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Maximum Likelihood Estimates of Position Derived From 
Instruments 1 Measurements Performed by Hyperbolic 

Eugene Lukacs 

Certain electronic s urveyi ng inst ruments- referred to as hyperbolic inst ruments­
determine the difference between the distances fro m two fixed stations to a moving object. 
Data obtained from a s in gle obse rvation yie ld one relation between t he t hree coo rdi nates of 
the moving object a nd rest ri ct it to a hyperboloid of revolution. To locate a position in 
space, obser vations from at least t hree pai rs of stations are needed. If more than t hree 
observations are taken, more than t hree eq uations for the three coordin ates are obtained. 
In general t hese equation s will not be compatible ; it is then a statistical problem to find a n 
estimate for the unknown position . In th is paper maximum likelihood estimates a re 
obtained for positions in space derived from such hyperbolic data. 

1. Introduction 
Several electronic surveying instruments have 

been developed in r ecen t years. These instrum ents 
utilize the Doppler effect 2 3 and are designed to 
locate the posi tion of a moving object. In this 
paper we are considering measurements obtained 
by using certain types of these instruments, which 
are often referred to as hyperboli c instl'umen ts. 
Hyperbolic instruments, such as Raydist (see foot­
note 2), determine the d ifi'erence between the 
distances from two stations to a moving object. 
Da ta obtainable £l'om one observation (using one 
pair of stations) yield one relation among the three 
coordinates of the moving object. To locaLe a 
position in space from hyperbol ic data, at least 
three observations are needed. If more than three 
observations are taken , more than three cquations 
for the three coordinatcs are obtained. In general, 
these equations will not be compatible; it is then a 
statistical problem to find an estimate for the 
unknown posi tion. The use of exactly three obser­
vations is justified if it can be assumed that the 
data are not affecLed by any observational errors. 
In general, this assumption is not rcalistic and should 

. not be made without a thorough investigation. It 
appears desirable, therefore, to use more than the 
minimum number of observations and to estimate 
the location of the moving object by statistical 
methods. The purpose of this paper is to obtain 
maximum likelihood estimates for positions in space 
derived from hyperbolic data. 

2 . Formulation of the Assumptions and the 
Problem 

We denote by N?,4 the number of stations 
S,,(a= 1,2, .. . N ) and by (a"l ,a ,,2,aa3) the known 
coordinates of the station S". Let P be the unknown 
position of the moving object and (01, O2, 03) be the 

I An un classified treatment ollhc mathemalical porlion 01 a class ified Navord· 
report written by the author while a member 01 the staff 01 the U. S. Naval 
Ordnance Test Station, Inyokern , Calif. 

2 J . F. McAllister, Measuring velocity 01 V- 2 rockcts by Doppler effect, 
Tele·Tech . 6, No.2, p. 56 to 5!l and 129 (1947) . 

3 Charles E . Hastings, Raydist- a radio navi gation and tracking system, 
Tele·Tech. 6, No.6, p. 30 to 33 and JOO to 103 (June 1947). 

coordinates of P . A single observation based on 
the stations Sa and SII gives then a determination of 
the distance PSa-PS/I. If N stations are available 
it is possible to make at most 

(11) 
N(N- l ) 

2 

observations based on different pairs of stations. 
However, not all these observations will be used in 
practice. Let n~ [N(N- l )J/2 be the number of 
observations actually taken. lYe make the follow­
ina- assumptions: 
(I ) The hyperbolic measurements Z,,/I are observa­
tions on n independent random variables Z"/I ' The 
variatl's Z "II have rectangular distributions with mean 
J.t a/l and common range 2r. Further Z/la = - Z ,,/I and 
Z/I" =-Z,,/I' 
(II) The parameters of the n rectangular distribu­
tions may be expressed in terms of the coordinates 
of the unknown poin t by means of the formui a 

E(Z"/I)= J.t "II '-= ~~(Oi - a"i)Z- -J~(Oj- alli)2. (1) 

(III) The distances da and d/l from the position of 
the moving object at time t= O to the stations Sa 
and SII, respectively, satisfy the inequality 

(2) 

The nature of the problem, as well as its solution 
are to a great extent determined by assumption (I). 
To justify this assumption it is necessary to describe 
briefly how hyperbolic data are obtained. 

It is desired to determine the instantaneous loca­
tion of a moving object. A transmitter is carried 
in the object and emits a continuous signal of fre­
quency fo. A second transmitter (the reference 
transmitter) emits a signal of a frequency ff 0, slightly 
difi'el'ent fromfo. Each station receives both signals 
simultaneously. A certain beat frequency n" is 
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thus associated wit.h each st.ation 8 a; na depends on 
the velocit.y component of the object away from 8 a 

and on t.he frequencies jo and j' o. To obtain an 
observation two stations 8 a and 8{3 have to be linked 
by wire or by radio The frequencies na and n{3 
give t.hen a beat. frequency; t.he quantit.y recorded is 
t.he number of cycles na{3 of the beat. frequency signal 
occurring during the time of observation. It can be 
assumed that t.he observation Zaf3 on Z a{3 can be sat.is­
factorily approximated by a linear function of rl a{3 
given by 

(3) 

In this formula c is t.he speed of light.. The frequency 
n a{3 may be recorded continuously to permit reading 
na{3 to fractions of a cycle. Alt.ernat.ively it is possible 
to devise a counter that. registers full cycles only.4 
In eit.her case it is easily possible t.o det.ermine a 
range for t.he reading error of rlaf3 (and therefore also 
of Zaf3)' Moreover, t.he recording devices are of such 
a nat.ure that any error within the possible range is 
equally likely to occur. It seems, t.herefore, quite 
realistic t.o assume t.hat t.he errors have a rectangular 
distribution about zero with a certain range. This, 
however, is equivalent to assumption (1). Equat.ion 
(2) is a condition imposed on t.he location of the 
st.ations. As the half range r is rather small (2) 
implies hardly more t.han da > d{3 . This considera­
t.ion shows that (2) is not a very serious restriction. 
The aim of t.his paper is the determination of a 
maximum likelihood estimat.e of the unknown posi­
tion. That is, the unknown coordinates 01, O2 , 03 

have to be determined so t.hat. t.he greatest. possible 
probability is given to t.he actual observations. This 
discussion will be based on assumptions (1), (II), 
and (III). 

3. The Maximum Likelihood Estimate 

L etja{3(z) be the frequency function of the random 
variable Z a{3. According to assumption (I ) 

The likelihood function 5 assumes, t.herefore, also 
only two values, the value (1/2r)" and the value zero. 
1£ one wants to determine the unknown parameters 
01, O2, 03 so t.hat t.he great.est. possible probability is 
given to t.h e actual observat.ions, one has only to 
chose the parameters so that t.he likelihood function 
is not zero. This is the case if and only if each 
observat.ion Za{3 falls within the range of Z af3' 
That is, t.he likelihood condit.ion 
19~1i.astingS Bulletin R- 23, Complete Raydist tracking system for missiles (Sept. 

. ' A description of the maximum l.ikelihood method and a description of the 
lIkelihood fun ctIOn may be found Ill, H . Cramer, Mathematical M ethods of 
Statistics, p. 498 (Prin ceton Univ. Press, Princeton, 1946). 

(4) 

must be sa tisfied for the n pairs (a,{3) used. From 
(1) it. is seen that the likelihood condition (4) consists 
of a set of inequalities involving 01, O2, 03. A point. 
(01, O2 , ( 3) of t.he parameter space is said t.o be a 
maximum likelihood estimate if it.s coordinates 
sat.isfy the maximum likelihood condition. In gen­
eral, inequalities (4) will not have a unique solut ion. 
Eit.her all t.he points of a certain region in the para­
meter space will sat.isfy (4), or it may happen t.hat 
no maximum likelihood estimate exists. If maxi­
mum likelihood est.imates exist, one may consider 
the set of all t.he maximum lih.:elihood est.imates. 
This set will be called the maximum likelihood region. 
Any poin t. in t.he int.erior of the maximum likelihood 
region may be used as an estimat.e for the unknown 
position. The most important problem is t.he det.er­
mination of the maximum likelihood region. This 
problem will be solved by expressing t.he boundaries 
of t.his region in terms of the act.ual observations. 
This requires certain t.ransformations of the likeli­
hood condit.ion (4). If we subst.it.ut.e t he value of 
fJ. af3 from (1) and transpose we obtain 

We next introduce t.he following not.ation 

(4b) 

From (4a) we see nl=no-2rjo/c<no. 
In the following we distinguish three cases, namely, ~ 

Case (A): 
Case (B ): 
Case (C): 

naf3>no 
n af3<nl 
nl~naf3~no. 

From (3) it is seen t.hat 

Za{3- r> O and a fortiori Za{3+r> O in case (A) } 
Za{3+r< ° and a fortiori Za{3-r< ° in case (B) 

Zaf3+r~ ° ~ Za{3-r in case (0). 

(5) 

We first consider the condi tions imposed by a sing-Ie 
observation Zaf3 based on an arbitrary pair of stations. 
It is no loss in generality if we assume a= 1 and f3 = 2. 
To simplify the discussion we choose an appropriate 
system of coordinates. Let t.he position of t.he mov­
ing object at t.ime t= O be the origin 0 and choose the 
Ol-axis so as to be parallel to the line joining 8 1 and 
82 the 02-axis should be in the plane 0818 2 and per-

198 



I 
I 

pendicular to 8 18 2 • 6 The 03-axis is perpendicular to 
the 0102-plane; finally some orienta tion is given to 
the axes. With this choice of coordinates, we have 

(6) 

W e shall write all = al, a2l = a2; a12 = a22= b. 
To make the fo r mulae more concise, we in trodu ce 

the following notation: 

- * [ I [ Z = Z21, r , 

m= (al+ a2)/2, 

d=(a1 - a2)/2; d*= (a2- al)/2, 

'22 
T1= m - 4d; 

* ('2*)2 
T 1 = m - 4d*' 

Z2 
T2= m - 4d; * ~*l 

T 2 = m - 4d*' 

2d *_ 2d* A 1= ---=-; A 1 - - *' Z Z 

A _ 2d. 
2-Z-' 

A i= 2d*. 
z* 

(7) 

(7a) 

(7c) 

(7d) 

(7 e) 

(7f) 

(7g) 

(7h) 

Considering that according to as s ump t ion (I ) 
Z21=-ZI2, we obtain from (7) and (7a) 

R~-m-.§.2= 4d (T2- OI ) 

R~-R~-Z2= 4d(T, - 81) 

R~-m-~2= 4d (0 1- Tn 

R~-Ri-Z2 = 4d(0,- Tn 

(9) 

W e next r ewrite the maximum likelihood condi tion 
for each of the three cases (A) , (B) and (C) . 
Case (A) 

From (5), (7) and (7a) i t is seen tha t e=Z I2- r, 
Z=ZJ2 + r. It follows th en from (4a) that 0< .£ + 
R2 ~ RI ~ Z + R2• By squaring and tr ansposing we 
obtain the inequalities 

R2 R2 2 R2 R2 - 2 
R < 1 - 2-g d R > ,- '2- Z • 

2 = ') an 2= 2 
~~ Z 

Considering (9), (7g), and (7h), we obta in from th ese 
r elations the final form for the m aximum likelihood 
condi tions 

In an analogo Ll s manner we obta in the likelihood 
condi tions in Case (B ). 

(B .l) RI~A: (T:- OI) a nd (B.2) R1;;;Ai (Ti- oJ)' 

I t is seen that th e inequalities (B.1 ) and (B .2) may 
b e ob tained from (A.l) and (A.2) by wri ting RI in­
stead of R2 and by attaching an asterisk to th e A 
and T symbols. 

Case (C ) Similarly, we ob tain th e likelihood concli­
tions 

(C .1 ) R2;;; A 1(T1- 01) a nd (C.2 ) R t ;;; At(Tt- 01) ' 

I t is seen t ha t (C.l) =(A.2 ) a nd (C .2) = (B .2) 

4 . Discussion of the Likelihood Condition 

B efore discussing the likelihood condi tion, i t is 
desirable to derive a simple relation. 

.§.*= z and z* = .§:. 
From (2) we have d1> d 2; in our coordinate system 

(8) this means 

W e see also 
d*=-d, (8 a) 

and therefore 

(8b) 

from these r elations we see 

A simple computation gives R/ - R22= - 4d(01- m) 
o tha t we have with the aid of (7e) and (7f) 

, If the origin is located on t he line SIS, tbe three poin ts OS, S, do not determine 
8 plane. In this ease the O,-axis may be chosen in an arbitrary plane so as to 
intersect tbe 8,·axis perpendi cularly. 

a~>a~ or [a1[>[ a2[ . 
From this we see easily 

sign d = sign (al - a2) = sign al=-sign d*. (10 ) 
H ere sign x stands for "th e sign of x " , that is, 
sign x = + 1 if x > 0 and sign x = - 1 if x < O. 
W e first discuss the case (A) and start with condi­
tion (A.1). It is seen immediately that (A.1 ) can 
only be satisfi ed if A 2(T 2 - 01) ;;; O. 

Considering (7h) and (10) this n ecessary condition 
can be written 

T2 sign al;;; 01 sign al' (11 ) 

This condition r estricts the point P to a half space 
d etermined by the obser vations and th e location of 
the stations. In the following we assume that (ll ) is 
satisfied . We can, therefore, square (A.1 ) and obtain 
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R~ ~ A~(T2- 01)2. As m = (01-a2)2+(02- b)2 + O~, 

it follows that 

(02- b)2+ O~ ~ (A~- I ) Oi-2(A~T2- a2) 01 +(A~T~-a~). 
(12) 

We have to distinguish two possibilities (a) If 
A~= 1 then from (7h) and (7f) T2= m - d = a2. 
The right-hand sideof (12) is then zero so that (12) can 
only be satisfied for the points of the line O2= b, 
83= 0. 

W e consider next the case where (b) A~ ~ 1. From 
(7f) and (7h) it is seen easily t hat 

(12a) 

Using thi s formula we obtain by a simple computa­
t ion from (12) 

(A~- I ) (01- m)2-(02- b)2- 0~~ A~~~t)2. (12b) 

The equali ty sign in (I2b) determines a quadric 
surface of revolution Ql' The center of this quadric 
is th e point (m ,b,O); the axis of r evolution is parallel 
to the Ol-axis and is therefore the line joining the two 
stations 8 1 and 8 2 • Th e surface Ql is a hyperboloid 
if A~> 1 and an ellipsoid if A~< 1. D enote by u 
the real (resp. major) semiaxis and by v the imaginary 
(resp . minor) semiaxis of QJ' Then it is seen from 
(12b), (7h), and (7f) that 

(13) 

L et 2e be the distance between the two focal 
points of Ql, then e2= u2+v2sign(A~- I ) or from (13 ), 
e= d and u =g!2. 

1 
e=d and u = 2" g. (13'a) 

The focal points of the quadric QI arc therefore the 
stations 81 and 8 2• Th e quadric surface Ql divides 
the space into two regions, we call the region con­
taining the cen ter the interior of Ql and its comple­
men t the exterior of Ql ' We can then say that 
condition (A.!) is satisfied outside Ql if A~> 1 and 
inside Ql if A~< 1. If A~= l then (A.!) is satisfied 
only on poin ts of the line 02= b, 03= 0 for which 
A 2= sign (Tz- OJ) . 

W e next consider condition (A.2). This ine­
quality is satisfi ed in two differen t regions. In the 
first region the right-hand side of (A.2) is positive, 
in the second the right-hand side of (A.2 ) is negative 
or zero. W e assume first that the right-hand side 
of (A.2) is positive. By squaring and transposing 
we obtain then 

[ Again we distinguish two possibilities: (a) If A~= 1 
then from (7e) and (7g) T 1= m-d= a2' The right­
hand side of (14) is then zero ; in this case (14) is 
satisfied for all points ; (b) if Ai ~ 1 we see easily 
from (7e) and (7g) that 

(14a) 

Using this formula (14) reduces by a simple compu­
tation to 

The equality sign in (14b) determines again a 
quadric surface of revolution Q2' The center of this 
quadric is the point (m, b, 0); the axis of revolution 
is again the line joining the stations 8 1 and 8 2, The 
surface Q2 is a hyperboloid if A12> 1 and an ellipsoid 
if A I 2< 1. D enote by p the real (major) semiaA"is 
and by q the imaginary (minor) semiaA"is of Q2' 
Then it is seen from (14b), (7g) and (7e) that 

Let 2j be the distance between the two focal points 
of Q2 . By an argument similar to the one used 
befor e, we obtain 

-z 
j = d and P= 2"' ( lSa) 

so that the quadrics Ql and Q2 are confocal. We 
summarise these results in the following statement. 

If the right-hand side of (A.2) is positive, the 
condition (A.2) is satisfied inside the quadric Q2 
when A l 2> 1, but outside Q2 when A l 2< 1. In 
case Aj2= 1, condition (A.2) is satisfied for all points 
for which Al =sign (Tt - 01 ) . 

We inves tigate next the second region in which 
(A.2) is valid by assuming that, the right-hand side 
of (A.2) is nonpositive; that is 

(I5b) 

From (7g) and (10) we see that sign Al=sign al so 
that (A.2) is satisfied if 

(15c) 

From (15c) and the n ecessary condition (11) it is 
seen that (A.2) is satisfied if 01 belongs to the interval 
(T l' T2) in case (15b) holds . Therefore, (A.2) is 
satisfied either in the above-mentioned region deter­
mined by Q2 respec tively in a half space or in a region 
bounded by two planes perpendicular to the line 
joining 81 and 8 2• 

In case (A) we have ~=zl2-r>0 so that z>~. 
Therefore, we see from (7g) and (7h) that A22> A12 
and using also (lla) and (15a), u < p . We are now 
ready to determine the region where (A. l ) and (A.2) 
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are satisfied simultaneously. We have to distinguish 
five possibilities. 

1. A22> A12> 1. It is easily seen that the poin.t 
(T2,b,0) [resp. the point (Tl,b ,O] is on the line seg­
ment joining the vertices of Ql (resp . Q2) . From 
our previous results we see that (A.I) and (A.2 ) are 
satisfied in one-half of the hyperbolic shell bounded 
by Ql and Q2. 

2. A22> I = A j 2. The point (T"b ,O) coincides 
with 82, while (T2, b,O) is on the line segment joining 
the vertices of Qj . Conditions (A.I) and (A .2) are 
satisfied in one-half of the outside of the hyper­
boid Ql. 

3. A22> I > A j 2. The point (T l,b,O) is then out­
side Ql and outside Q2, while (T2, b,0) is inside Ql. 
The region consists again of one-half of the outside 
of the hyperboloid Ql. 

4. A22= I > AI2. In this case conditions (A.I) and 
(A .2) are satisfied only by points of the line 8,82, 
which obey (11 ). 

5. If 1> A22> A12 no region exists wh ere (A. I) and 
(A .2) are simultaneously satisfied. It is worth while 
to remark that cases (2), (3), (4), and (5) are of 
little practical interest. From (7g), (7h), and (10) 
it is seen that A,2 ~ 1 (respectively A22 ~ 1) is equiv­
alent to 

A situation where these relations hold is conceiv­
able but unlikely as long as r is small. This is seen 
if we remember that the difference bctween two 
sides of a triangle is always less than i ts third side. 

Case (B) can be discussed independently by repeat­
ing the arguments used for case (A ). 

We can then summarize the results by distinguish ­
ing the following five cases: 

1. A ,2> Ai > 1. In this case (B .l) and (B .2) are 
satisfied in one balf of the hyperholi c shell boundcd 
by Ql and Q2 . 

2. A12>1= A22.} COndi.tions . (B.I) and (B.2) are 
3 A 2> 1> Ao2. s~tlsfied lD one half of the out-

. 1 - side of Q2. 
4. A[2= 1> A22. Then (B .I) and (B.2 ) are sa tis­

fied only by points of the line 8 j 8 2 that obey (11 ). 
5. If 1> A[2>A22 no region exists where botb 

(E.1) and (B .2) are simultaneously satisfied. Cases 
(2), (3), (4), and (5) offer again little practical 
interest. 

We finally consider Case (C) with the conditions 
(C.1) = (A.2) R2 ~Al(Tl- (j,) and (C.2)= (B.2) 
R I ~AI*( TI *- (j, ). It is seen that (C. 1) is identical 
with (A.2) and (C.2) with (B .2), therefore, the pre­
vious results can be applied immediately . It is 
advisable to remark that no necessary conditions 
[similar to (ll )] exist; however, (C.1) as well as (C.2) 
are sa tisfied if the right-hand sides are nonpositive. 
Considering the previous results, case (0) may be 

summarized by distinguishing the following five cases. 
1. A~>Ai> l [or Ai>A~> l]. Conditions (C. 1) 

and (C.2) are satisfied in a simply connccted rcgion 
bounded by one nappe of 01 and by one nappe of 02 
so that the convex side of one nappe is tUTned toward 
8 1, while the convex side of the other nappe is 
turned toward S2. 

2. A~>A~= l [or A~>A~= l] . The conditions 
(C .1) and (C.2) are satisfied in the region that is 
bounded by one nappe of one of the quadrics and 
that contains the center. 

3. A~> l>Ai [or A~> l>A~]. The condi tions are 
again sa tisfied in the region that is bounded by one 
nappe of one of the quadrics and that contains the 
center. 

4. A~= l>A~ [OrA~= l>A~]{the conditi?ns a!·e 
5. l >A~>Ai [or l >A~>A~] fi:~{YWheIe satis-

In case (C) tbe observation gives only little infor-
mation about the location of the moving object. 
Howcver , case (C) can occur only if /zlz/<r. This 
will happen only for a small portion of thc path of 
the moving object if r is small . Moreover, it should 
be possible to locate the stations in such a way that 
ca e (C) occurs only for one observation at a time so 
that this possibility should not cause any difficulty 
in locating the moving object. 

5 . The Maximum Likelihood Region 

In section 2, it was assumed that n hyperbolic 
observaLions (based on n pairs of stations) were 
taken to determine the posi tion of the moving object. 
In section 3 we derived the likelihood condition 
imposed by a single observation and discussed in 
section 4 the resulting information on the location of 
the moving object. It was shown that the moving 
object was confined to a cer tain region in space with 
known boundaries. We finally consider all the n 
observations. Each observation determines a region ; 
if there exists a point et in the parameter space 
common to all th ese regions then a maximum likeli­
hood region R exists and is identical with this point 
set. The boundaries of Rare hyperboloids of revo­
lution. Any point inside the region R can be con­
sidered to be a maximum likelihood estimate.7 

With an appropriate choice of stations it is easy to 
devise a computational procedure that leads always to 
an interior point of R. If the maximum likelihood 
region becomes small, then it is practically possible 
to use any point interior to R as an estimate for the 
unknown position of the moving object. 

7 The maximum likelihood region cannot increase in size when the number 
of observations increases. On the contrary, it is to be expected that it will 
decrease. 

WASHING 'l'ON, August 18, 1950. 
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