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Convergence of Cauchy-Riemann Sums to
Cauchy-Riemann Integrals’

Otto Szasz and John Todd

Two general theorems giving conditions to insure the truth of the relation

lim Z” f(mh) :Lm f(x)dz

h—0 n=1

are established.
1. Introduction

We are concerned with the validity of the equation

lilnizzf(;/,)~fj W (1)

h—+40 =1

where the integral is taken in the Cauchy-Riemann
sense, that is,

j‘(of(;lf)(i;l‘ililll wf(;t)(],(;,
Jo

e—0 J €
w—

There are cases when (1) is meaningless if the sum
and the integral are interpreted in the ordinary way,
but it becomes meaningful and correct if suitable
summability methods are employed. A very simple
case 1s when

f(z)=sin z,

in which (1) is true if both the series and the integral
are interpreted in the (C,1) sense. We do not pro-
pose to consider such cases at present.  We shall also
concern ourselves mainly with the case when the
integrand has no singularity at the origin. Detailed
investigations of the case when there is a singularity
at the origin have been carried out by A. Wintner
[8] 2 and A. E. Ingham [3].

The problem was studied by Bromwich and Hardy
[1] in 1908, and some of the results they obtained are
now found in textbooks. Their results are of the
following type:

If f(z) decreases steadily and if the integral (2)
exists, then the series converges and (1)
holds.

If ¢(z) is continuous and decreases steadily to  (3)
zero then (1) is true for f(x) =¢(z) sin .

If ¢(x) is continuous and d(\('l‘('usos steadily to  (4)
zero and if o(x)dx exists, if furthermore

F(z) is a bounded continuous function, then
(1) is true for f(z) =) F(z).

1 The preparation of this paper was sponsored (in part) by the Office of Naval
Research.
2 Figures in brackets indicate the literature references at the end of this paper.
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f(x)=x""Y(z) under certain conditions on l//(r)

In addition, several cases involving Bessel functions are discussed.

We note that (2) covers such cases as f(z) =xe ™,
where f'(z)<0 for 2>1; that (3) covers such cases
as ¢(z)=z"* 0<a<1 (which is continuous except
at x=0) and that (4) covers such cases as ¢(z) =17,
() =S1nars

The result (2) has been generalized to the quasi-
monotone case by O. Szdsz [6] as follows:

If for some «>0, for 2>1 and 0<y<1, we (5)
have

0< S+ < (14+2) /@),

and if the integral exists, then (1) holds.
Krishnan [9] has pointed out that in certain (non-
trivial) cases a stronger result than (1) is true, namely,

> — ﬁ) e ©6)

for all sufficiently small positive A ; indeed:
If f(z) is a function whose Fourier transform  (7)
vanishes outside a finite interval [—a, a]
and if the Poisson formula can be applied,
then we have (for all 6)

S fratt)=h 3 /Vhwfw o

provided 0<_h<27/a.
A simple case when this applies is when

We use this technique to give an
alternative proof of one of our results on Bessel
functions.

In sections 2 and 3 we give two sets of conditions
that are sufficient to insure the truth of (1) and that
include many of the known cases. The remainder of
the paper, which is independent of these two sections,
gives discussions, by various methods, of special
cases, mainly involving Bessel functions, in which
(1) 1s true.

2. xf(x) = y(x), a Periodic Function
Our first theorem asserts the truth of (1), where

The
simplest case is that when y(x) =sin .
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Theorem 1. Let

W):g b, sin mz, 3 |by|< . )

Let the Cauchy-Riemann integral

) 4
exist.  Then (1) holds for f(x)=x""Y(x), 1. e., we have
li <sa¥h) (7 ()
h_l}fo “:‘f b ) s dz. (10)

Proof. We begin by establishing convergence of
the series on the left of (10). We do this by first
establishing that it is summable-A and then noticing
that since ¢ is bounded, its general term is O(n™1),
and we can therefore use a standard Tauberian theo-
rem [10, p. 501]. We therefore consider

S S e |
n=1 n n=1 7T =1
(11)
=>b, E)Lsin wnh.
y=1 n=1 N

This interchange of summation being permissible
because of the absolute convergence of the double
series

252006 |(r/n) =23 b, 225G /m)

whenever 0<r<1. We now require some ele-
mentary properties of the inner series in (11). It
is well known [11, p. 285] that

3 n

> —sin nr=arctan
n=1MN

when 0 <r<1.

7 sin &
1—7rcosz

This gives

N 7 sin vh
> — sin yph=arctan ——
n=1M 1—r cos vh

when 0 <r<’1. Since for r=0, the left-hand side is
zero, we must choose that determination of the arctan
that vanishes for r=0. Since the denominator
1—r cos vh never vanishes (0<r<1,h—+0,r=1,
2, . ..) we cannot leave this branch and, in par-
ticular, we have

© n

7 sin vh

72 g
r = |arctan — P <
nz;l sin ynh|=|arctan =7 cos oh| 2T
Hence, we have
¢(nh) © r sin vh
Z“’ z;’ arctan 1—7 cos vh

where the series on the right is, for fixed A >0, uni-
formly and absolutely convergent in 0<7<'1, being

majorized by —%ri‘,lby}.
v=1

Hence, as r—1, we have [10, p. 339]

w® 7 sin vh sin vh
>3 b, arctan 1—r cos vk Z b, arctan 1—cos vh

®

= > b, arctan (cot Lvh).

This means that i v(nh)/n is, for all A >0, sum-
n=1

mable-A, and therefore convergent, to the sum
> b, arctan (cot Lvh).
v=1

We shall now show that, as A—0,

> b, arctan cot1 vh %leby. (12)
2 2
v=1 r=1

The difference between these two expressions can
be written as

e
Z{ b, arctan <coté vh)—— T y} +

v=1

Z‘ b, arctan(cot vh> %wi b,. (13)

v=N+1 N+1
We first choose N so large that %r > b, (and there-
N+1

fore also i

v=N+1

b, arctan (cot %m) is small. With

N fixed we then can choose & so small that the first
sum in (13) is small. This establishes (12). To
complete the proof of Theorem 1 we have first to
establish the existence of the integral on the right of

(10) and then show that its value is %WZ b,.
y=1

Our hypothesis (9) insures convergence at the lower

limit. Integrating by parts, we see that
“y(x) ) f“ ()
J; . dai— ” + e dz, (14)
where
o= [ wada.
Since Y, (x)=0(1) by periodicity, and sincej "ot

is convergent, we can let u— o in (14) to obtain

f:%dxzf: l—k;c(z,i)dac
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Thus the existence of

“¥@) g,
Jo1 T

is established.
We now consider

>3 b, sin vx

2 [T E e

(15)
e
v=1 t
This inversion may be justified as follows. We use

the fact that

Sito= [ DL o] (7 ot gy

What we have to show is that

T =2 b, sin vr
]lzf > — =
t »=N T

and

as r—> o,

'1'] ®
—~>3 b,sinvrdx

Jt Ty=N

I Zb[mlw
2—

are both small for N, 7 sufficiently large. Since
Zb, is absolutely convergent, and since for all »,

e Wrd =0(T), it follows that 1,=0(T~"), i.e.

qmall lf T is large uniformly for all N.
can choose N so large that 7, is small.
lishes (15).
We can let £—0 in (15) since the series on the
right is uniformly convergent in . This gives

R e L

J—0 T

Fixing 7" we
This estab-

sln VI 1 L
—— dzx r=y5 T, b

v=1

and thereby completes the proof of Theorem 1.
Remark: An example that is not covered by this
theorem is the case when b,=(—1)"/n. Here

Y(t)=>,b, sin ntzw% [t-{—%—]—t}

. 1. . 2 .
if t+§ is not an integer and ¥()=0 if t—l—% IS an in-

©

teger, and although it is clear that ﬁ f(z)dz exists,
(

the question of the truth or falsity of (1) seems to be
rather deep.

3. xf(x) =¢(x), a Fourier Integral

Our second theorem asserts the truth of (1) when
zf(x) is the sine transform of an absolutely integrable
function (). This, when we take

n®=0, t<0, 0<t<2

reduces to the case
)= ma?,
which has been mentioned by Hardy and Bromwich

[1] and by Krishnan [9].
Theorem 2.  Let

) 7]({):0) t>2

j(x):%f o

where

[ ntna

is finite.  Then (1) is true.
Proof. We have

le‘f(ulz i f sin vht 7 (0)dt

= f“’ i] sin vht n(t)dt.
Jo v=1V

This interchange of summation and integration is
legitimate because > J»~! sin vkt is convergent and its
partial sums are uniformly bounded.

It is well known [10, p. 523] that for z positive and
not an integer,

=
> v lsin 2mve=—w{x—[x] —3},
v=1

where [z] denotes the integral part of . This gives

21/41 sin Vht:‘—‘ﬂ'%:};;—— 3‘;:]_%}
Substituting, we find
fm {iv sin vht}n(t)dt
f { [’”] } (0)dt
L @ ht
:grfo n(t)dt—rﬁ {2——[—27]}1;@)&.

We shall show that the second term on the right tends
to zero with h. To do this, write

J; iz Laz o
SRt Ko SO

Lz e
=1, (h)+ I (h),

We can choose and fix w so large that

say.
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LWI< [l
is small for all ~. Then we can choose h so small
that h
ht t ht
2_1_[5; Sor
is itself small enough to insure that |I,(h)| is small.

Hence

hé F(oh)—br ﬁ "o,

To complete the proof we have to show that

|7 s@dz = [ " noa

but this follows easily, since

Jy sa= ),
L

—4n [0t
JO

sin ot

n(dt dx

= ”dx:l (0 dt

the change of order of integration being permissible,
sinceﬁ n(t)dt is, by hypothesis, absolutely conver-

gent.

4. The Cases f(x)=Jy(x) and f(x) =K,(x)
It is known [5, p. 336] that

@®

2 Jo(nh)=%+h"! (16)
and so, as h—0,
RS Jynh)—1.
n=0

Since also [2; p. 96]

fw Jo(x)dr=1,
0

the relation (1) is true in this case.
The result (16) can be established directly in the
following manner. From the asymptotic formula

Jd@:(%)é sin (:1: —{—% 1,->+ 0@ —32),

using partial summation, it can be shown that the
series >, Jy(nh) converges for 0<h<w (and, indeed,
n=0

converges uniformly in every eclosed subinterval).
We evaluate the sum of this series by determining its
(C’,1) sum, using the integral representation

2 T [2
Jo(x)z—f cos (z cos t) dt, (17)
o
and the facts that
n sin (n—l— )
C,(x)=>] cos vx—— R (18)
r=0 2 sin - x
2
sin? (n—l— )
(n—{— 1) sin? —2— @

From (17), (18), and (19) we obtain

/
n 9 rr2lq 1n%(n+1)h cos t
sall)= 2 Tl =2 [0t 1 dt
=0 0 2 sin (5 h cos t)

. (h)zﬁllésxh)

1 1+sm2l: <n+1)hcost] "
A (n-+1) sin <2 h cos t>

Now sin~?z=(1/2%)+0O(1) as 2—0, and so, for fixed -
h >0 we find

O'n(h):%_*—

: 'Lmsin{%(n%—l)hsint]dt+0<%>

w(n-+1)h? sin® ¢

—_-%-}-Rl(nH—Rz(n)ﬂL O(n™),

where R, and R, are the contributions from the

ranges (0, 7/4) and (7/4, 7/2), respectively. Clearly,
4
Ry(n)<————=0®7").
mnh? sin? 1

To deal with R, we change the variable ¢ to u=
(n+ 1)h sin t; we find, writing h(n-+1)27%*=Fk, that
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sin® udu

R=2 [
T Em)

2, G5 aur
2N ~(erm) ] -1

and

As n—> o, k— o and the first term tends to ;™!

is indeed A1+ O(n=3).
Let v=[2u/(n+ 1)h]?

we have 0 <» <1}, and

then in the range 0 <u<Fk

a1 _(Q=p)'—1
(1—1}) z—1 1 (1__()_77
p— S ]‘ . .
(Q=v){1+1—v)"#}
9p— ¥
<2b7(n+1)2h2

This means that the second term is O(n™?% as
n—>o.
Gathering our results together, we have

a,,(h):;%-h‘ur On=1).

1s summable

This means that the series > .Jy(nh)
This com-

(C)1) to the sum i-+/A~" when A >0.
pletes the sketch of the proof of (16).

To deal with the case f(z)=K,(z) we use the for-
mula [13, p. 301]

S i g

2717rJ

el [ -
E o(nh) = 2h +7rn21[ [h2+4n2h?

—; In h—;lz— log 4,

which leads to

lim A 2 Ko(nh)AA

h—0 n= 2

Since [12, p. 388] we have

f Ko(x)dx—§

(1) is true in this case. We note that here we have a
(logarithmic) singularity at the origin, and have
used a summation starting at 1 and not at 0 to avoid
trouble.

5. The Cases f(x)=J,(x) cos xt and f(x)=
Jo(x) sin xt

It is known [4, p. 59] that for A>>0, 0 <t<1, we have

1 1
Z Jo(nh) cos (nht)=—= h\/] =

Multiplying by A and then letting A—0 we find, for
0<t<1,

h Z Jo(nh) cos (nht)—>— —174-

n=1 V1—t?

On the other hand [4, p. 51], we have, for 0<t<1,

o
1
f Jo(x) cos xt de—=———
0 V1I—¢
and so (1) 1s true.
14 Al ot
The case when we consider

f(x)=4¢(x) sin xt
is slightly more complicated. Tt is known [4, p. 59]
that for A >0, 0 <t<_1, we have
ZJu(nh) sin (nht)

[(@mn—th)*—h?]~* ;

Me

[(2mn+-th)*— A%~ —

n=

l (¢
—i {8mnth/D},
n=1
where
D=[(2mn-+th)*—h?* [(2mn—th)*— h** X
([2mn—+th)*—h** 4+ [(2mn—th)*—h?]* }.

Now for small 4 and fixed ¢

m‘b - 0( >

h i‘, Jo(nh) sin (nht)—0.
n=1

Hence, as h—0,

On the other hand, it is known [4, p. 51] that for
0<t<1

rm Jy(x) sin xt de=0.
JO

Thus (1) holds in this case also.

6. The Case f(x)=A,(x)=2"x )T (u+1)Ju(x),
>

It is known [2, p. 91] that

—
o~
=
ar
e
N

> amhy=3 T (20)
r (u +§>
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and so, as h—0,

Val(u+1)
r(uts)

The convergence of this series can be established in a
similar manner to that used in the case u=0.
Since also [12, p. 391] or [7, p. 182]
_ Val(u+1) 1)

L e (H )

the relation (1) is true in this case, and is a generali-
zation of that discussed in section 4. This case,
when p=1%, reduces to the case f(x)=sin x/z.

We shall now discuss this case using the Poisson
summation formula

VB {5 .

hZA (nh)—>+———"——=

0>+ana§

n=1

O+ SR8 | = Va by S
(21)

where af=2m, « >0 and I, is the cosine transform
of f defined by

J«;(;c):\/ % | fo N i

This formula is true, for instance [7, p. 60 to 64],
provided that f(z) is continuous and of bounded
variation in 0 <z< o, that f(x)—=0 as z—>« and

that the Cauchy-Riemann integral f F@)dt exists.
JO

These conditions are satisfied when u™>1 if

f@=2" e, 0<a<
r(uty)
f(x)=0, r>1
so that [7, p. 65]
S _JM(J')_ 27+
Fc(‘L‘)_ " (#+1) ( )

In this case (21) gives

1
PTGz M08 =

(22)

O e B0}

This formula is true as it stands for u>%;if p=7%and
a term on the right corresponding to n=a™! occurs,
it must be halved; if —3< u< 1, the formula remains
true, provided that « is not the reciprocal of an
integer.

We now assume o >1, so that the sum on the right
1s empty; this means that

B=2mom 42

In these circumstances (22) gives

1 3 1
srarnizt a0 =(5) T(E
= 2
that 1s, .
S Amp=2" Teth 1

which 1s (20).
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