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Maximum Likelihood Estimates of Position Derived From
Measurements Performed by Hyperbolic Instruments'

Eugene Lukacs

Certain electronic surveying instruments

referred to as hyperbolic instruments—

determine the difference between the distances from two fixed stations to a moving object.
Data obtained from a single observation yield one relation between the three coordinates of

the moving object and restrict it to a hyperboloid of revolution.
space, observations from at least three pairs of stations are needed.

To locate a position in
If more than three

observations are taken, more than three equations for the three coordinates are obtained.
In general these oquatlons will not be compatible; it is then a statistical problem to find an

estimate for the unknown position.

In this paper maximum likelihood estimates are

obtained for positions in space derived from such hyperbolic data.

1. Introduction

Several electronic surveying instruments have
been developed in recent years. These instruments
utilize the Doppler effect?® and are designed to
locate the position of a moving object. In this
paper we are considering measurements obtained
by using certain types of these instruments, which
are often referred to as hyperbolic nstruments.
Hyperbolic instruments, such as Raydist (see foot-
note 2), determine the difference between the
distances from two stations to a moving object.
Data obtainable from one observation (using one
pair of stations) yield one relation among the three
coordinates of the moving object. To locate a
position in space from hyperbolic data, at least
three observations are needed. If more than three
observations are taken, more than three equations
for the three coordinates are obtained. In general,
these equations will not be compatible; it is then a
statistical problem to find an estimate for the
unknown position. The use of exactly three obser-
vations is justified if it can be assumed that the
data are not affected by any observational errors.
In general, this assumption is not realistic and should
‘not be made without a thorough investigation. It
appears desirable, therefore, to use more than the
minimum number of observations and to estimate
the location of the moving object by statistical
methods. The purpose of this paper is to obtain
maximum likelihood estimates for positions in space
derived from hyperbolic data.

2. Formulation of the Assumptions and the
Problem

We denote by N>4 the number of stations
Sala=1,2, . N) and by (d,,@a:,a.;) the known
coordinates of the station S,. Let P be the unknown
position of the moving object and (6, 6,, 6;) be the

1 An unclassified treatment of the mathematical portion of a classified Navord-
report written by the author while a member of the staff of the U. S. Naval
Ordnance Test Station, Inyokern, Calif.

2J. F. McAllister, Measuring velocity of V-2 rockets by Doppler effect,
Tele-Tech. 6, No. 2, p. 56 to 59 and 129 (1947).

3 Charles E. Hastings, Raydist—a radio navigation and tracking system,
Tele-Tech. 6, No. 6, p. 30 to 33 and 100 to 103 (June 1947).

coordinates of P. A single observation based on
the stations S, and S; gives then a determination of
the distance PS,—PS;.  If N stations are available
1t 1s possible to make at most

~ N \—1)
(%)

observations based on different pairs of stations.
However, not all these observations will be used in
practice. lLet n=[N(N—1)]/2 be the number of
observations actually taken. We make the follow-
Ing assumptions:

(I) The hyperbolic measurements z,; are observa-
tions on 7 independent random variables Z,;. The
variates Z.s have rectangular distributions with mean
pas and common range 2/'. Further Zs,=—Z,5 and

28a="—Zap-

(IT) The parameters of the n rectangular distribu-
tions may be expressed in terms of the coordinates
of the unknown point by means of the formula

3 3
E(Zu) = oy =] 30— 0P =4 30— as?. ()
1= 1=
(ITT) The distances d, and dz from the position of
the moving object at time =0 to the stations S,

and Sg, respectively, satisfy the inequality

da—d5>r' (2)

The nature of the problem, as well as its solution
are to a great extent determined by assumption (I).
To justify this assumption it is necessary to describe
briefly how hyperbolic data are obtained.

It 1s desired to determine the instantaneous loca-
tion of a moving object. A transmitter is carried
in the object and emits a continuous signal of fre-
quency f,. A second transmitter (the reference
transmitter) emits a signal of a frequency f”,, slightly
different from f,. Each station receives both signals
simultaneously. A certain beat frequency n, 1s
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thus associated with each station S,; n. depends on
the velocity component of the object away from S,
and on the frequencies f, and /. To obtain an
observation two stations S, and Sz have to be linked
by wire or by radio The frequencies n, and n;
give then a beat frequency; the quantity recorded is
the number of cycles n,s of the beat frequency signal
occurring during the time of observation. It can be
assumed that the observation z,5 on Z,s can be satis-
factorily approximated by a linear function of 7.s
given by

¢

Zaﬁzﬁ

In this formula ¢ is the speed of light. The frequency
745 May be recorded continuously to permit reading
N3 to fractions of a cycle.  Alternatively it is possible
to devise a counter that registers full eycles only.*
In either case it is easily possible to determine a
range for the reading error of n.s (and therefore also
of za.5). Moreover, the recording devices are of such
a nature that any error within the possible range is
equally likely to occur. It seems, therefore, quite
realistic to assume that the errors have a rectangular
distribution about zero with a certain range. This,
however, is equivalent to assumption (I). Equation
(2) is a condition imposed on the location of the
stations. As the half range r is rather small (2)
implies hardly more than d,>ds;. 'This considera-
tion shows that (2) is not a very serious restriction.
The aim of this paper is the determination of a
maximum likelihood estimate of the unknown posi-
tion. That is, the unknown coordinates 6, 6,, 05
have to be determined so that the greatest possible
probability is given to the actual observations. This
discussion will be based on assumptions (I), (I1),
and (I1I).

na6+ da_dﬁ‘ (3)

3. The Maximum Likelihood Estimate

Let fa5(z) be the frequency function of the random
variable Z,s. According to assumption (I)

1. )
— if pap—7 =2 S paptr.

.faﬁ(Z): 2r

0 otherwise

The likelihood function® assumes, therefore, also
only two values, the value (1/27)” and the value zero.
If one wants to determine the unknown parameters
61, 65, 05 so that the greatest possible probability is
given to the actual observations, one has only to
chose the parameters so that the likelihood function
is not zero. This is the case if and only if each
observation z.s falls within the range of Z,.
That is, the likelihood condition
191 7Hastings Bulletin R-23, Complete Raydist tracking system for missiles (Sept.
5 2. description of the maximum likelihood method and a description of the

likelihood function may be found in, H. Cramér, Mathematical Methods of
Statistics, p. 498 (Princeton Univ. Press, Princeton, 1946).

.uaB_Tézaﬁé #aﬁ‘}"ry (4)

must be satisfied for the n pairs («,8) used. From
(1) it is seen that the likelihood condition (4) consists
of a set of inequalities involving 6, 6, 6;. A point
(61, 65, 6;) of the parameter space is said to be a
maximum likelihood estimate if its coordinates
satisfy the maximum likelihood condition. In gen-
eral, mequalities (4) will not have a unique solution.
Either all the points of a certain region in the para-
meter space will satisfy (4), or it may happen that
no maximum likelihood estimate exists. If maxi-
mum likelihood estimates exist, one may consider
the set of all the maximum likelihood estimates.
This set will be called the maximum likelihood region.
Any point in the interior of the maximum likelihood
region may be used as an estimate for the unknown
position. The most important problem is the deter-
mination of the maximum likelihood region. This
problem will be solved by expressing the boundaries
of this region in terms of the actual observations.
This requires certain transformations of the likeli-
hood condition (4). If we substitute the value of
kas from (1) and transpose we obtain

3 3
Zaﬁ_r§\/_2(0i_aai)2_ 2 (0:—0ap) = 2apt+r
i=1 i=1
(42)

We next introduce the following notation

ng=—2° (@, — dp—1)
4 (4b)
mi=— @~y

From (4a) we see n,=mn,—27f,/c<n,.
In the following we distinguish three cases, namely,

Case (A): Nag >Ny
Case (B): Nag< M
Case (O): N1 = Nag = No.

From (3) it is seen that

2as—1 >0 and a fortiori z,5+7>0 in case (A)
2ap+1r<0 and a fortiori z,3—7< 0 in case (B) (5)

2ap 7= 0= 245—r in case (O).

We first consider the conditions imposed by a single
observation z.s based on an arbitrary pair of stations.
It is no loss in generality if we assume a=1 and g=2.
To simplify the discussion we choose an appropriate
system of coordinates. Let the position of the mov-
ing object at time t=0 be the origin O and choose the
f,-axis so as to be parallel to the line joining S; and
S, the 6,-axis should be in the plane OS.S; and per-
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pendicular to S,S;.° The 6;-axis is perpendicular to
the 6,6,-plane; finally some orientation is given to
the axes. With this choice of coordinates, we have

A1 7 gy
G12= 022 (6)

A13=3=0

We shall write ayy=ay, tosy=a,; a1=a5,=Db.
To make the formulae more concise, we introduce
the following notation:

2=|z1a—r); g¥=|zy—r|, (7)
E:|212+7"} z* } 1—;—)‘[, (7a)
R,=P8,=(6,— a.)?+(6.— b)>+ & for i=1,2, (7b)
m=(a:+a,)/2, (7¢)
d:(al——a2)/2; d*:(az—(l1)/2, (7d)
52 Z%\2
Ti=m— Tf:n—%)*, (7€)
T:=m VL 1=y Wi (71)
*
Alz%d; AT=%: (79)
*
4,=22 4=2T (7h)

Considering that according to assumption (I)

2= — 212, we obtain from (7) and (7a)
ei=rlandizt—2" (8)
We see also
d*=—d, (8a)
and therefore
N+T.=T,4+T§=2m (8b)
from these relations we see
Af=—A,and A¥=—A,. (8¢)

A simple computation gives R*— Ry*=—4d(6,—m)
so that we have with the aid of (7¢) and (7f)
8 If the origin is located on the line S1S the three points 0.8;S: do not determine

a plane., In this case the f:-axis may be chosen in an arbitrary plane so as to
intersect the #;-axis perpendicularly.

957570—51——6

R:—R;—z?=4d (T.— )
Ri—R;—7*=4d (T,—6))

(9)
R—R;—22=4d(6,—T7)

Ri—R}—7°=4d(6,—T%)

We next rewrite the maximum likelihood condition
for each of the three cases (A), (B) and (C).

Case (A)

From (5), (7) and (7a) it is seen that z==z,—7,
Z=zptr. Tt follows then from (4a) that O<_2
R, =R, £Z+4R,. By squaring and transposing we
obtain the inequalities

2 )2 2 a2
P E ZR; and R,> "' é%——/“

Considering (9), (7g), and (7h), we obtain from these
relations the final form for the maximum likelihood
conditions

(A1) R, = Ay(T.—

In an analogous manner we obtain the likelihood
conditions in Case (B).

(B.1) R, A5 (T5—6) and (B.2) B,= AF(TF—0,).
It is seen that the inequalities (B.1) and (B.2) may
be obtained from (A.1) and (A.2) by writing R, in-
stead of R, and by attaching an asterisk to the 4
and 7" symbols.

Case (C') Similarly, we obtain the likelihood condi-
tions

(C.1) Rz Ai(T),—6,) and (C.2) R, =
(A.2) and (C.2)=(B.2)

6,) and (A.2) Ro= A(T\—6,).

AT —6,).
It is seen that (C.1)=

4. Discussion of the Likelihood Condition
Before discussing the likelihood condition, it is
desirable to derive a simple relation.
From (2) we have d,>d,; in our coordinate system
this means
ai>aj; or |a,|>as|.
From this we see easily
sign d =sign (a,— a,) =sign a;= —sign d*. (10)
Here sign z stands for “the sign of 2”7, that is,
sign 2=-+1if 2>>0 and sign x=—1if z<0.
We first discuss the case (A) and start with condi-
tion (A.1). It is seen immediately that (A.1) can
only be satisfied if A,(7,—6,)= 0.
Considering (7h) and (10) this necessary condition
can be written
(11)

T, sign a, = 6, sign a;.
This condition restricts the point P to a half space
determined by the observations and the location of
the stations. In the following we assume that (11) is
satisfied. We can, therefore, square (A.1) and obtain
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R3< AY(Ty—6).  As Ri=(6,—a2)*+(6:— b)*+ 6,

it follows that

(0,—b)*+ 65 < (A3 — 16— 2( ATy, — @) 01+ (AZTE—ai).

(12)

We have to distinguish two possibilities (a) If
A2=1 then from (7h) and (7f) To=m—d=a.,.
The right-hand side of (12) is then zero so that (12) can
only be satisfied for the points of the line 6,=b,
03:0.

We consider next the case where (b) A3 1. From
(7f) and (7h) it is seen easily that
AT, —a,=m(A2—1). (12a)

Using this formula we obtain by a simple computa-
tion from (12)

@)
Ai—1

ATy —a)?

(43— 1) (Bi—m)*— (6, — by — &= (12b)

The equality sign in (12b) determines a quadric
surface of revolution ;. The center of this quadric
is the point (m,b,0); the axis of revolution is parallel
to the 6;-axis and is therefore the line joining the two
stations S; and S,.  The surface @, is a hyperboloid
if A2>1 and an ellipsoid if A3<1. Denote by u
the real (resp. major) semiaxis and by » the imaginary
(resp. minor) semiaxis of ;. Then it is seen from
(12b), (7h), and (7f) that

w?== and »? é |Az—1]. (13)

,.MIN

Let 2¢ be the distance between the two focal
points of @, then e*=wu*-+v’sign(A3—1) or from (13),
e=d and u=z/2.

2 (134a)

bO| —

e=d and u=

The focal points of the quadric @, are therefore the
stations S; and S,. The quadric surface @, divides
the space into two regions, we call the region con-
taining the center the interior of @, and its comple-
ment the exterior of ;. We can then say that
condition (A.1) is satisfied outside @, if A2>1 and
inside @, if A2<1. If A3=1 then (A.1) 1s satisfied
only on points of the line 6,=b, 6;=0 for which
A;=sign(T,—8,).

We next consider condition (A.2). This ine-
quality is satisfied in two different regions. In the
first region the right-hand side of (A.2) is positive,
in the second the right-hand side of (A.2) is negative
or zero. We assume first that the right-hand side
of (A.2) is positive. By squaring and transposing
we obtain then
(0,—b)*+ 65 = (A1 —1) 6 —2(AiTi— a0+ AT —al.

(14)

|

Again we distinguish two possibilities: (a) If A7=1
then from (7e) and (7g) Ty=m-d=a,. The right-
hand side of (14) is then zero; in this case (14) is
satisfied for all points; (b) if A7#1 we see easily
from (7e) and (7g) that

ATy —a,=m(Ai—1). (14a)
Using this formula (14) reduces by a simple compu-
tation to

A?(Tl—‘(lz)2.

(Al—1)(6:— —A—1

(6— b)*—

m)*— 0 < (14b)

The equality sign in (14b) determines again a
quadric surface of revolution ;. The center of this
quadric is the point (m, b, 0); the axis of revolution
is again the line joining the stations S; and S;. The
surface ), is a hyperboloid if A4,>>1 and an ellipsoid
if A;2<1. Denote by p the real (major) semiaxis
and by ¢ the imaginary (minor) semiaxis of ().
Then it is seen from (14b), (7g) and (7e) that

p2=E— and ¢*=

1 (15)

‘2'2
Cay ]

Let 2f be the distance between the two focal points
of (. By an_argument similar to the one used
before, we obtain

f=d and pz%; (15a)

so that the quadrics @; and (), are confocal. We
summarise these results in the following statement.

If the right-hand side of (A.2) is positive, the
condition (A.2) is satisfied inside the quadric @,
when A,>>1, but outside @, when A.*<1. In
case A*=1, condition (A.2) is satisfied for all points
for which A,=sign (7,—6,).

We investigate next the second region in which
(A.2) 1s valid by assuming that the right-hand side
of (A.2) is nonpositive; that is

A(T,—6)=0. (15b)
From (7g) and (10) we see that sign 4,=sign a; so
that (A.2) is satisfied if

T, sign a, = 6, sign a;. (15¢)
From (15¢) and the necessary condition (11) it is
seen that (A.2) is satisfied if 6, belongs to the interval
(Ty, T;) in case (15b) holds. Therefore, (A.2) is
satisfied either in the above-mentioned region deter-
mined by () respectively in a half space or in a region
bounded by two planes perpendicular to the line
joining S; and S,.

In case (A) we have Z2=z,—7» >0 so that z >2.
Therefore, we see from (7g) and (7h) that A,*>A/*
and using also (11a) and (15a), u<_p. We are now
ready to determine the region where (A.1) and (A.2)
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are satisfied simultaneously. We have to distinguish
five possibilities.

1. A2 >A7>1. Tt is easily seen that the point
(7,b,0) [resp. the point (77,b,0] is on the line seg-
ment joining the vertices of @, (resp. (»). From
our previous results we see that (A.1) and (A.2) are
satisfied in one-half of the hyperbolic shell bounded
by @, and @,.

2. A*>1=A2 The point (71,b,0) coincides
with Sy, while (75,6,0) is on the line segment joining
the vertices of ¢,. Conditions (A.1) and (A.2) are
satisfied in one-half of the outside of the hyper-
boid ¢,.

3. Ay’ >1>A% The point (7,,b,0) is then out-
side ; and outside (), while (73,b,0) is inside €.
The region consists again of one-half of the outside
of the hyperboloid €.

4. A =1>A% In this case conditions (A.1) and
(A.2) are satisfied only by points of the line S.S.,
which obey (11).

5. If 1>A.2>A,% no region exists where (A.1) and
(A.2) are simultaneously satisfied. 1t is worth while
to remark that cases (2), (3), (4), and (5) are of
little practical interest. From (7g), (7h), and (10)
it is seen that A2=<1 (respectively A,*<1) is equiv-
alent to

12d| < |z12—7| (respectively |2d| < |zi247]).

A situation where these relations hold is conceiv-
able but unlikely as long as » is small. This is seen
if we remember that the difference between two
sides of a triangle is always less than its third side.

Case (B) can be discussed independently by repeat-
ing the arguments used for case (A).

We can then summarize the results by distinguish-
ing the following five cases:

1. A2 >A2>1. In this case (B.1) and (B.2) are
satisfied in one half of the hyperbolic shell bounded
by €, and Q..

2. A2>1=A2

. 2 2

3. A>1>A4% side of (.

4. A*=1>A% Then (B.1) and (B.2) are satis-
fied only by points of the line S,S, that obey (11).

5. If 1 >A*>A" no region exists where both
(B.1) and (B.2) are simultaneously satisfied. Cases
(2), (3), (4), and (5) offer again little practical
interest.

We finally consider Case (C) with the conditions
C1H=A2) R=z=A(T,—6) and (C2)=(B.2)
R =z A*(T*—6,). 1t 1s seen that (C.1) is identical
with (A.2) and (C.2) with (B.2), therefore, the pre-
vious results can be applied immediately. It is
advisable to remark that no necessary conditions
[similar to (11)] exist; however, (C.1) as well as (C.2)
are satisfied if the right-hand sides are nonpositive.
Considering the previous results, case (C) may be

conditions (B.1) and (B.2) are
satisfied in one half of the out-

summarized by distinguishing the following five cases.

1. A3>A7>1 [or A7 >A2>1]. Conditions (C.1)
and (C.2) are satisfied in a simply connected region
bounded by one nappe of @, and by one nappe of @,
so that the convex side of one nappe is turned toward
S;, while the convex side of the other nappe is
turned toward S,.

2. AZ>Ai=1 [or Ai;>A=1]. The conditions
(C.1) and (C.2) are satisfied in the region that is
bounded by one nappe of one of the quadrics and
that contains the center.

3. A3 >1>A7 [or A7 >1>A42]. The conditions are
again satisfied in the region that is bounded by one
nappe of one of the quadrics and that contains the
center.

the conditions are
4. A3=1>A5[or Ai=1>A43]) " " L :
5. 1>A5S A or 1> 43S 4f]|  grerywhere satis

In case (C) the observation gives only little infor-
mation about the location of the moving object.
However, case (C) can occur only if |z,|< ». This
will happen only for a small portion of the path of
the moving object if 7 is small. Moreover, it should
be possible to locate the stations in such a way that
case (C) occurs only for one observation at a time so
that this possibility should not cause any difficulty
in locating the moving object.

5. The Maximum Likelihood Region

In section 2, it was assumed that n hyperbolic
observations (based on 7 pairs of stations) were
taken to determine the position of the moving object.
In section 3 we derived the likelihood condition
imposed by a single observation and discussed in
section 4 the resulting information on the location of
the moving object. It was shown that the moving
object was confined to a certain region in space with
known boundaries. We finally consider all the =
observations. Kach observation determines a region;
if there exists a point set in the parameter space
common to all these regions then a maximum likeli-
hood region R exists and is identical with this point
set. The boundaries of R are hyperboloids of revo-
lution. Any point inside the region R can be con-
sidered to be a maximum likelihood estimate.”

With an appropriate choice of stations it is easy to
devise a computational procedure that leads always to
an interior point of R. If the maximum likelihood
region becomes small, then it is practically possible
to use any point interior to £ as an estimate for the
unknown position of the moving object.

7 The maximum likelihood region cannot increase in size when the number
of observations increases. On the contrary, it is to be expected that it will
decrease.

WasHINGTON, August 18, 1950.
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