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IH order t o test two methods, one proposed by C. Lan czos and t he other by M. R . 
H estenes and "Y. I<:arush, for t he num eri cal cal culation of eige nvalu es of symmetri !l mat ri cc. , 
an 8 by 8 matrix is constru cted t hat has se veral sets of eigenvalu es close together. The 
app lication of t he two m ethods t o t his tes t matrix is described , a nd in addi t ion , a t hird method 
for dea li ng wit h such probl ems is proposed. 

In recent publications 2 3 two methods have been 
proposed for finding eigenvalu es of real symmetric 
matrices. In order to mak e a numerical comparison 
'between th e methods, an 8 by 8 matrix was especially 
designed (see appendix 1) and the two methods were 
used independently to get all eigh t eigenvalu es and 
eigenvector of the matrix. In order that th e tes t 
b e a severe one, Lhe matrix was designed with several 
sets of eigenvalu es very close together . In order to 
separate these eigenvalu es, special modifica tions of 
the two methods wer e developed for the eparation 
of close eigenvalu es (see appendixes 2 a nd 3). 

The m ethod of Lanczos (see foo tnote 2 and ap
pendix 2) seems bes t adapted for use by a hand com
puter using a desk compu ting machine. In the 
present case, the computation according to Lanczos' 
method was carried out by a hand computer , and 
r equired of th e order of 100 hours computing time. 

The m ethod of H estenes and Karush (sec foo tno te 
3 and appendix 3) seems best adapted for u e by 
machine compu tation. 1n the presen t case, the 
computation according to th e m ethod of H es tenes 
and Karush was carried out on an IBM Card-Pro
gramed Electronic Calcula tor . Considerable time 
was spent by Karush in b ecoming familiar wi th the 
machine, so that it is difficult to say just how long 
the compu ta tion would require of an experienced 
operator. Probably 3 or 4 days would b e ample. 

During and since the compu tations described 
above, there has been much discussion of th e problem 
of separating close eigenvalu es of a real symmetric 
matrix. Besides th e m ethod s offered in appendices 2 
and 3, we wish to offer the following modifications of 
the familiar power method. 

First let us consider the case where only the 
numerically largest eigenvalu e, AI , and the corre
sponding eigenvector, VI, of a matrix A are desired. 
W e may assume Al to be positive, since otherwise we 
treat - A. 

Suppose AI, . . . , An are the eigenvalues of A 
in decreasing order , and VI, ... , Vn are the corre
sponding eigenvectors. If no other eigenvalue is near 
AI, one can find Al and VI by the standard power 
method. In order to be able to compare the modi-

I The preparation of this pa per was sponsored (in part) by tbe Office of Naval 
Research. 
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fications for the case ,,,here anoth er eigenvalu e i 
near AI , we review th e power method . 

Firs t , one chooses a vector x. This h a a repre en
ta tion 

X= CIVI + C2V2+ . . . + CnVn' 

but as yet we do not know th e c's or V's. B.\' i tera
tion of the step of opera ting on a vector wi th a 
matrix, we form Ax, A 2X, A 3X, . The represen
tation of A NX is 

A Nx = C1A f V I + C2A~ V2+ . . . +cn A~ Vn • 

If c] ;;c O (which is the case excep t in very extra
ordinary circumstances) , then for sufficiently large 
N, c]Af will be mu ch greater than c;A.f (i > l) , 
since AI>I A;I (i> l). Thus A NX is nearly a multiple 
of VI ' By normalizing in th e desired fashion, a n 
approxImation (of any desired degree of accuracy) 
for VI is ob tained, from which an approximation to 
Al can be ob tained . 

In case A2= AI , any linear combination of VI and V2 
will serve perfec tly well as an eigenvector corre
sponding to AI' The power method just outlined 
will yield a linear combina tion of VI and V2 in such a 
case, and so no difficulty arises. 

Suppose A2 is nearly as grea t as AI , but all other A' 
are appreciably smaller . Then one will have to take 
N excessively large before c2A~ is small compared to 
clAf. Two possible procedures for cur tailing the 
labor are as follows. 

In the first , we take N large enou gh so that CiA'; i 
small compared to CIAf or c2A~ for i > 2. Then 
approximately , 

AN x = cIAf VI+ C2A~ V 2. 

Choose two vectors y and z. Pu t 

a2j=(y ,AN+J- Ix ) 

a3J= (z ,AN+J- IX), 

where (u ,v) deno tes th e inner product of th e vec tor 
U and v. Then Al and A2 are th e two roots of th e 
quadratic equation 

1 

(1 ) 
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To prove this, write 

Then 

1 

a=(Y,cIA'( VI) 

b= (Z,CI Af' vI) 

C = (y,C2A~ V2) 

d= (Z ,C2A~ V2)' 

1 1 1 1 o o 
a b . 

o c d 

Then clearly the determinant is zero wh enever 
A= A2 or A= }.2, so tha t AI and A2 are roots of (1). 

In exceptional cases, the coeffi cients of (1) are all 
zero. This can happen if AI = A2, or CI = O, or C2 = 0, 
or in case the proj ections of Y and Z are no t independ
en t on th e subspace spanned by VI and V2 (this is the 
case where 

b 1=0, 
d 

and can generally be treated by m erely choosing a 
differen t Y and z) . 

The case where AI, A2, and A3 are all nearly equal 
but th e remaining A'S are small can be handled 
similarly, and leads to a third-degree equation defined 
by a fourth-order determinant. 

R eturning to th e case where Al and A2 are nearly 
equal , and other A'S are smaller , an alternative pro
cedure makes use of Chebyshev polynomials . Sup
pose that a sufficiently high value of N has been 
used in order to establish that there are one or more 
roots in the vicinity of some value JJ- (which is ap
proxi.mately AI, and hence also approximately A2, 
since Al and A2 are nearly equal ), and that the other 
roots are appreciably less than JJ- in absolute value. 
In particular, - J.L is a lower bound for th e roots. 
N ow instead of taking powers of A, we take powers 
of a polynomial in A, noting that 

If now we choose P (A) so that P (AI) and P (A2) are 
near 1, and P (A) has a large slope in the neighbor
hood of Al and A2, then P (AI) and P (A2) will have a 
ratio appreciably less than AJ/A2, and hence powers 
of P (A) will eliminate V2 relative to VI faster than 
powers of A. 

'iVe first apply A enough times to elimina te all v's 
except VI and V2 , and then apply P (A) . In order to 
insure tha t P (A) does no t bring back the V's already 
elimina ted, i t sufE cos that IP (A) I ::; 1 for - J.L ::; A::; J.L. 
To do this and simlutaneously maximize the slope 
of P (A) at A= J.L for P (A) a polynomial of degree M , 
it suffices to take 

P(A) = TM(;} 

where TM is the Chebyshev polynomial of degree M.4 
Actually, it mav be more efficient to use diff~rent 

polynomials at differen t stages in the pr<?ceedmgs. 
The optimum choices of the polynomials wIll dep'en.d 
on the distribution of the A'S, naturally. As tlus IS 
not known ahead of time in a given case, one must 
depend on a combination of exp erience and iJ:lert 
improvisation to get a good cholCe of polynomIals. 

W e now turn to the case wh ere one WIsh es to find 
all eigenvalu es and eigenvectors . If an~r sor t of fast 
computing machinery is available , one can probably 
proceed best by a combination of th e power m ethod 
plus orthogonalization on the eigenvectors already 
known. In particular, suppose Al and VI are known. 
We can start with x and orthogonalize i t with respect 
to VI. That is, we replace x by 

(VI,X) 
x---- VI' 

(VI, VI) 

For the resulting vector, we have CI = O. Hence, if 
we apply powers of A to it , we get the eigenvector 
corresponding to the eigenvalue next greatest after 
AI in absolute ,talue. Unfortunatelv, since we do not 
know VI exactly, we cannot in general d eten~ine x 
to be exactly orthogonal to VI, and so canno t lllsure 
Ci = 0 . We thu s face th e possibility t,ha t CI A'( :ro.ay 
again be large. If, however , we orthogonalize WIth 
respect to Vi from time to time, we re~eatcdly cu t 
down the size of CI A'( . On a fast maclune, orthog
onalization is a quick procedure, and it is pr?ba"?ly 
worthwhile to al terna te th e steps of orthogonahzatlOn 
and operating with A. 

If Al and A2 and VI and V2 are known , one orthogonal
izes with respect to both Vi and Vz between each time 
tha t one operates with A. 

If at any point in the procedure, one encounters 
two close eigenvalues, one is trying to find the largest 
unknown eigenvalue, and so can apply the methods 
no ted above (which are not disturbed by the frequent 
orthogonalizations) . However , now that one plans 
to find all eigenvalues, alternative quicker methods 
are available for separation of close eigenvalues, 
depending upon knowing all other eigenvalues. and 
eigenvectors. For example, suppose -4 has Clg~n
values 1,2,2.95,3.05,4, and 5. SuccessIvely gettmg 
the largest eigenvalue twice by the power me.thod 
plus orthogonalization, we readily get the Clgen
values 5 and 4, and their eigenvectors . We now 
discover tha t there are troubles in the neighborhood 
of 3. E ssentially, we " postpone" treatment of this 
point bv putting B = 31- A. Then the eigenvalues 
1, 2, 2.'95 , 3.05 of A lead to the eigenvalues ~, 1, 
0 .05, - 0 .05 of B . Going now for the largest Clgen
values of B , we quickly get 2 and 1. We now have 
all eigenvalu es and eigenvectors of A except 2.95 
and 3.05 and their eigenvectors. Also we now know 
that there are just two remaining eigenvalues, and 
that both are near 3. vVe now consider C= A - 2.91. 
This has eigenvalu es 0.05 and 0 .15 , and the power 

• G. P61ya and G. Szego, Aufgaben and Lehrsa tze a us der Analysis 11 , p. 91 
(Dover Publications, New York, N. Y ., 1945). 
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method plus orthogonalization quickly gIves the 
larger of these. II 

II 

/I 

II 

102 

1 

101 

1 

1 

10 

98 

14 

1 

II ± -v'( 102)2+1 
- 102 

1 

/I 
101 ± 1 

101 

10 

II 51 ± , / (51 )2 - 1 
101 

14 

/I 
100, 0 

2 

This method will run into difficulties if there are 
two pairs of close eigenvalu es. An alternative pro
cedure that will take care even of this case is the 
following. Suppose we have eigenvalues AI= 5, 
A2= 4.05 , A3=3 .95, A4= 3, A5= 2.05 , A6= 1.95, and 
A7= 1. "Ve quickly find Al and VI. Trying for A2, we 
find trouble. By starting with some x and alter
nately orthogonalizing with respect to VI and oper
ating with A, we keep VI out, and eventually elimi
nate V4, V5, V6, and V7. We now have a certain linear 
combination of V2 and V3, which we may as well 
call U2. We now repeat the procedure, except for 
starting with a different x. We then get a U3 that 
is also a linear combination of V2 and V3. Except in 
the most extraordinarily unfortunate cases, U3 will 
be independent of U2. One can insure this inde
pendence by orthogonalizing with respect to U 2 

throughout the computation of U3. However, it is 
scarcely worth while, except perhaps in the choice of 
the ini tial x. 

The app roximate numerical valu es of these eight eigenvalues, 
written in descending order are: 

102. 005 
102. 000 
101. 990 
100. 000 
100. 000 

O. 010 
O. 000 

- 102.005 

Since U2 and U3 are independent linear combina
tions of V2 and V3, it follows tha t a vector is orthogonal 
to both of V2 and V3 if and only if it is orthogonal to 
both of U 2 and U 3. 1.'0 find A4 and V4, we would wish 
to orthogonalizewith respect to all of VI, V2, V3. We 
can get the same effect if we instead orthogonalize 
with respect to VI, U2, and U 3 (this is most conven
iently don e if U3 is taken orthogonal to U2). Thus 
we can now proceed to get A4 and V4, although we do 
not yet know A2, A3, V2, or V3. W·e again encounter 
difficulty wi th V5, and V6 because A5 and A6 are near 
together. However, we can get a Us and a U6, which 
will suffice to let us obtain A7 and V7 . Now, by 
orthogonalizing with respect to VI, V4, U s , U6, and V7, 

we can readily separate A2 and A3 by working with 
powers of A - 3.9J. Then we get A5 and A6 by work
ing with powers of A - 1.91. 

One eigenvalue, namely 100, is exactl.,· repealed. The e 

Appendix 1. Construction of a Test Matrix 
In order to get eigenvalues very close toget her without 

using many significant digits in the coeffic ients, i t seemed 
necessary to use irrational numbers . Accordingly, a search 
was made for 2 by 2 symmetric matrices with eigenvalues, 
som e of which were near together. '~Te decided on the fol
lowing four, wh ere the eigenvalues are written to the r ight 
of the matrices: 

2 by 2 matrices were then mixed together into 
matrix as follow s: 

102 0 0 0 0 1 0 

0 101 0 0 0 0 0 

0 0 9 0 0 0 14 

0 0 0 1 10 0 0 

0 0 0 10 101 0 0 

1 0 0 0 0 - 102 0 

0 0 14 0 0 0 2 

0 1 0 0 0 0 0 

T emporarily ca ll this maLrix B, and let P denot e 

2 1 1 2 0 0 0 

1 - 2 - 2 1 0 0 0 

1 2 - 2 - 1 0 0 0 

2 - 1 1 - 2 0 0 0 

0 0 0 0 1 - 1 - 2 

0 0 0 0 - 1 - 1 2 

0 0 0 0 - 2 - 2 - 1 

0 0 0 0 2 - 2 1 

all 8 by 

0 

1 

0 

0 

0 

0 

0 

101 

0 

0 

0 

0 

2 

2 

- 1 

- 1 

The t \\"o 4 by 4 matrices occurrin g in the corn ers of P were made by a scheme due to Sylvester, 5 wi t h the result that P 
has th e property 

PTP= 101 
(we use pT to denote the t ranspose of Pl. "Ye then defin ed A to be PTE P. The matrix A is then 

611 196 - 192 407 - 8 - 52 - 49 29 

196 899 113 - 192 - 71 - 43 - 8 - 44 

- 192 113 899 196 61 49 8 52 

407 - 192 196 611 8 44 59 - 23 

- 8 - 71 61 8 411 - 599 208 208 

- 52 - 43 49 44 - 599 411 208 208 

- 49 - 8 8 59 208 208 99 - 911 

29 - 44 52 - 23 208 208 - 911 99 
• T. J:vIuir, History o~ determinants III, 289 (~Iacmillan and Co., Ltd., London, 1920) . 
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with the eigenvalues and eigenvectors 

Al = 10-Vl0405= 1020.04901843 

VI= (2, 1, 1, 2, 1('12 - .yl0405, 102-·b0405, - 204 + 2-V10405, - 204+ 2-Vl0405) 

= (2, 1, 1, 2, - 0.004901843, - 0.004901843, 0.009803686, 0.009803686) 

A2= 1020 

v2 = (I, - 2, - 2, 1,2, - 2, 1, - 1) 

A3 = 510+ 100~= 1019.90195136 

v,= (2, - 1, 1, - 2,.J26, - 5 - -V26, - 10 - 2../26, 10+2~) 

= (2, - 1, 1, - 2,10.09901951 , - 10.09901951, - 20.19803903, 20.]9803903) 

A, = A; = 1000 

v, = (I, - 2, - 2, 1, - 2,2, - 1,1) 

vs = (7, 14, - 14, - 7, - 2, - 2, - 1, - 1) 

A6= 5]0 - 100..j26= 0.09804864072 

v6=(2, - 1, 1, - 2, 5 - -V26, - 5+ .J26, - 10+ 2../26, 10- 2,(26) 

= (2, - ] , 1, - 2, - 0.099019514, 0.099019514, 0.198039027, - 0.198039027) 

A7= 0 

v7 = (I, 2, - 2, - I , 14,14,7,7) 

A6 = - 10../10405 = - 1020.0490]843 

v~= (2, 1, 1, 2, 102 + -V10405, I02 + -VI0405, - 204 - 2-V10405, - 204 - 2-V 10405) 

= (2, 1, 1, 2, 204.0049018, 204.0049018, - 408.0098037, - 408.0098037). 

Appendix 2. Determination of the Char
acteristic Roots in the Method of Lanczos 

starting wit h 
Po(X) = 1 

PI (X)=X- ao 
The m ethod of minimized iterations (cf. footnote 2) leads 

t o t he construction of a successive set of orthogonal vectors and ending with Pn(x) . The roo ts of the algebraic equation 

(1) 

starting with t he t rial vector boo Each iteration is associated 
with t wo scalars a i and {3.; they become t he pivotal elements 
of t he eigenvalue problem . 

If t he vectors (1) are introd uced as an auxiliary reference 
system, t he original matrix A is transform ed into the following 
" codiagonal" form (omitting the zero elements): 6 

{31 1 

c= (2) 

{3n-1 a .-I 

The solution of t he principal axis problem requires the 
construction of a set of polynomials P.(x) on t he basis of the 
rec urrence relat ions 

Pn(X) = O (4) 

y ield t he n eigenvalues 

(5) 

The matrix (2) is not symmetric because the vectors b. are 
not normalized in length. In order to normalize bi and thus 
symmetrize the matrix C, we in t roduce t he quantIties 

(6) 

If t he original matrix A is symmetric, t hen the (3i are all 
positive and the 1'. all real. The sign of the 'Yi shall be taken 
as positi ve. 

The normfactors 

(7) 

are now expressible in te rm s of the 'Y i . Assumin g t hat t h e 
original trial vector bo was chose n of the length I - t hat is, 
wo = I- we obtain 

W,= 1'11'2 .•• 'Y i · (8) 

(3) The matrix A, if analyzed in the reference system- of t he 
normalized 

6 The fJi of t he present report correspond s to the fJ i-l of the reference cited in 
footn ote 2. 
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appears in t he followi ng symmetri c form : 

ao 1'1 

1'1 "'I 1'2 

1'2 'Ys 

G'= (10) 

'Yn-l 

The quantities "'i and f3i, obtained by t he method of mini
mized iterat ions, co ntain the entire solu tion of t he eigenvalue 
problem. The eigenvalues are contain ed in t he solut ion of 
t he a lgebrajc equat ion (4), while t he com ponents of t he 
eigenvector U i , analyzed in t he bi-system , become: 

PO(Xi), Pi (Ai), ... , Pn- l ( Xi ). (11) 

If we con~tru ct the matrix 

p o~" 1 ,p, (',I, . . . ,P.-, ("11 

PO;',I ,p'('.I, ... , P.-,(,J 
p = (12) 

t hen t he matrix product 

U = PB. (13) 

where B is t he matri x of t he bi , gi ves t he malri x of the eigen
vectors U i , associa ted wit h t he ori gin a l matrix A. 

The orthogonali ty of t he eigenvectors U i fi nd s expres ion 
in t h e fo ll owing relat ion : 

1 + ~ Pa(Xi) Pa(Xj ) = 0 
a = 1 f3lf32 • • . f3a 

(i ~j) ( 14) 

In t he given test-matrix a preliminary inves t. igat ion of t hc 
matrix revealed t hat t he largest e igenvalue is of t he order of 
magni t ude± 1000. H ence a ll t he elements of A were divided 
by 1000, t hus obtaining anew matrix 

A 
A o= 1000 ' 

whose largest eigen value was of t he order ± 1. 
The trial vector bo was chosen to be 

0, 1, 0, 0, •. . , 0 

Then the m ethod of minimized iterat ions was applied , obtain
ing t he B matrix by putting t he componen ts of the vectors 
bo, bl , b2, • •• , bn _1 in successive rows. Each one of t hese vectors 
was corrected during t he process of generation to become 
strictly orthogonal to t he previou s vectors . H ence bn must 
com e out a s identically zero, in spite of rounding error s. 
The associated "'i and f3 i , together with t he 'Y i= -Vf3i , arc tabu
lated as follows: 

i a, fJ; '" --------------- - ---- - -
0 0. 899 -- -- - --- -----.- --- - --- - - --- - -- - -- ---
1 . 1086629633 0. 096939 O. 3 11 3502850 
2 . 785917i67 1 · 039517948848 . 03085 117315 
3 -. 7935214279 · 4088977136 . 6394511034 
4 . 003963315517 . 0520498144977 . 001431717325 
5 l. 0160663075 · 004021099703 . 06341214161 
6 1. 0199110708 . 0' 1070421101 . 0'3271729055 
7 l. 0000000030 · 01070483597i9 . 0' 8395451018 

We will now disc uss t he problem of obtaining t he roots of 
t he a lgebrai c equatio n (4). Our procedure will be to obtain 
a good :first approximation and t hen improve t his approxima
t ion to t he full accuracy obtainable by 10 digit ca lculati ons.7 

The separation of nearly equal roots is frequently a rather 
cumbersome task . In t he present met hod t he existence of 
nearly equal roots is an asset rat her t han a lia bili ty. Tho 
orthogonality relation (14) shows that exactly equal or nearly 
equal roo ts are only possible under singular conditions. If 
none of the f3k are small , t hen Ai and Ai cannot be e'sen tially 
equal sin ce Ii s um of all posit ive te rms cannot vanish. If, on 
t he other hand , a certain (3i is zero or very small , t his means 
that t he polynomial Pn(x) separates in to t he product of t wo 
independent polynomials of lower order, which greatly s im
plifi es t he evaluation of t he roots. 

The given numerical example is well adapted to demon
strate t he behavior of equal or nearly equal roots. Si nce 
nearly equal roots operate as practi cally one roo t in t he suc
cessive reduction of the trial vector bo, we will obtain a very 
small bm already after m steps, where m is t he number of es
sentially different roots. In t he present probl em we have 
only three essent ially different roots. Owing t o an accidental 
degeneracy, on ly two of t hese roots were stron gly represented 
in boo H ence f32 is already mall. The remaining vector 
again cont ain ed esse nt ially but t wo roots, and t hus f34 is again 
smal l. F urtherm ore, we n otice t hat f36 is ve ry mall and f37 
almost negligible. 

Indeed, t he fact that t wo roots of the g iven probl em coincide 
ha t he consequen ce t ha t bo should get red uced to zero in 
already seven teps, t hus making f37 exactl y ze ro. That f37 
is not exactly zero, but only to 9 decimal places is due to 
round in g errors. ' 

The associated "'7 should g ive t he doubl e roo t X= 1. Ac
t ua lly 

"'7 = 1. 0000000030 

is a very close approx imation of the exact root. 
We also not ice t hat already f36 is ve ry small a lthough 15 

times la rger t han f37 The associated ' 

"'6= 1.01991l0708 

is a close approx imat ion of anothe r of the near.l y equal roots, 
namely 

X= 1.0199019514. 

These specifi c properti es of t he f3 i have t he consequence 
t hat t he origin a l equation of 8th order separates in to equation 
of t he order 

T hi s y ields eight approximate roots of our problem, wit hout 
solvin g equat ions of higher t han second o rd er. 

The quest ion is II O W, how t o improve the acc uracy of t hese 
approximations. The appli cation of Ne wton's method for 
correct in g a root is here out o f quc t ion sin ce we cannot con
struct t he actual polynomial Ps(x) without s uch rou nding 
errors, which completely annihilate t he desired accuracy. 
We can constru ct t he s uccessive polynomials Pi (X) ior any 
given A by t he recurrence relation s (2) , bu t for aTbitTaI'y A 
t he coefficient s of t h e final polynomial are marred by intol
erably large errors. 

The followin g pe rturbat ion method has qui ck convergence 
a nd o perates numerically very satisfactorily . Let us assume 
t hat we po sess a vector y, whi ch approximates t he solution 
of t he eige nvalue problem. 

The n 
Ay - Xy = O. 

A= yAy 
y2 

(15) 

(16) 

is a very satisfactory approximation of a cer tain Xi, because 
an e rror of first order in y causes an error of onl y second order 
in A. 

1 'fhi s means 10 decimal places if tlle largest eigen value is normalized to 1. 
The absolu tely smallest eigenvalue may be zero or 3rbitrarily near to zero. This 
zero, however, cannot be ascertained to more than 10 decimal places. 'fhe 
relatire accuracy of tbe smallest eigenvalue may th us hecome arbitrarily bad . 
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VIe will apply th is principle to our probl em in t he fo llowing k= i on : 
sense . Let us assume that ~ is an approximate roo t of t he 
polynomial PnCI\ ). \Ye now construct the components of 

y o=yo, fh = Y,· .. ~ Y i=Y'~ P!/ ; } 

Y i+l= PY;+h . . . , !/ n-I= PY n-l 
(21 ) 

the vector Y by evaluating t he following rec urrent sequence: 

The vector 

Yo=l 

(~ - ao) Yo 
YI=----

1'1 

Yn-I 

lX - al ).·YI - I'IYO 
1'2 

(x - a n - Z)Yn-2 - I'n-ZYn -3 

1'.-1 

(17) 

(18) 

taken in the re ference sys tem of t he b;, satisfi es the eq ua t ion 

in a ll its components except the last one, where we get 

Hence 

yAy= Xy 2-YnYn_l . 

S ubstit ution in (16) gi \·es 

Act ualJy it is e ntire ly accidental t ha t t he eq uation where 
t h e error occurs shall be t he last one. "T e can start our 
recurrences from both en ds of t he m atri x and jo in the t wo 
sets at an arbi trary p oin t i. The error will t hen occur in 
t he i t h rather than t he last eq uation . 

N ow the correction of t he error of ~ wi ll be most effective 
if the error of the equat ion (15) appears in that particular 
component i t hat is associated with t he absolute ly largest Vi. 
We designate t his particular Yi and add to t he sequence (17) 
another sequence t hat s tarts from t he other end and proceeds 
in opposite direction: 

Y;-I= 1 

Y~-3 
(x - a n-z) Y:-2 - I' n- IY:-I 

I'n-2 

(19) 

We adjust this seque nce to the sequence (17) by mul t ip lying 
every component by 

Yi 
p=,' 

Yi 
(20) 

We now construc t our \·ector Y by choosing l ts components 
from the Y k seri e~ up to k = i, and from t he y~ series from 

The erro r occurs in the ith equ ation a nd we obtain 

A=~+ 1';(Yi-l- ~Y:-I) Yi. 
"ty ;. 

(22) 

The entire process can now be repeated, by rep lac in g A 
by t he new A. This process had such good co nvergence t hat 
a fter two s teps the er ro r was a lready pushed out beyond t he 
10th decimal place. The ent ire set of Ai was t hus obtain ed 
with relatively li ttle diffi culty and with out involved cal
culations. 

After obtaining the Ai, t he P matrix was obtained by re
cursions. Finally, t he product P B gave the matrix U of 
t he eigenvectors U i. T his matrix was t hen normali zed by 
dividing each row by t he square root of t he sum of t h e sq uares 
of t he elem ents of each row. 

The resultant normalized matr ix V' was now tested [or 
orthogonality an d for its eigelwector propE'.r ty. Under 
exact condi t ions we should get 

(io;e k) 

(io;ek) 

(23) 

Actually, in view of t he rounding errors, we do not get zero 
on t he right s ide but two symmetric matrices 

(24) 
and 

(25) 

composed of small eleme nts. \Ye use these P ik and (J"ik quan
tities to correct our solution. \Ye evaluate 

(26) 

In view of t he extreme closeness of some of the eige nvalues, 
t he denominator of (26) becomes sm all for some i, k, a nd t he 
corresponding ' ik not negligible. " ' e now form t he mat rix E, 
composed of t he non-negligib le elements ' ik , wh ile t he d iagonal 
elements and t he negligible ' ik are replaced by zero. The 
corrected V' matri x becomes: 

(27 ) 

T he rows of t he corrected m atr ix g ive us t he p roper e igen
vectors with an accuracy of six decimal places. The Ai, 
evaluated from t hese vectors, agreed with t he previolls Ai to 
10 decimal p laces. Com parison with t he known exact values 
showed t hat a ll the 10 decimal places came out correctly for 
each one of t h e roots.8 

Appendix 3. Modification of the Method of " 
Hestenes and Karush 

The method of fi xed a (see footnote 3) was used i n the 
calcul ation . This consists in passi ng from one approxima
t ion x for a characteristic vecto r to t he next approximation x' 
by means of t he formul a 

x'=x+aHx) 
where 

H x) = Ax - J.l (x )x, (x ) = (x,Ax) . 
J.l (x,x) 

H ere a is a positive constant (independent of x) of t he form 

0<f3< 1, 

8 rrbo entire numerical work was carried out by ~/Ii ss Fannie 1\1. Gord on. 
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where (3 is op tim all y near 1. The abo ve formul a for x ' is 
used to obtain con vergence to an e ige nvector VI belongin g to 
}, I , t he largest (algebrai cally) eige nvalue. F or a n eigen
vector Vn belongin g t o },n , t he sma ll es t eige n value, t he formula. 

x' =x- a~(x ) 

is to be used . In pract ice a is at t he disposal of t he compu ter, 
and he may change its va lue a t different st ages of t he cal cul a
t ion according t o his di sposit ion and in sight. The changes 
are eas ily m ade by h aving a t hand se veral punched cards 
carry in g different valu es of a and replacing at any t ime the 
s ingle card in t he deck carry in g the value of a by a nother 
such card. 

Th e fixed a method is closely related t o t he power meth od. 
T o illustrate t his, s uppose we a re comput in g t he least va lue 
},s . Afte r a certain number of steps t he va lue of I' (x) will 
be essent ially constant from step t o step, t his constant repre
senting our comp uted value of },s. Cont inued cal culat ion 
leads to improvement in t he vector x. Th e ite rat ion formula 
wi t h H x) replaced by it s expression in terms of A x a nd 
x beco mes 

x ' = a {(~+ I') I- A} x , 

with I t h e ident ity mat rix . That is , approx imately , 

x'= a {({3'},I + ( l - {3' ) },s) J - AI x , 

where {3' = l /{3 is ncar 1. Thus, except for a no rm ali za t ion 
fac tor a, t hi;; i t ile power method a pplied to },; I - A wit h 
},; near },I. In e sence we hav e shifted t he origin close to 
},I , the reby making },S the dominating eige nvalue in a bsolute 
value. The normali zing fa ctor a guara ntees t hat t he lengths 
Ixl wilL in crease a nd converge . 

The above procedure was used to cal cula te a ll eige nvalues 
and eigenvecto rs by the techniq ue of ort hogonali zin g to 
ei"env ectors already known , in t he mann er described in t he 
te~t. As more eigenvectors are obtain ed t he pa ra meter a 
is allowed t o ass um e a grea te r value, t his value in each new 
case be in g of t he form {3/ lY{, where lYJ is t he spread of t he 
eigenvalues for the subspace in quest ion. Thus if },S a nd Vs 
a re known , t he itera tion operates in t he 7-dimensional s ub~ 
space orthogonal to Vs, where t he appropriate value of M 
is },I - },' . 

Mult iple roots offer no diffi cul ty. Thuin the case of 
},. = A5= 1000, t he itera tion first leads to t he eigenvalue 
A. = 1000 and to ome corresponding eigenvectors V,. Run
ning orthogona l t o v, (and other known eige nvectors) we 
obtain h5= 1000 a nd the eigenvecto r Vs ort hogo nal to v, . 

Close roo ts may be t reated as foll ows. At first t he close 
roots are ignored and because }q , h2, },a are nearl y eq ual a nd 
A6, },7 are nearly equal one obtain s by t he ort hogonali zat ion 
technique e ight independ ent vectors 

ins tead of the t rue eigenvecto rs 

Ilere 1<1, U 2, U3 a rc linear combinat ions of VI, V2 , Va and 1/ 6, u, 
a re linear combinat ions of vo, v, (see t ext). To fin d t he first 
vecto r VI we a pply our i te rat ion procedure in t he 3-space 
spa nn ed by t hese vectors . That is, we ru n or thogo na l to 
V" V5, Uo, U" v. a nd use a (large) a appropri a te t o t he 3-space. 
Having obtained VI we run or t hogo nal to VI to obtain V2. To 
ob tain Va we do not require t he a iteration met hod ; we need 
only ort hogonalize to VI and V2 in t he 3- pace. Notice t hat 
t his procedure of obta inin g VI, V2, Va does not rcqu ire kn owi ng 
u" U " Ua. Of co urse if one decided to separate Vo and V7 

firs t. one would need t o know these last three vector b ut not 
U 6 aild u,. 

In connection wit h orthogonalizin g to kn own cigenvecto[·s 
we remark t hat if x is already or t hogo na l to uch vector 
t hen in t heory x ' a nd all success ive approximations will be. 
In practice 110wever t he ort hogonali ty is lost by round-off 
and must be regularly resto red by direct calculation. 

The precedin g method was, in t he main, t he one used in 
the computation. However, t here is a varia t ion of t he pro
cedure t. hat is of interest. It t akes a dvan tage of t he fact 
t hat we may ma ke t he i teration scheme move upward or 
downward on the cale of eigenva lues a nd ena bles us t o 
red uce t he number of or thogonaJi zations. Con ider t he 
probl em of fin d ing VI, V2, Va. "Ve first app ly the ite rat ion 
procedure t hat in creases I' (x) , Lhat is, x ' =x+ a~, with an a 
appropriate to t he whole space. A fter a ce rtain number of 
steps we have eliminat ed th e lo wer eigcn vectors a nd a re 
operat in g in t he in varia nt 3-space of VI , V2, Va. "Ve now in
crease a to a val ue corresponding to t he t hree space. I n t hi 
way wc separate out VI. In ord er to a void Lhe int roduction 
of higher eigenvectors t hrough round -ofT, we intersperse use 
of t he la rge r va l ue of a wi Lh use of t he older sma ller value 
(t his replaces t he o rt hogo nali zat ioll to V" vs, U6 , 1<" U s of t he 
prccedin g met hod). The next vector v, is obtained in t he 
a me way, ma intai ning o rt hogo na li ty . t o VI. The vector Va 

is found by orthogo na li zin g to VI a nd V2. T o apply t his 
techniq ue to Vo a nd v, we first find Vs a nd t hen use t he a 
iterat ion with decreasin g J.I , t ha t is, x' =x- a~. T hen v, is 
found by orthogo nali zin g onl y to Vs, a nd V6 by or thogonali zin g 
to Vs a nd V,. 

If we a nalyze eit her of Lhe a bove methods of sepa rat ion 
in t he way we earlie r compa red t he fixed a m t hod wi t h the 
power met hod, we find again t hat in t he later stages of t he 
i te rat ion we are apply ing t he power met hod. We first elimi
nate a ll bu t t he inva ria nt subs pace corresponding to t he close 
eigenvalues, a nd t hcn, in essence we use t he power mcthod on 
a linear combina tion of A and I t hat will separate o ut the 
des ired vecto rs. Thus, t his met hod is close ly related to 
t hat expla in ed at t he end of t he t ext. 

The fin al eigenvalues were found wi t h a relat ive error of 
lO- s. The absolute in t he components of each eigen vector 
were dete rmin ed wi t h an a bsolu te erro r of ]o-a, when t he 
largest componen t of each vector is taken to be 1. 

Los A NGELES, Septemb er 2 , 1950. 
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