
along the cylindrical radius at the inner pipe has an integrable singularity of the form z - 1/2 
and 

(62) 
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Also from the above tran sformation , we see that. H (z ) which behaves as the velocity poten t ial 
itself can be given by H ( Z)"-' ZI/2 as z~o and 

(63) 

Thus, from a consideration of th e physical na ture of V and H , we find that .7t' and f/ behave 
in a purely algebraic manner as I t I~ OJ . Therefore, the acceptable r esults of the decomposi­
tion of the kern el must behave in a similar fashion to permit th e integral function to b e 
bounded. 

To properly decompose the kernel, we choose 

'" [~ Pb 2 i tbJ +il b n 1- - 2- - - e n.- ex(n 
1 Xn X n (63) 

wh ere again 

+( ila ) +( ill)) il(b-a) 
e ".. e " .. and e +-----,,;:--, , 

a re inser ted in each case as absolu te convergence factors and the arbiLral'Y factor eX (n is put 
in to r emove the exponential growth and thereby insuring the algebra ic b ehavior of th e 
K's by the proper choice of xCt). This choi ce will be determined from the a ymp totic form 
ofK_Ct) [orK+Ct)] as I t l~ ro for 1] < 0. 

W e then find that K + h as an infini te number of poles on the n egativ e imagina ry axis for 

(64) 

and zeros for 1] ~ - Kl and is th erefore regular and no t zero in the upper h alf plane 1] > -el' 

By removing (63) from (58) , we have left 

(65) 

which is regular and no t zero in the lower half plane, 1] < 0, and has only simple poles and 
zeros in the upper half plane 1] ~ 0. W e note, howev er, that K _ and K + have a common 
r egion which is at least as large as el ' 

For the purpose of evaluating the asymptotic behaviors of K _ and K + we may write 
'Yn "-'n7rjCb- a) and, since Schwinger [1] proved that the infinite products in (65) mLlst be inde­
penden t of k as I t l~ ro , the square roo ts behave essentially as unity. Therefore, as 1 \ I~ ro , 
we may use th e W eirstrass [14] definit ion of the r function and the Sterling asymp totic for­
mula [15] for r (t) to wri te, as a typical example, 

ro, 1] < 0 , (66) 

where x = i\(b- a) j7r and C = Euler 's constan t . Similarly, 

(67) 
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tra 
'where Y=-· 

n7r 

Thus as Ir l-3>O, we have 

_(k2- rZ) (b Z- a2) b (~) -JUfb e X <I) 

IL (r) - 2 b2 (ira) (irCb- a) ) 
a -,,- -v2ira(b- a) -,,- -J2ir(b- a) 

which approaches (ir)3/2, provides that 

x(r) = -ir [b In b- alna - (b- a)ln(b-a)] 
7r 

t.o insure the algebraic behavior of both K _ and K +. Likewise, we may show that 

(68) 

(69) 

Collecting r esults we see that 1/ W K + W is bounded as 1 r 1-3> co for 71 > - eland ..no W 
K _(r) is bounded as Ir l-3> co for 71 < 0. Thus, we have shown that both sides of (51) defin e an 
analytic function which is regular everywher e including a common strip of width el and is 
bounded at infinity. Therefore, by the statement of the Liouville theorem, (51) becomes 

(70) 

If we wer e interested in the difference of t.he velocity poten tial on either side of the inner 
pipe, we could now obtain it by evaluating 

1 r Ceirz d z 
27riJBr IL(r) , 

where BT is an infinite contour within the strip of regularity 171 1 < K:. (d) Weare now III a 
position to evaluate the Fourier integral form of (27), which we may write as 

and where we recull r;g exists in the strip - K 1< '7 < K 1 and £(r) exists for 71 < 0. 
the path of integration must be taken in the region 0> '7 >-K1• 

If we concentrate for the moment on 1'< 1" , we have from (14) 

and 

Therefor E' , if we form the ratio 

then 

oG 
01" 

J kyT) K _(r) 
'YJk'fa) K +W · 

3~O 

(71) 

Therefore 

(72) 

(73) 

(74) 

(75) 



ow the integral in (71) becomes 

(76) 

which has simple poles at s=±k ('Y = O) and S=±iK". 
The contributions at the poles on th e imaginary axis vanish as Izl~ ex:> since Lhey co ntain 
e-Kni zi . For z < O, we closed the path of integration by an infinite contour in Lh e lower hal f 
plane. Since the poles enclosed are all on the imaginary axis, the con tribution to the inLegral 
vanish es as z~- ex:> and tb e result claimed in section V is established . For z> O and large , 
w e use a contour in the upper half plane which encloses s = ± lc and (71) becomes 

(77) 

since only the residu es at the poles on the real axis contribute as z~ ro . Likewise, if we con­
sider r> r', it can easily be verified LhaL th e result is the same as (77) wiLh a different constant 
D . 

VII. Expression "d" in Terms of Infinite Series 

In (77) , we have eval uated Lhe integral rep resenta tion (27 ) from its Fourier In teg ral 
form (71 ) and we can now obtain th e far J-ields to th e right. For now, as z-> ro , ¢ (r, z)~13(z) 
in r egion 3 and I 2(z ) in r egion 2. In terms of the parameters at z= O, we h ave similar r es ul L 
in regions 2 or 3 with difrer ent constants A namely 

I k ·Y 17 . lc A [ eikZ ~]+cos le z [11+~2 I 2+Z3 I 3J 
2.3 CO S Z- t 2.3 2.3 S111 z= 2.3 K +(- lc ) K +(Ic) 2 Z I ZI 

- . sin Ic z [17 Y + 17 Y - 17 Yj t 2 33 22 1 I· (7 ) 

If we, again, eq uate coeffi cients of sin and cos, we have Lhe far field rc nlLs ex trapolated from 
th e righ L as 

(79) 

and 

(8 0) 

R ecalling that the results from th e left gave the cir cuit equations (32) and (33) , we apply 
them to the above and find that 

(8 1) 

and 

(8 2) 

By simply dividing these two equations, we see from (40), thn,t th e left side is merely the one 
essent ial circuit parameter b discussed in section V and h ence with (46 ), we have 

B . [K+(le)-K +(- k)] ~ 
= t K +(k )+ K +(- k) = tan (led), (83} 
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where the reciprocal of K +(k) is 

1 
K +(k) 

'" {~ Pa2 i ka} :,k; '" {~----p i k} i k~;a) IT 1-- 2-- - e IT 1- 2 - - e 
I xn Xn 1 'Y n 'Y n (84) 

By writing the bracketed terms in (84) as exponentials, for these are of the form cos O-i sin 0, 
we see that (83) becomes 

7rd [1 (1)1 ( J 1~[. _1( 1/ 7r ) (1/) 1 ~[ . _1(1/ 7r ) (1/(a- l))J 1~[. 1(1/71") (1/)J -b = n a+ - - 1 n a - I) - - L..; sm - - - - - L..J sm - - + - .L.J sm- - - - , 
a 1/1I ~ 1 aXn an 1/ 11=1 aYn an 1/ 1I~1 Xn n 

where Yn are the roots of 
(86) 

and Xn are roots of J1 (xn)= 0. For ease in computation, we have made the following parameter 

Let a= b/a. 

changes: 
l. 
2. 
3. 

From our initial restriction on the driving wavelength , let k = 1/7r!b, where 0':::; 1/':::; l. 
Let ('Yna )=y" . 

Since\ve now have an analytic expression for d, it is of considerable interest to determine 
d as a function of frequency and the radii of the tubes. To evaluate d numerically, mustwe 
find some way to get an accumte result for the above infinite series which is of the form 

'" '" L: {[sin- I(Xn ) - Y n ]} = L: { [sin - I(Xn)-(X n)+ (Xn - Y,.) } . (8 7) 
11=1 n = 1 

The first two terms can be written as 

N 
L: [sin- 1(X")-X,,1+ R,,, (88) 
11=1 

where N is some arbitrary finite number. Thus by calculating N simple values and bounding 
the remainder, we will be able to evaluate these sums Writing sin- 1 as an infinite series, 

we have a series which converges rapidly for X ,,< 1. 
If we now define UN +1 as 

(90) 

we see that the numerator is the largest term in the remainder and that UN +1 approaches 1/6 
as N grows large. Now from the series expansion , (89), it can be easily verified that 

sin -I (XN +1) - X N+1 > sin - I (XN+1) - X N +1 
(XN +1) 3 - (X N +1)3 ' 

(91 ) 

for i = l , 2, 3 , since XN+1;:::XN-I-i' 
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Thus from (90) and (91) 

(92 ) 

which means t hat 

(93) 

Also from t he series, we have, by dropping high er order terms, 

(94) 

which together with (93) bounds R" as 

(95) 

Thus, we can easily determine a n umerical va.lue for Rn. The remaining sums of (87) may be 
easily obtained since lim (X ,,) = Y" . 

n --->co 

The infini te sums in (85) were evalu ated by the computation laboratory of the Instit ute 
for Numerical Analysis, National Bureau of Standards, for 71 , th e frequency parameter , assuming 
the valu es of 1, .8, .6, .4, .2 and O. Altho ugh 71 = 0 has no physical meaning in the present 
aco ustic problem, for completeness the matl),cmatical lim 7rd/b was evaluated to show that d 

~--->O 

a smooth and continuo li S function of 71 for 71 = O. Thus since 

1· . - 1 71 _ 1 
1m SIn 0--0- ' 
~--->O 

equation (85) becomes 

7rd [ (1) ] co [7r 7r 7r ] -= ln a+ - - 1 In (a- I ) -~ - - - +-
b a n=1 ax" x" ay" 

(97) 

as 71 -70. The values of a used were 1.05, 1.2, 1.5, 2, 3, 5, and 10, whil e a = 1.0 a nd 00 woule! 
mean that there is no inner guide; consequ ently d = O. The computat ions were int enclE'd to 
be accurate to four decimal places, but wi t h the methods outlined great.or accuracy co uld have 
been obtained. The eigenvaluE's Yn (table 1) for small n were obtained from Muskat et a l 
[16] with corrections given by :Miller [17] and for large n were compu tcd with the aid of a 
formula give by McMahon [18]. The r esults of (85) arc exhibited in tables 1 and 2 and in 
figures 7 and 8. 

TABLE 1 

~ 
-

y. 

1_1.5_ 
I 

T. 

1.05 1.2 2.0 3.0 5. 0 10. 0 

- ---- .. ----
1 62.837 15. 728 6.3218 3. 1966 I. 6356 0.84715 0.39409 O. 8J I 7 
2 125.666 3 1.426 12. 586 6.3 124 3. 1789 L 6111 . 73306 7. 0 156 
3 188. 497 47. 131 18. 863 9.4446 4.7381 2. 3853 1. 9748 10. 1735 
4 251. 329 62.837 25. 143 12.581 6.3028 3. 1642 1.4189 13.324 
5 314.160 78. 544 31.424 15. 720 7. 8696 3.9454 1. 7643 16. 471 
6 376. 922 94. 251 37. 706 18.860 9.4375 4. 7279 2. 11 07 19. 616 
7 439.824 109. 958 43.988 21. 999 11. 007 5.5112 2.4578 22. 760 
8 125.666 50. 270 25. 141 12.576 6.2950 2.8052 25. 904 

19 I 56. 553 28. 281 14.146 7.0791 3. 1529 29.047 
62.836 3 1. 422 15. 716 7.8635 3.50 10 32. 190 

HI 
34.563 17. 286 8.6480 3. E492 35. ;132 

12 9. 4327 4. 1975 08. 475 
13 10. 21 7 4.5459 41.617 
14 4.8944 44 .. n9 
15 5.2430 47.902 
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TABL E 2 

[ ~d ] 

.7 

.6 

.5 

.4 

~ 
•. 3 

.2 

I 
~ I "-" 

524 
333 
667 

0. 9 
.8 
. 6 
. 0 
.3 
. 2 
. 1 

' 000 
333 
000 
000 

/, 

f 

1.0 

0. 2061 
. 4802 
. 6527 
. 6682 
.5530 
. 3731 
. 1948 

Tt =I.O v: 
~ ~ 
V 

. 8 . 6 

0. 1902 0. 1828 
. 4384 . 41 71 
. 5936 .5620 
. 6069 . 5740 
.5036 . 4700 
. 3428 .3297 
. 1844 . 1795 

/ 
,.;-- R 1'\= .6 

\ 

~\ Y ~ N 
1\'0 ~ ~ 

.~ 
~ 

r ;) .1 
t \ 

o 
o . 2 . 3 .4 . 5 .6 .7 .S .9 1.0 
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. 1767 . li52 . 1751 10. 0 
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VIII. Conclusion 

In (85) , we have obtained a rigorous and explicit solution for the par ameter cZ . An approx­
imate solution of the above problem was first r epor ted by J . W. Miles [7], who showed by 
using impedan ce concepts developed in earlier papers and the variation al principle of Schwinger 's 
that the equivalen t circui t elements can be related to the analogous change of cross section . 
Thus by considering the bifurcation as a mere change of cross section, he obtained his equation 
(53) which contained only the leading term of an infinite series. A comparison of the results 
given in table 2 and the values given by Miles indicates, that for this problem, this type of 
approximation is very poor. Attempts have been made to improve this method of approxi-

. mation by considering two terms of the infini te series and only sligh tly better results were 
obtained. An explanation of these discrepancies between the exact results given her e and 
the approximations is to be given by ~!{iles [1 9j. 

The author is deeply indebted to Professor Alfredo Banos, Jr., for the guidance that he 
has so graciously given throughout all phases of this r esearch and to Professors Banos and 
David S. Saxon for the suggestion of this problem, as well as the ben efi t of their experience 
in the Radiation Laboratory of M assachusetts Insti tute of T echnology . 
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