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Separation of Close Eigenvalues af a Real Symmetric

Matrix'
J. B. Rosser, C. Lanczos, M. R. Hestenes, and W. Karush

In order to test two methods, one proposed by C. Lanczos and the other by M. R.
Hestenes and W. Karush, for the numerical calculation of eigenvalues of symmetrié matrices,

an 8 by 8 matrix is constructed that has several sets of eigenvalues close together.

The

application of the two methods to this test matrix is deseribed, and in addition, a third method

for dealing with such problems is proposed.

In recent publications ? * two methods have been
proposed for finding eigenvalues of real symmetric
matrices. In order to make a numerical comparison
between the methods, an 8 by 8 matrix was especially
designed (see appendix 1) and the two methods were
used independently to get all eight eigenvalues and
eigenvectors of the matrix. In order that the test
be a severe one, the matrix was designed with several
sets of eigenvalues very close together. In order to
separate these eigenvalues, special modifications of
the two methods were developed for the separation
of close eigenvalues (see appendixes 2 and 3).

The method of Lanczos (see footnote 2 and ap-
pendix 2) seems best adapted for use by a hand com-
puter using a desk computing machine. In the
present case, the computation according to Lanczos’
method was carried out by a hand computer, and
required of the order of 100 hours computing time.

The method of Hestenes and Karush (see footnote
3 and appendix 3) seems best adapted for use by
machine computation. In the present case, the
computation according to the method of Hestenes
and Karush was carried out on an IBM Card-Pro-
gramed Electronic Calculator. Considerable time
was spent by Karush in becoming familiar with the
machine, so that it is difficult to say just how long
the computation would require of an experienced
operator. Probably 3 or 4 days would be ample.

During and since the computations described
above, there has been much discussion of the problem
of separating close eigenvalues of a real symmetric
matrix. Besides the methods offered in appendices 2
and 3, we wish to offer the following modifications of
the familiar power method.

First let us consider the case where only the
numerically largest eigenvalue, \;, and the corre-
sponding eigenvector, v, of a matrix A are desired.
We may assume \; to be positive, since otherwise we
treat —A.

Suppose Ay, , N, are the eigenvalues of A
in decreasing order, and o, . , v, are the corre-
sponding eigenvectors. If no other eigenvalue is near
N\, one can find N\, and »; by the standard power
method. In order to be able to compare the modi-

1 The preparation of this paper was sponsored (in part) by the Office of Naval
Research.

2 C. Lanczos, An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators, J. Research N'BS 45, 255 (1950) RP2133.

3 M. R. Hestenes and W. Karush, A method of gradients for the calculation of
the characteristic roots and vectors of a real symmetric matrix, J. Research NBS
47, 45 (1951) RP2227.

fications for the case where another eigenvalue is
near \;, we review the power method.

First, one chooses a vector z.  This has a represen-
tation

z=c101+cCva+ . .. +cnl'ny

but as yet we do not know the ¢’s or »’s. By itera-
tions of the step of operating on a vector with a
matrix, we form Az, A%z, Adz, . The represen-
tation of A¥z is

A¥z=c NV v+ Ny v+ . . e NV 0,

If ¢,#0 (which is the case except in very extra-
ordinary circumstances), then for sufficiently large
N, ¢\ will be much greater than e\ (i >1),
since N, >|N;| (i>>1). Thus AYz is nearly a multiple
of ». By normalizing in the desired fashion, an
approximation (of any desired degree of accuracy)
for », is obtained, from which an approximation to
A\ can be obtained.

In case ;=X\, any linear combination of », and »,
will serve perfectly well as an eigenvector corre-
sponding to \;. The power method just outlined
will yield a linear combination of »; and #, in such a
case, and so no difficulty arises.

Suppose X\, is nearly as great as \;, but all other N’s
are appreciably smaller. Then one will have to take
N excessively large before ¢\ is small compared to
eNY. Two possible procedures for curtailing the
labor are as follows.

In the first, we take NV large enough so that ¢\ is
small compared to ¢, or e\ for ¢>2. Then
approximately,

AN.chl)\‘lv U]*{‘CQ}\;{ Va.
Choose two vectors y and z. Put
5 N++j-—-1,
a2j4(yrA s I')

a3 =(2, AV 1z),

where (u,») denotes the inner product of the vectors
w and ». Then N\, and \, are the two roots of the
quadratic equation

1 @21 a3
A A 22 @3 =0. (1)
A Qa3 A 33
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To prove this, write
=R )
b=(z,ciNY v1)
c=(Y,¢2N3 )
d=(2,c\Y vy).

Then

1 T el |l 1 1 1 0 0
A liigs awl: N N No| X |0 a bl-
A, g3 33 A2 A A\ 0 C d
Then clearly the determinant is zero whenever

A=DX\, Or A=0X\,, so that \; and \; are roots of (1).

In exceptional cases, the coefficients of (1) are all
zero. This can happen if \;=X\,, or ¢,=0, or ¢;,=0,
orin case the projections of 4 and z are not independ-
ent on the subspace spanned by » and », (this 1s the
case where

a b
c d

o

and can generally be treated by merely choosing a
different y and z).

The case where A\, \s, and s are all nearly equal
but the remaining N's are small can be handled
similarly, and leads to a third-degree equation defined
by a fourth-order determinant.

Returning to the case where N\, and \; are nearly
equal, and other N’s are smaller, an alternative pro-
cedure makes use of Chebyshev polynomials. Sup-
pose that a sufficiently high value of N has been
used in order to establish that there are one or more
roots in the vicinity of some value u (which is ap-
proximately \;, and hence also approximately X\,
since N\; and \; are nearly equal), and that the other
roots are appreciably less than g in absolute value.
In particular, —p 1s a lower bound for the roots.
Now instead of taking powers of A, we take powers
of a polynomial in A, noting that

(P(AY z=c:(PO\)Y o1+ . . . Fea(PO))Y .

If now we choose P(\) so that P(\) and P(\) are
near 1, and P(\) has a large slope in the neighbor-
hood of A, and X\;, then P(X;) and P(\;) will have a
ratio appreciably less than \;/\;, and hence powers
of P(A) will eliminate », relative to »; faster than
powers of A.

We first apply A enough times to eliminate all »’s
except o, and v, and then apply P(A). In order to
insure that P (A) does not bring back the »’s already
eliminated, it suffices that [P( )\)|<1 for—p <N\ <p.
To do this and simlutaneously maximize the slope
of EONEat N=lforoR(N)ia polvnomml of degree M,
it suffices to take

PO=T) (%)

where 7’ is the Chebyshev polynomial of degree M .*

Actually, it may be more efficient to use different
polynomials at different stages in the proceedings.
The optimum choices of the polynomials will depend
on the distribution of the N’s, naturally. As this is
not known ahead of time in a given case, one must
depend on a combination of experience and alert
improvisation to get a good choice of polynomials.

We now turn to the case where one wishes to find
all eigenvalues and eigenvectors. If any sort of fast
computing machinery is available, one can probably
proceed best by a combination of the power method
plus orthogonalization on the eigenvectors already
known. In particular, suppose A, and »; are known.
We can start with z and orthogonalize it with respect
to »;.  That 1s, we replace = by

(7)1, I)

(@1: 01)
For the resulting vector, we have ¢,=0. Hence, if
we apply powers of A to it, we get the eigenvector
corresponding to the eigenvalue next greatest after
N\ in absolute value.  Unfortunately, since we do not
know »; exactly, we cannot in general determine z
to be exactly orthogonal to »;, and so cannot insure
¢;=0. We thus face the possibility that ¢\ may
again be large. TIf, however, we orthogonalize with
respect to »; from time to time, we repeatedly cut
down the size of ¢,\Y. On a fast machine, orthog-
onalization is a quick procedure, and it is probably
worthwhile to alternate the steps of orthogonalization
and operating with A.

If \; and N\, and »; and », are known, one orthogonal-
izes with respect to both »; and », between each time
that one operates with A.

If at any point in the procedure, one encounters
two close eigenvalues, one is trying to find the largest
unknown eigenvalue, and so can apply the methods
noted above (which are not disturbed by the frequent
orthogonalizations). However, now that one plans
to find all eigenvalues, alternative quicker methods
are available for separation of close eigenvalues,
depending upon knowing all other eigenvalues and
eigenvectors. For example, suppose A has eigen-
values 1, 2,2.95,3.05, 4, and 5. Successively getting
the largest eigenvalue twice by the power method
plus orthogonalization, we readily get the eigen-
values 5 and 4, and their eigenvectors. We now
discover that there are troubles in the neighborhood
of 3. Essentially, we “postpone’” treatment of this
point by putting B=37/—A. Then the eigenvalues
1, 2, 2.95, 3.05 of A lead to the eigenvalues 2, 1,
0.05, —0.05 of B. Going now for the largest owon—
values of B, we quickly get 2 and 1. We now have
all eigenvalues and eigenvectors of A except 2.95
and 3.05 and their eigenvectors. Also we now know
that there are just two remaining eigenvalues, and
that both are near 3.  We now consider C=4—2.91.
This has eigenvalues 0.05 and 0.15, and the power

4 G. Polya and G. Szego, Aufgaben und hhmm aus der Analysis 11, p. 91
(Dover Publics ations, New York, N. Y.,
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method plus orthogonalization quickly gives the 102 1 PEVTENC:: -
larger of these. 1 102 Sy (108N
This method will run into difficulties if there are
two pairs of close eigenvalues. An alternative pro- 101 1
cedure that will take care even of this case is the 1011
following. Suppose we have eigenvalues \,=5, 1 101
M=4.05, 3=3.95, \=3, \=2.05, A\=1.95 and 1 10 WAL
N-=1. We quickly find \; and »;.  Trying for N, we 51++/(51)2—1
find trouble. By starting with some z and alter- 10 101
nately orthogonalizing with respect to » and oper- 98 14 |
ating with A, we keep » out, and eventually elimi- 100, 0 |
nate vy, vs, v5, and ;.  We now have a certain linear 14 92

combination of % and Us, which we s well The approximate numerical values of these eight eigenvalues,
call u,. We now repeat the procedure, except for | yiitten in descending order are:
starting with a different z. We then get a u; that

is also a linear combination of », and »;. Except in 183 883
the most extraordinarily urifortunate cases, u; will 101. 990
be independent of u,. One can insure this inde- 100. 000
pendence by orthogonalizing with respect to u, 100. 000
throughout the computation of u;. However, it is 8 g(l)g
scarcely worth while, except perhaps in the choice of 102, 005

the initial z.

Since 4, and wuy are independent linear combina-
tions of v, and v, it follows that a vector is orthogonal
to both of », and »; if and only if it is orthogonal to

One eigenvalue, namely 100, is exactly repeated. These
2 by 2 matrices were then mixed together into an 8 by 8
matrix as follows:

both of u, and u;. To find N\, and »;, we would wish 102 0 0 0 0 1 0
to orthogonalize with respect to all of »;, v, v, We 0 101 0 0 0 0 0 1
can get the same effect if we instead orthogonalize 0 0o 98 0 0 0 14 0
with respect to vy, u,, and s (tlus 18 most conven-
iently done if u3 1s taken orthogonal to u,). Thus 0 0 0 1 10 0 0 0
we can n]ow proceed to get N\ an;l‘ Vs, alt!lough we do 0 0 0 10 101 0 0 0
not yet know Ny, N, v, or v;.  We again encounter
difficulty with »;, and »g because N\; and Ny are near 1 0 0 g el 0 9
together. However, we can get a u; and a wu;, which 0 0 14 0 0 0 2 0
will suffice to let us obtain \; and »;. Now, by o 1 0 0 0 0 0 101
orthogonalizing with respect to vy, vy, us, ug, and v, . ) ¢
we can readily separate X\, and Ny by working with | Temporarily call this matrix B, and let P denote
powers of A—3.97. Then we get \; and N\; by work- 9 1 1 9 0 0 0 0
ing with powers of A—1.9/.

i . 1 -2 -2 1 0 0 0 0
Appendix 1. Construction of a Test Matrix 1 o 0 0 0 0

In order to get eigenvalues very close together without 2 -1 1 —2 0 0 0 0
using many significant digits in the coefficients, it seemed ) ey

A 3 A 0 0 0 0 1 1 2 2

necessary to use irrational numbers. Accordingly, a search
was made for 2 by 2 symmetric matrices with eigenvalues, 0 0 0 0 i — 2 2
some of which were near together. We decided on the fol-
lowing four, where the eigenvalues are written to the right 0 0 0 0" —2 22 =l =l
of the matrices: 0 0 0 0 9 9 ity

The two 4 by 4 matrices occurring in the corners of P were made by a scheme due to Sylvester, ® with the result that P
has the property

TP—
(we use PT to denote the transpose of P). We then (leﬁnfd IA t(l)Olfe PTR P. The matrix A is then
611 196 —192 407 —8 —52 —49 29
196 899 113 —192 —171 —43 —8 —44
— 192 113 899 196 61 49 8 52
407 —192 196 611 8 44 59 —23
—8 —71 61 8 411 —599 208 208
—52 —43 49 44 —599 411 208 208
—49 —8 8 59 208 208 99 —911
29 —44 52 —23 208 208 —911 99

5T, Muir, History of determinants 11K, 289 (Macmillan and Co., Ltd., London, 1920).

964065—51——6 293



with the eigenvalues and eigenvectors

A1=10+/10405=1020.04901843

n=(2, 1, 1, 2, 102— 10405, 102— /10405, — 204+ 2y/10405, — 204+ 2y/10405)
= (2, 1, 1, 2, —0.004901843, —0.004901843, 0.009803686, 0.009803686)

X=1020
T (12— ONOR= ORI )
=510+ 100y/26=1019.90195136
n=(2, —1, 1,

—2, 126, —5 —+/26, —10 —2+/26, 10+ 2+/26)

=(2, —1, 1, —2, 10.09901951, —10.09901951, —20.19803903, 20.19803903)

A== 1000

PrO et ke [ VL L S )

RO o8 Y I U R g MR Sy
No=510— 10026 = 0.09804864072

’

=7

v=(2, —1, 1, —2, 5—+/26, —5-+/26, — 10+ 2+/26, 10— 2+/26)
=(2, —1, 1, —2, —0.099019514, 0.099019514, 0.198039027, — 0.198039027)

)\7:0
n=(1,2 —2, —1, 14, 14,7, 7)
A= —10y/10405= —1020.04901843

vs=(2, 1, 1, 2, 10210405, 102+ /10405, — 204 — 2/10405, — 204 — 21/10405)
= (2, 1, 1, 2, 204.0049018, 204.0049018, —408.0098037, — 408.0098037).

Appendix 2. Determination of the Char-
acteristic Roots in the Method of Lanczos

The method of minimized iterations (cf. footnote 2) leads
to the construction of a successive set of orthogonal vectors
Don 01 a2 O (1)
starting with the trial vector b,. Each iteration is associated
with two scalars «; and B;; they become the pivotal elements
of the eigenvalue problem.
If the vectors (1) are introduced as an auxiliary reference
system, the original matrix A4 is transformed into the following
“‘codiagonal” form (omitting the zero elements):®

P 1 BN
B1 ay 1
B2 a; 1
C= ; (2)

L Br-1

The solution of the principal axis problem requires the
construction of a set of polynomials p;(x) on the basis of the
recurrence relations

Qp—1/

Pi+1(x) = (— a;) pi(x) — Bipi-1(x) (3)

9 The B; of the present report corresponds to the g;- of the reference cited in
footnote 2.

starting with
po(@) =1
p1(x) =r—ao

and ending with p.(x). The roots of the algebraic equation

pn(x) =0 (4)
yield the n eigenvalues

il?:)\l, )\2, « e ey An. (5)
The matrix (2) is not symmetric because the vectors b; are

not normalized in length. In order to normalize b; and thus

symmetrize the matrix C, we introduce the quantities

ri=vB )

If the original matrix A is symmetrie, then the B; are all
positive and the v; all real. The sign of the y; shall be taken
as positive.

The normfactors

wi=+b} (7
are now expressible in terms of the y;. Assuming that the

original trial vector by was chosen of the length 1—that is,
wp=1—we obtain

Wi=Y1V2- « o Vi (8)

The matrix A, if analyzed in the reference system”of the
normalized
bi

b =2 (9)

@y
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appears in the following symmetric form:

( L] 041 2
Y1 a Y2
Y2 ay RE]
C'= (10)
< Yn-1 Ap—1J

The quantities «; and B;, obtained by the method of mini-
mized iterations, contain the entire solution of the eigenvalue
problem. The eigenvalues are contained in the solution of
the algebraic equation (4), while the components of the
eigenvector w;, analyzed in the b;-system, become:

Ilo()\i),l’i()\i)y ... 1p"—1(>‘i)‘ (11)
If we congtruct the matrix
Po(A),p1(A), -+ + o D1 (A1)
P= (12)
o), p1(An), -« oy Pa1(An)
then the matrix product
U=FRB: (13)

where B is the matrix of the b;, gives the matrix of the eigen-
vectors u;, associated with the original matrix A.

The orthogonality of the eigenvectors u; finds expression
in the following relation:

-1
1 +"2 p_m()\i)pa()\i) =0

&iBiB2 ... Ba (14)

(i#7)
In the given test-matrix a preliminary investigation of the
matrix revealed that the largest eigenvalue is of the order of

magnitude+ 1000. Hence all the elements of A were divided
by 1000, thus obtaining a new matrix

e A
A0=1000

whose largest eigenvalue was of the order +1.
The trial vector by was chosen to be

1300 1 Rkt

Then the method of minimized iterations was applied, obtain-
ing the B matrix by putting the components of the vectors
bo, by, by, . . ., bu_yin successive rows. Each one of these vectors
was corrected during the process of generation to become
strictly orthogonal to the previous vectors. Hence b, must
come out as identically zero, in spite of rounding errors.
The associated a; and B;, together with the v;= V8., are tabu-
lated as follows:

1 a; Bi i

0 0: 809540, & Ldpas Sh Lo Ul AV et nie L SRR SRR Bl
1 . 1086629633 0. 096939 0. 3113502850

2 . 7859177671 . 039517948848 . 03085117315

3 —. 7935214279 . 4088977136 . 6394511034

4 . 003963315517 . 0520498144977 . 001431717325

5 1. 0160663075 . 004021099703 . 06341214161

6 1. 0199110708 . 081070421101 . 043271729055

7 1. 0000000030 . 0107048359779 . 058395451018

We will now discuss the problem of obtaining the roots of
the algebraic equation (4). Our procedure will be to obtain
a good first approximation and then improve this approxima-
tion to the full accuracy obtainable by 10 digit calculations.?

The separation of nearly equal roots is frequently a rather
cumbersome task. In the present method the existence of
nearly equal roots is an asset rather than a liability. The
orthogonality relation (14) shows that exactly equal or nearly
equal roots are only possible under singular conditions. If
none of the g8, are small, then \; and \; cannot be essentially
equal since 4 sum of all positive terms cannot vanish. If, on
the other hand, a certain @; is zero or very small, this means
that the polynomial p,(x) separates into the product of two
independent polynomials of lower order, which greatly sim-
plifies the evaluation of the roots.

The given numerical example is well adapted to demon-
strate the behavior of equal or nearly equal roots. Since
nearly equal roots operate as practically one root in the suc-
cessive reduction of the trial vector b,, we will obtain a very
small b,, already after m steps, where m is the number of es-
sentially different roots. In the present problem we have
only three essentially different roots. Owing to an accidental
degeneracy, only two of these roots were strongly represented
in by. Hence B, is already small. The remaining vector
again contained essentially but two roots, and thus g, is again
small. Furthermore, we notice that g; is very small and g;
almost negligible.

Indeed, the fact that two roots of the given problem coincide
has the consequence that b, should get reduced to zero in
already seven steps, thus making g; exactly zero. That B;
is not exactly zero, but only to 9 decimal places, is due to
rounding errors.

The associated a; should give the double root A=1. Ac-
tually

a;=1.0000000030
.

is a very close approximation of the exact root.
We also notice that already g is very small, although 15
times larger than g;  The associated

ag=1.0199110708

is a close approximation of another of the nearly equal roots,
namely
A=1.0199019514.

These specific properties of the g; have the consequence
that the original equation of 8th order separates into equations

of the order
24-2+24-14-1.

This yields eight approximate roots of our problem, without
solving equations of higher than second order.

The question is now, how to improve the accuracy of these
approximations. The application of Newton’s method for
correcting a root is here out of question since we cannot con-
struct the actual polynomial pg(z) without such rounding
errors, which completely annihilate the desired accuracy.
We can construct the successive polynomials p;(\) for any
gwen \ by the recurrence relations (2), but for arbitrary X
the coefficients of the final polynomial are marred by intol-
erably large errors.

The following perturbation method has quick convergence
and operates numerically very satisfactorily. Let us assume
that we possess a vector y, which approximates the solution
of the eigenvalue problem.

Ay—\y=0. (15)
Then
=Lt (16)

is a very satisfactory approximation of a certain \; because
an error of first order in y causes an error of only second order
in A

7 This means 10 decimal places if the largest eigenvalue is normalized to 1.
The absolutely smallest eigenvalue may be zero or arbitrarily near to zero. This
zero, however, cannot be ascertained to more than 10 decimal places. The
relative accuracy of the smallest eigenvalue may thus become arbitrarily bad.
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We will apply this principle to our problem in the following

sense. Let us assume that \ is an approximate root of the
polynomial p,(N\). We now construct the components of
the vector y by evaluating the following recurrent sequence:

Yo=1

__Q‘ao)?/o

Y1
947

N—ay)ys —
yz=( )1 — v1%o

Y2
_(x_ar?)yu—s—‘h—zyrs
Yn—1=
Yn—1
Yn= (X'—an—l)yn—l_')’n—lyn—?- (17)
The vector
Y=o, Y1, - - -5 Yn-1) (18)

taken in the reference system of the b/, satisfies the equation
Ay—~iy=0
in all its components except the last one, where we get

(Ay=— Xy) n—1= —Yn.
Hence .

YAY= NP~ Y n1.
Substitution in (16) gives

e ;\'_ nYn—1
ZYa

Actually it is entirely accidental that the equation where
the error occurs shall be the last one. We can start our
recurrences from both ends of the matrix and join the two
sets at an arbitrary point 7. The error will then ocecur in
the 2th rather than the last equation. _

Now the correction of the error of X will be most effective
if the error of the equation (15) appears in that particular
component ¢ that is associated with the absolutely largest ;.
We designate this particular y; and add to the sequence (17)
another sequence that starts from the other end and proceeds
in opposite direction:

Yn1=1

y;72: (x_an—l) y?ll_l
Yn—1

, X_ o l~ . Ll

Z/n—3:( Ap Z)yn 27~ Yn—1Ya—1
Yn—2

: N—a) Yl —virrYi

?/iAI:( 1)./ Yi+1Yi+1 (19)

947

We adjust this sequence to the sequence (17) by multiplying

every component by

Y
y!

p (20)

We now construct our vector y by choosing its components
from the y, series up to k=1, and from the 7 series from

k=17 on:
Yo=yo, 1=V, - - -, Ti=Ysi=pY:
) ’ % (21)
Fit1=PYi 41+ « =y Yn1=pYn—1
The error occurs in the 7th equation and we obtain
)\=—>\+w(yi—1—pyi =) Ys, (22)

Yo

The entire process can now be repeated, by replacing \
by the new A. This process had such good convergence that
after two steps the error was already pushed out beyond the
10th decimal place. The entire set of \; was thus obtained
with relatively little difficulty and without involved cal-
culations.

After obtaining the \;, the P matrix was obtained by re-
cursions. Finally, the product PB gave the matrix U/ of
the eigenvectors u;. This matrix was then normalized by
dividing each row by the square root of the sum of the squares
of the elements of each row.

The resultant normalized matrix U’ was now tested for

orthogonality and for its eigenvector property. Under
exact conditions we should get
u; uy=0 (z#k) (23)
u! Aui=0 (z5#k)

Actually, in view of the rounding errors, we do not get zero
on the right side but two symmetric matrices

(24)

Pik=Pki
and

(25)

We use these p;r and o;; quan-
We evaluate

Oik= Oki

composed of small elements.
tities to correct our solution.

__Tik—NiPik,

i (26)

€ik
In view of the extreme closeness of some of the eigenvalues,
the denominator of (26) becomes small for some 7, £, and the
corresponding e;; not negligible. We now form the matrix E,
composed of the non-negligible elements ¢, while the diagonal

elements and the negligible ¢;. are replaced by zero. The
corrected U’ matrix becomes:
U=U+EU (27)

The rows of the corrected matrix give us the proper eigen-
vectors with an accuracy of six decimal places. The ),
evaluated from these vectors, agreed with the previous \; to
10 decimal places. Comparison with the known exact values
showed that all the 10 decimal places came out correctly for
each one of the roots.®

Appendix 3. Modification of the Method of
Hestenes and Karush

The method of fixed a (see footnote 3) was used in the
calculation. This consists in passing from one approxima-
tion z for a characteristic vector to the next approximation =’
by means of the formula

' =z+ at(x)
where
() — @A),

£(@)=Az—p(2)z, (od)

Here a is a positive constant (independent of z) of the form

o~ B
Ai—An

8 The entire numerical work was carried out by Miss Fannie M. Gordon.

A 0<:3<11
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where 8 is optimally near 1. The above formula for z’ is
used to obtain convergence to an eigenvector »; belonging to
A1, the largest (algebraically) eigenvalue. For an eigen-
vector v, belonging to \,, the smallest eigenvalue, the formula

' =x—at(x)

is to be used. In practice ais at the disposal of the computer,
and he may change its value at different stages of the calcula-
tion according to his disposition and insight. The changes
are easily made by having at hand several punched cards
carrying different values of a and replacing at any time the
single card in the deck carrying the value of « by another
such card.

The fixed « method is closely related to the power method.
To illustrate this, suppose we are computing the least value
As. After a certain number of steps the value of u(x) will
be essentially constant from step to step, this constant repre-
senting our computed value of X\s. Continued calculation
leads to improvement in the vector z. The iteration formula
with £(z) replaced by its expression in terms of Az and

= becomes
Bt =ice {<l+,u> I~A} By
o

with I the identity matrix. That is, approximately,

v’=a{ (B M+ (1—8)N)[— A}z,

where g’=1/8 is near 1. Thus, except for a normalization
factor «, this is the power method applied to X\ I —A with
A near A;. In essence we have shifted the origin close to
A\, thereby making As the dominating eigenvalue in absolute
value. The normalizing factor a guarantees that the lengths
|z} will increase and converge.

The above procedure was used to calculate all eigenvalues
and eigenvectors by the technique of orthogonalizing to
eigenvectors already known, in the manner described in the
text. As more eigenvectors are obtained the parameter a
is allowed to assume a greater value, this value in each new
case being of the form g/M, where M is the spread of the
eigenvalues for the subspace in question. Thus if As and g
are known, the iteration operates in the 7-dimensional sub-
space orthogonal to »s, where the appropriate value of M
iS )\1— )\7.

Multiple roots offer no difficulty. Thus in the case of
As=N;= 1000, the iteration first leads to the eigenvalue
A=1000 and to some corresponding eigenvectors »,. Run-
ning orthogonal to vy (and other known eigenvectors) we
obtain \;= 1000 and the eigenvector v; orthogonal to v.

Close roots may be treated as follows. At first the close
roots are ignored and because \;, N\, A3 are nearly equal and
Ns, A7 are nearly equal one obtains by the orthogonalization
technique eight independent vectors

Uy, Uz, U, V4, Vs, U, UT, Uy

instead of the true eigenvectors
V1, V2, U3, V4, Us, Ve, U7, Us.

Here wu;, uy, uz are linear combinations of v, v, vy and ug, u;
are linear combinations of vg v; (see text). To find the first
vector »; we apply our iteration procedure in the 3-space
spanned by these vectors. That is, we run orthogonal to
vy, V5, g, Uz, vy and use a (large) « appropriate to the 3-space.
Having obtained »; we run orthogonal to »; to obtain »,. To
obtain v; we do not require the « iteration method; we need
only orthogonalize to » and », in the 3-space. Notice that
this procedure of obtaining vy, v, 3 does not, require knowing
uy, us, uz. Of course if one decided to separate vy and vy
first, one would need to know these last three vectors but not
ug and u;.

In connection with orthogonalizing to known eigenvectors
we remark that if z is already orthogonal to such vectors
then in theory z’ and all successive approximations will be.
In practice however the orthogonality is lost by round-off
and must be regularly restored by direct calculation.

The preceding method was, in the main, the one used in
the computation. However, there is a variation of the pro-
cedure that is of interest. It takes advantage of the fact
that we may make the iteration scheme move upward or
downward on the scale of eigenvalues and enables us to
reduce the number of orthogonalizations. Consider the
problem of finding v, v, »;. We first apply the iteration
procedure that increases u(x), that is, #’=z-+ «f, with an a
appropriate to the whole space. After a certain number of
steps we have eliminated the lower eigenvectors and are
operating in the invariant 3-space of vy, v, v3.  We now in-
crease « to a value corresponding to the three space. In this
way we separate out ».. In order to avoid the introduction
of higher eigenvectors through round-off, we intersperse use
of the larger value of « with use of the older smaller value
(this replaces the orthogonalization to vy, vs, ug, u;, ug of the
preceding method). The next vector v, is obtained in the
same way, maintaining orthogonality .to ».. The vector v
is found by orthogonalizing to » and ». To apply this
technique to »; and »; we first find »s and then use the a
iteration with decreasing u, that is, 2’=z—af. Then v; is
found by orthogonalizing only to vs, and v by orthogonalizing
to vy and v;.

If we analyze either of the above methods of separation
in the way we earlier compared the fixed « method with the
power method, we find again that in the later stages of the
iteration we are applying the power method. We first elimi-
nate all but the invariant subspace corresponding to the close
eigenvalues, and then, in essence we use the power method on
a linear combination of A and 7 that will separate out the
desired vectors. Thus, this method is closely related to
that explained at the end of the text.

The final eigenvalues were found with a relative error of
10-8.  The absolute in the components of each eigenvector
were determined with an absolute error of 10°% when the
largest component of each vector is taken to be 1.

Los AnGreLEes, September 28, 1950.
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