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Hydrodynamics of Cathode Films

Garbis H. Keulegan

A hydrodynamical theory of the cathode diffusion layer based on the assumption of
a uniform density reduction at the cathode surface is presented. By means of an approxi-
mate solution for the flow and the diffusion equations, the layer dimensions, the velocity
distributions, and the densities are determined. Further derivations from the solutions

directly applicable to results obtained by the freezing method are effected.
Brenner on copper and nickel baths are considered.

The data of
Using the observed values of the

density reductions at the cathode surface, the maximum width of the layer, the average
densities for a given distance from the cathode, and the mobilities of the cations are deter-

mined and compared with the observations.
puted values is regarded as fairly satisfactory.

1. Introduction

Neither the cognizance of the phenomenon repre-
senting the subject matter of the present paper, nor
the statement of the basic causes producing it is
original with us. Some 12 years ago, W. Blum,
Chief of the Electrodeposition Section, National
Bureau of Standards, described to us the cathode
film phenomenon as a thin layer of moving material
very close to the cathode surface and as being
caused by the continued reduction of the densities
due to electrodeposition. Since the phenomenon in
question is also partly hydrodynamical in nature,
he suggested that we should prepare a theoretical
study with a view to determining the density dis-
tributions in cathode films.

Blum'’s first thought was that the film might con-
stitute a seat of discontinuity in densities, since to
the naked eye a line of demarcation between the
contiguous layers of liquid near the cathode surface
is distinetly visible.  The line of demarcation
should be due to the different indices of refractions
of the liquid layers on the two sides of the line. Thus,
according to these ideas the flow near the cathode
surface 1s in one or two layers having dissimilar
densities with sharp discontinuities. But, despite
the appearance of the region close to the cathode
surface, the opinion was ventured on our part that
the exsitence of the sharp discontinuities could not
be shown on the basis of purely hydrodynamical
reasoning. The basis for this opinion was the belief
that the phenomenon in question was essentially
similar to the type of flow encountered when a
heated vertical plate in the presence of cold air
sets up convection currents. Since experience in
this particular case does not show any discontinuities
in temperatures, it might be expected that density
discontinuities would not be present in the cathode
plate problem. Unfortunately, due to other pressing
work at that time, it was impossible to proceed
with a mathematical solution of this interesting
problem.

About 3 years ago, Blum repeated his request for
an analytical study of the problem, since he was
planning to resume the experimental investigation of

The agreement between observed and com-

cathode films. The computations that appear in
this paper were completed shortly after the receipt
of this request. Meanwhile two other papers on
the subject, one by Agar [1]' and the other by
Wagner [2], were published. Since the present
work proceeds on a mathematical basis different
from these two papers and since the work was
conceived with a view of interpreting the results
of A. Brenner, a member of the staff of the Bureau,
on cathode film densities, it is hoped that some interest
in the results achieved will develop.

In the present treatment it is assumed that the
reduction of densities over the vertical cathode
surface is constant. On the whole the treatment is
self-contained and is given in full detail. In general,
the results shown are approximate and sufficient,
it is believed, to evaluate average densities in a
vertical plane parallel to the cathode surface. In a
future publication it is proposed to investigate the
problem of cathode films with the basic assumption
that the density gradient at the cathode surface is
constant and uniform, rather than the density.

2. Molecular Character of Electric
Conduction in Solutions

Certain fundamental relations of electrochemical
import that will be considered during the course of
the analysis are based on the ideas of Larmor [3] in
the matter of electrolytic conduction.

Taking an idealized situation it will be supposed
that the electrolytic solution is a binary system and
that ionization is complete. In each portion of the
solution the number of the positive ions and the
negative ions is the same and the conditions are
steady, that is, independent of time. At a point of
the solution let the number of ions of each kind
per unit volume be n. Measuring positive ¥ horizon-
tally away from the plane cathode surface toward
the anode, let a section normal to y be selected.
Let dN, be the number of the cations and dN, the
number of anions crossing the section per unit area
during time dt. The motions of the ions are due in

1 Figures in brackets indicate the literature references at the end of this paper.
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part to the electrical force dP’/dy, P being the elec-
trical potential, and in part to the forces producing
diffusion. If U, be the specific mobility of the cations
and k&, the coefficient of diffusion of these ions,

1
AN, — (n g 2 ‘d’y’“> dt, ()
and for the anions, in similar manner,
dP d
sz—(n U G —ks 33) dt. @)

Since there is no accumulation of electricity at a
point, the relation between the electrical current
mtensity, I, and the motion of the ions will be

se(dN,+dN,)=1dt, (3)

where se is the charge on each ion. Applying the
principle of continuity of the ionic flows,
1 d

1 d (dN, dN, ~ dn
2 dy \ dt dt ) dt

(4)
On the other hand, the current intensity remaining

constant, from eq 3

4*N,
dy dt
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and this together with eq 4 gives

d’N, dn
dydt v’ ()
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Differentiating eq 1 and 2 with respect to ¥ and
using the relations just given,

dn d , dl d*n
dt?( Ydy (1y>+ Tdy? )
and d
d P
== Ui (v )+ g (9)

Multiply the first of these by U, the second by U},
and adding the resulting equations, one obtains

dn_sz]—l_k']UQ d*n

& UFU, df (10)

Now the form of this equation is exactly the form of
the diffusion equation of an ordinary nonelectrolytic

. solution. Hence, the changes in the concentrations
of an electrolyte proceed with the diffusitivity con-
stant
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Ficure 1.  Geometrical and physical quantities relating to the

diffusing layer.

As this relation holds good however slight the electric
current may be, it may be supposed that the relation
holds in the limit when the current is nil. Therefore,
D is the ordinary coefficient of diffusion of the solu-
tion, and thus a relation exists connecting this coeffi-
cient with the ionic quantities, that is, with the spe-
cific mobilities and the coefficients of diffusion of the
two ions.
If the relations

ky=0U; and k,=CU, (12)
exist, where (' 1s a constant independent of the con-
centration of the ions, then

2U,

D= U: o

: 13
Ui+ U, (18)
Now, from the theory of electrolytic diffusion by
Nernst [4] we have

20,Us p,

s U+ U,

i (14)

where 7" is the absolute temperature and R the gas
constant. Accordingly, the constant €' in eq 13
may be identified with the product R7 in eq 14.

3. The Equations of Motion and of Diffusion

Taking the case of a plane cathode surface, held
vertically, a point at the lower edge may be chosen
as the origin of the rectangular coordinate system
(x,y) (see fig. 1). The positive z axis is drawn
vertically upward and the positive y axis normal to
the surface and into the electrolyte body. Denoting
the velocity components along the x and the y axes
by % and », respectively, the equations of motion are

o, ou_ 12

ay n (15)

U
EAREYTE

and
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where p is the pressure, » the kinematic viscosity
of the solution, p the density, and ¢ the constant of
gravitational acceleration. These are the equations
of motion used in viscous boundary layer theory.

The pressure must be expressed in terms of the
densities. Denoting the density of the electrolytic
bath at points far removed from the cathode surface
by pi1, the density near the surface may be expressed
by the relation

p=p1—20; (17)

where Ap is the deficiency of the density in the layer.
The greatest reduction of density is at the cathode
surface, that is at the plane y=0. Let the average
value of Ap over the entire length of the cathode sur-
face be denoted by Ap,,. The study of the densities
in the layer is done conveniently, as will be seen
later, by considering the ratio

a:A”_. (18)

Apm
Another quantity important for the analysis is the
effective gravity
Apy
n_@.
P

(19)

g

Now, the second boundary layer equation, eq 16,
states that in the layer next to the cathode surface
the pressure along a horizontal plane remains con-
stant. Moreover, all motions being nil in the main
body of the bath solution, the pressures are hydro-
static and hence

P=DPo— p:9x, (20)

where p, is the pressure at points in the horizontal

plane passing through the origin. Thus,
1 op P
el N 21
2o 9, (21)

Remembering that Ap is a small quantity and mak-
ing use of the relations in eq 18 and 19, we have

1Lop
—;a—ﬂ—Ga, (22)
and thus eq 15 reduces to
ou ou o

This is the equation of motion that is appropriate to
the problem at hand. To this must be added the
conditions of continuity,

ou  0v

o5 Tog—=""

(24)

Next will be considered the equation of diffusion.
In the presence of convective currents, the diffusion
equation takes the form

on, on ,  On

% T3 La—y— (25)

o'n , O'n

2 Dx2+by2 '
where 7 is the number of particles of the diffusing
material per unit volume. This relation reduces to
Fick’s equation when convective currents are absent.
Although the equation is well known, it may be help-
ful to give a derivation in order to clarify the ideas
involved. Neither the name of the investigator
giving the first derivation nor the manner of deriva-
tion is known to us.

Consider a parallelepiped of sides dz, dy, and 1.
Let the number of particles crossing the face at z per-
pendicular to the z axis during time dt be

. o
Ny, dydt, ZV“:—DS%—}—nu,

and the face at z--dz be

0Ny
o d:c) dy dt.

N dtz(Nu—{—

Similarly, let the number of particles crossing the
face at y perpendicular to the y axis be

o]
dexdt, Arzlz—DaAZ"["nU,

and the face at y-+dy be

a]\721
oy

Ngzd:’/ dt:<A'Y21+ dy) d;L' dt,

so the accumulation of the particles in the parallele-
piped is

0N},
—(% ‘é?)d“]?"”'

But the accumulation is also

on
> dxdydt.

Hence,
on_ ONy ONy
ot oz oy’
or
on o’n . O*n on on ou , Ov
w2 (Gt o) et ay "ty

The last term in the right-hand number vanishes
because of the incompressibility of the solution.
This now proves the general equation of diffusion
given by eq 25. A tacit assumption of the derivation
is that the ratio of the volume of the diffusive
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particles to the volume of the solution is a small
fraction. Stated otherwise, the result is valid for
small concentrations.

The diffusion equation is much simplified when
applied to the cathode film boundary layer. First,
the concentrations do not vary appreciably with
time. Second, the layer being very thin and com-
paratively very long, the quantity 0?n/dxz? is small in
comparisonwith 9n/dy%  Accordingly, eq 25 becomes

on on

and since 7 1s proportional to «, also

O« Qa
u a-*- v @—

fo e
D (26)
This is the diffusion equation appropriate to the
problem at hand. Equations 23, 24, and 26 govern
the movement of liquid and the distribution of the
densities in the cathode film subject to the boundary
conditions.

4. Boundary Conditions

The boundary conditions to be considered are of
two kinds. One kind relates to the velocities and the
other to the densities, the latter having electro-
chemical implications.

The boundary conditions to be assigned to velocity
components are the most obvious ones. The solution
or the liquid of the film being viscous, % and » vanish
at the cathode surface; that is

==}, =0 (27)
To state the condition for the velocities at large dis-
tances away from the cathode surface it is necessary
to introduce first the concept of the boundary layer
thickness (see fig. 1). The boundary layer thickness,
s, 1s such that the density of the solution at this
distance from the cathode differs only imperceptibly
from. the density of the bath. Since the movement
of liquid in general is nil in the main portion of the
bath, a second condition for the velocities is
U=0; Y—15 (28)
It is obvious that the thickness vy, of the boundary
layer at the lower edge of the cathode surface, that is
at 2=0, vanishes. This means that the liquid moving
upward in the film must be replenished by a later
and horizontal movement of the bath solution into
the film region. Hence

>0, (29)

Y=1Ys.

The assumption of vanishing velocities in the bath
in the vertical direction is an idealization. Under the
actual conditions of experimentation, arbitrary move-
ments in the bath may be present even when forced

957570—51——3

agitation is not resorted to. Since the movement of
liquid in the film next to the cathode surface is up-
wald and in the film next to the anode downward,
it is obvious that a circulation is induced in the bath
liquid. Due to accidental variations of temperature
at places the regularity of the circulatory motion will
be disturbed and will give rise to weak eddying mo-
tions. These will be most noticeable near the upper
surface of the bath and close to the cathode. Such
aceidental disturbances can be imagined to have only
minor effects on the main motion in the film and thus
will be ignored.

The boundary conditions that are to be assigned
to the densities are not obvious, especially the one
relating to the value of the densities at the cathode
surface. Regarding this, it seems that two different
statements may be made depending on whether the
transmitted electric current is of the limiting value
or is inferior to this limiting value. Taking the case
of weak electric currents, we may consider the ques-
tion of the densities at the cathode surface as follows:

Assume that the ionic system is binary and
ionization is complete. Since at the cathode surface,
that is at y=0, dN,/dt=0, eq 3 gives

dN, 1

)
dt  se

and thus eq 1 and 2 now become

I dP  , dn

,\'(‘,7,1 1’1 (1?/ “‘}_’\1 @7
and

0—=nlJ df dn

J9 ;i?/ Iy @J

where 7 is the number of ions of each kind per unit
volume. Eliminating the potential gradient between
these two equations and making use of eq 11,

dn u, I
dy U,+U,se 80}
This is the relation between the electric current
intensity and the gradient of n at the cathode surface.

It is desirable that the quantity n in eq 30 be
replaced by ¢, the latter being defined as the gram
equivalent of the salt per cubic centimeter of the
solution. In a unit cube there are n cations and n
anions each of ionic valence s, and the system is
completely ionized. Introducing N, the Avogadro
number, the molar concentration is n/N and hence
the concentration in gram equivalent of the salt per
cubic centimeter of the solution is

e
=z
and eq 30 now becomes

de U, 1

D 0T

(31)
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Since eN is the universal constant F, with the
numerical value F=96450, and with the dimensions
coulomb per gram equivalent,

ple_ Us I

&y U LU, F 32}

The same condition may be expressed in terms of
densities instead of concentrations. For the major-
ity of electrolyte solutions the variation of densities
with the concentration is linear; that is

(33)

For copper sulphate m=1.32><10"2 gram equivalent
per gram; and for nickel chloride m=1.71>X10"*
gram equivalent per gram. KEquation 32 may now
be written as

dp U, 1

dy Ut 0, F (34)

mD =l0%

This is the relation between the intensity of the
electric current and the gradient of the density at a
point of the cathode surface. It is the only relation
that may be derived on the basis of simple concepts
of an electrochemical nature. Accordingly, we are
not certain of the state of the densities at the cathode
surface for the present.

Two simplifying assumptions may be made. First,
it may be supposed that the current intensity is
uniform at the cathode surface. The resulting
boundary condition would be that the density gra-
dient is uniform at the cathode surface. Second, it
may be supposed that the density is constant at the
cathode surface. For the present analysis we shall
adopt the second alternative simply for the reason
that the corresponding analysis may be completed
with ease. Thus it will be supposed that,

Ap=App, y=0,
and
Ap=0, Y=
In view of eq 18
=1l y=0, (35)
and
=), Y= (36)

The set of equations 27, 28, 35, and 36 constitute the
boundary conditions to be considered in solving the
set of equations 23, 24, and 26.

Since the relation implied in eq 34 is valid for all
conditions, it may be used to consider average effects.
Expressing p in terms of « through the use of eq 18,
multiplying the two sides of the resulting equation
by dz, and integrating between =0 and x=1[,, where
[, is the length of immersion of the cathode surface,

—mDAp,,,f (‘1"‘>d f—lﬁfull}, (37)

where now 7 is the average intensity of the electric
current measured in amperes per square centimeter.
We shall use this relation to compute the transport
number of copper ions taking our data from the results
of the Brenner experiments.

5. The Dimensional Form of the
Basic Equations

The solution of the basic equations subject to the
boundary conditions indicated above will be greatly
simplified if the equations are changed into forms in-
volving dimensionless quantities onlv The clue to
the proper course of analysis may be found in the
method of Blasius for treating tho viscous boundary
layer of plates in a current of air.

“The limiting values of the densities and the veloe-
ities being uniform at the boundaries of the cathode
film or of the diffusion layer, it is to be expected that
the distribution of the velocities and of the density
reductions in different normal sections are affine to
each other. The affinities will be established by the
introduction of the characteristic length § and the
characteristic velocity U, both of which are functions
of z only.

Introducing the stream function ¢, such that

oy . 4

=" Vi—==5=)

38

oy ox LY
the condition of incompressibility, eq 24, is automa-
tically satisfied. In terms of the stream function the
equation of motion, eq 23, and the equation of diffu-
sion, eq 26, transform to

o oY oo _ a¢
oy Oyox Ox Oy’ el &9)
and
00 du_ 0y du_ ) Ot
0z ooy - o (40)
Introducing the new variables
n= ?///5; (4 1)
and
s
H=g7 (42)

and remembering that {7 and 6 are functions of x
only, we have, first

O on d 1d

S G 5
and
0 On d o dé d
% oz dn B dz v o
and hence
oy d dés dH
Py Hd Ueso—U dz " dn’ (45)
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n’ (46)
%y _dUdH Unds (l“’H (47)
0z 0y dx dn b dx dq?’
oy U d*H
ay‘I/ N dnz (48)
and
oy U d*H
ay‘p & dn® &

Substituting these expressions in eq 39 and 40,

—mi (&) + U0 syt ’U+Vf’iH+Ga—

(50)
and . ; .
v o« g da v d’a -
6 dx () 1 dn +62 dn? =0, (51)
where
= (52)
L) ”

Now eq 50 and 51 will be freed of the differential
operators involving z if one can write

MU ‘(IIL,:MT = 5)~ »—G (53)
and
Myd .. v )
5 dz U )~;5§’ (54)

In view
equations

where M, and M, are numerical constants.
of these provisional relations, the two
simplify to

d*H l *H

1 /dH - -
vy tan T, (dn> te=0, (55)
and
H doa d°¢ =
In fact, the provisional equations 53 and 54,

determine the dependence of the characteristic
velocity U and the characteristic length & on the
variable z. The provisional equations 53 and 54

imply
M=, L W), 57)
d .
M:é 5 (U == (58)
and
WU =~6G. (59)

It is now obvious that U and § each are single

power terms of z. Assuming
U=Ax, (60)
o= B, (61)

where A and B are constants involving the physical
characteristics of the electrolytic solution. Substi-
tuting these expressions in eq 57, 58, and 59, com-
paring the powers of z and the coefficients for the
individual equations, the comparisons yield

Mir=M,(s+r), (62)
M,y (s+r)AB*=y/y (63)
28+r—1=0, (64)
=N 65)
and
vA=vyB*(. (66)
Equations 64 and 65, yield r=1/2 and s=1/4.

Equation 62 now yields
2M,—3M,=0.

For simplicity subject to the last derived equations,
we may put M;=1/2 and M,—1/3.

Substituting the values of the constants A and B
that are obtained from eq 63 and 66 into eq 60 and
61, there results

(U =DE Ve, (67)
and

(68)

which are the functions showing the dependence of
the characteristic velocity U and the characteristic
length 6 on the independent variable .

Substituting the values of M; and M, as found
above into eq 55 and 56, these simplify into

3 2
i II_HHd H_2<dll) T

and

Toda_

which are the equation of motion and the equation
of diffusion expressed in dimensionless forms.

In terms of the new variables, the velocity com-
ponents % and » are, using eq 38, 45 and 46,

- dH
and
dé dH
—p= d (UOH—U G0 G (72)
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and the boundary conditions are

-
H—o, H_4 .0
dny
(IH*O -
dy T (73)
@=1l, g==0),
=)y, p=c )

The two equations 69 and 70 become the basic
equations for the problem of temperature variation
of a heated plate placed vertically in a cool air bath,
when

i
T

(74)

(8%

where 7" is the temperature near the plate, 7% the
temperature of the plate, and 7' that of the cool air,
and the parameter v is replaced by

o=k, (75)

where k is the thermometric conductivity.

Goldstein [5] has discussed the Pohlhausen solution
of the heated plate problem and the equations con-
sidered are similar to eqs 69 and 70, when allowances
are made for the variations in some of the coeffi-
cients. Thus, in the two basically different phe-
nomena of the diffusion layer near a cathode plate
and of the conduction layer near a heated plate,
the corresponding parameters v and ¢ play identical
roles. The latter is well known as the Prandtl
number. The former will be called the diffusion
parameter for the present, since it is a dimensionless
number expressing the ratio of the kinematic vis-
cosity to the coeflicient of diffusion. In forming
the numerical value of v, both D and » must be
expressed in square centimeters per second.

6. An Approximate Solution of the Basic
Equations

Since an approximate solution is adequate for
the present objectives, it is hardly necessary to
effect a rigorous solution of the two equations, 69
and 70. To prepare the way for the approximate
solution, it is necessary to introduce the boundary
layer thickness ¥, which is a function of z. To
the distances y and y; correspond the parametric
distances n and n;, such that

n=1y/6 and n;=1,/é. (76)
We introduce the ratio
O0=n/ns=Y/[Ys. (77)

It is obvious that the quantity 6 will serve as the in-
dependent variable in the place of n. Indeed, the
basic equations 69 and 70 transform to

a*H - d*H dH\?
v g HanH G—2n. (G, ) +rie=0, @8)
and
d*a | . da -
762—*—3%1[ %:0, (79)
with the boundary conditions
3
=0 6—0,
dH
75=0 =0,
dH e (80)
==, el
a=1, =)
er=(0), =y
J

in place of the set shown by eq 73.

It is obvious, intuitively, that the space rate of
change of the velocity components, ou/dy and dv/dy,
each vanish at large distances from the cathode sur-
face. These conditions are fulfilled likewise quite
approximately at distances equaling or exceeding y,.
This observation suggests the additional boundary
conditions

d*H
a0 = h
- (81)
da
T5=0, =1,
the first of these resulting from eq 48. All the

boundary conditions of eqs 80 and 81 are satisfied
if it 1s assumed that

™

2

a=1—sin

f, (82)

and

H:Aﬂ}[g—cos r@—i oS 27r0:|~ (83)

The above analysis involves the quantities A,
and n;, which at present are not known. For the
determination of their values the differential equa-
tions 78 and 79 are at our disposal. Multiplying
these equations by df, integrating between the
limits =0 and =1, and making use of the boun- .
dary conditions, the result is

d*H L 7dH\? 1
1\ GF 0-—5‘r)sﬁ W) d@—{-—nfﬁ adf=0, (84)
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and
dH

da
d—0>0+3ns o’y do=0, (85)

after resorting to the rules of integration by parts.
Introducing the values of « and H from eq 82 and
83 and effecting the integratiouns, we find

2>:0,

"27"/1‘11—% nsAH-n?Cr

%r—l-l—;- s %“ )
and hence
vi=geg (12 *) (36)
and ‘
A=PE (87)

The expressions for n, and A, as given by eq 86
and 87, respectively, and the expressions for «
and [ as given by eq 82 aund 83, respectively, con-
stitute the first approximate solution of the diffusion
layer problem based on the assumption that the
reduction of densities, or concentrations, at the
cathode surface is uniform.

7. Thickness of the Cathode Dittusion Layer

Inasmuch as the diffusion parameter y=yv/D) is or-
dinarily a very large quantity, it is sufficient to write
in the place of eq 86

.

. bmly
T 14(r—2) ek
Introducing the value of v, from eq 76 and the value
of 6 from eq 68, we find first

1’3:[14'21—72)] [ ] !

and next introducing the value of G from eq 19

Ys=3. 3’3( > el
JApny

This is the expression that gives the thickness
of the diffusion layer along the cathode surface
(See fig. 2). The thickness is not uniform, but
increases from the zero value at the lower edge of
the cathode surface to a maximum at the upper end
of the cathode surface still in contact with the
electrolyte. The rate of increase of the thickness,
however, is very gradual due to the fact that the
thickness if proportional to the one fourth power
of z, the distance from the lower end of the cathode.
Again at a chosen point z the thickness of the layer

(89)

12
/
//——
018 /
@

>
~N
>’

0.4 7

0.0

0.0 0.2 0.4 0.6 0.8 1.0
x/1,

Fraure 2. Shape of the boundary of the diffusion layer.
decreases when Ap,,, the maximum reduction of the
density at the cathode surface, is increased. Since
the decrease of density at the cathode surface is
proportional to the electrical current density, when
the latter is inferior to its limiting value, it is to
be expected that a decrease in the intensity of
current will cause the thickness of the diffusion layer
to be augmented.

Having established the magnitude of the diffusion
layer thickness, it is of interest to inquire next into
the normal density gradient at the cathode surface.
The variation of the density gradient will be best
understood if it is expressed in terms of the average
density gradient, the averaging being made over the

entire cathode surface. In view of eq 18, the quan-
tity
/Oa> [/da
o —) =R, 90
oy 0/ oy /o l (90)

where the numerator on the left-hand side refers to
local values at the point z and the denominator to
the average values, is the ratio to be considered.
Since
oo
o

aa o0
06 oy’

we have from eq 77 and 82

0y>* W/s
or
ay>ﬁ L 1)
where
—1/4
™ p1v
= 66o<qum~y> 02)

Accordingly, the average value over the length [
of the cathode surface is
%) 4
oyle
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and the desired ratio is

3 /I \V4
4 (r)

which gives the proportionate variation of the normal
density gradient over the cathode surface The
variation is shown graphically in figure 3. In the
section of the cathode from z/l,=0.2 to x/[;=1.0 the
ratio is nearly constant. This circumstance assures
the utility of the present solutions even for the case
in which the normal concentration gradient is strictly
constant over the entire surface of the cathode, pro-
vided that one deals with the average values of the
densities in the planes close and parallel to the
cathode surface.

If the diffusion layer thickness at x=/;, that is at
the upper end of the cathode surface just in contact
with the bath, be denoted by 7, then the average
value of the normal density gradient, expressed in
terms of the maximum density reduction, is

)7 7/v1

(94)

(95)

Use will be made, subsequently, of this relation.
8. Velocitus in the Diffusion Layer
Consider first the velocity component u, that is

the component parallel to the surface of the cathode.
Now,

v 48, o
n
where

=2 G (67)
Since

dH dH db

d'r] de dr]
2.0

1.2 AN
x \
0.8
0.4
0.0 0.2

0.4 0.6 0.8 1.0
x/L,

Ficure 3. Variation of the density gradient along the cathode

surface.

eq 71 may serve, in view of eq 77, 83, and 87,
give the distribution of the velocities in a nounal
section of the diffusion layer. There is, however,

another method for representing the vclocity dis-
tribution. Moving away from the cathode surface

in a normal section, u is zero at the cathode surface,
increases to a maximum value wu,, and then de-
creases to zero at the limit of the boundary layer,
that is at y=w,. Thus, the distribution of the
velocity may be obtained also by considering the

ratio u/u,,. Now
U <dH 96)
In terms of the variable 6,
dH 1 /dH -
W)= Can). )

If 6, be the value of 6 that makes # a maximum, we
have from eq 83,

an

. 1 .
= Al l:sm w0+ sin 2#01]-
(171 m 2

The value of 6;,="14 satifies the relation.

cos wh;+cos 270, =0.
This makes

sin 71'91—|—% sin 276,=1.299,
and therefore

(ﬁl) —1.299 A, (98)

do

Substituting into eq 96, from eq 98, 97, 88, and 67

gives
1/2
U, =0.82 <g> L
Y

or using eq 19,
12
Un0.82 AJl"l)

Vg pP1Y

(99)
Accordingly, the maximum value of % in a normal
section changes from one section to another and
increases with the one-half power of the distance
from the lower end of the cathode.
Since,
wfy, = (dH |dn)/(dH |dn)y.

and introducing the relations in the equations 97 and
98, the distribution of the velocity component % in a
normal section in the diffusion layer becomes

WAl — N7 7 l}m ™ —+ sin 27 ~—:| (100)
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Ficure 4.

The graphical representation of the distribution is
given in figure 4.

Next consider », the velocity component normal to
the cathode surface. The velocity can be written
from eq 72 as

dé dH

p=—1 W[gu—n |

The magnitude of » is largest at the liquid boundary
of the diffusion layer. Let v, be this largest value.
This occurs at n=mn,. Let H; be the value of /7 at
n=mnsor at 6=1. At n=n,, dH/dn=0, and thus

(101)

do .

m=—3 —— 2

sn=—3 72 LU, (102)
where

H,=2 A,/~. (103)

In view of the values of U/ and 6 from eq 67 and 68,

rd8 1 o —1/a 172
U dx_2(4VG) qy ==,

Substituting the above result in eq 102 and also
introducing the value of A, from eq 87,

D= —1.013(2Q) /4y =34z =114, (104)
Accordingly, the liquid of the bath moves hori-
zontally into the cathode diffusion layer. The veloc-
ity with which the liquid approaches the cathode
surface is variable along the length of the cathode
surface, the maximum value occurring at the lower
end of the cathode surface. After a certain elevation
is reached the wvariation in the value of v, ceases
to be pronounced.

0.8

V/

,
Y

0.0 —/ /

0.0 0.2 0.4 0.6 0.8 1.0
Y/Ys

Distribution of the horizontal velocity component.

Ficure 5.

The representation of the distribution of » in a
normal section of the layer is most conveniently

done by considering the ratio »/v,,. Now,
v 1 n dH
—=—| H— )
Vm Ilsl: 3 dn
or in terms of 6,
) 1 0 dH
AU - L )
Vm Hx[ 3 de
This gives, in view of eq 83 and 103,
() 5ol 1 70 . w0 .
Tng_Q cos 7r0—8f oS 210——6— sin 76— 12 sin 2 7.

(105)

The graphical representation of the distribution is
shown in figure 5.

9. The Brenner Freezing Method and the
Laminar Mean Densities

In the Brenner method [6] the electrolytic solution
near a cylindrical cathode is suddenly frozen, succes-
sive layers of the solid of 0.003- to 0.004-inch thick-
ness are carved off on a lathe, and the compositions
of the layers are determined. Thus, in this method
the average concentration or the average density of
a lamina of thickness dy;, of distance y; from the
cathode and of length /, are determined. Accord-
ingly, if theoretical results are to be compared with
the observed results of the Brenner experiments, it
becomes necessary to derive a formula giving the
average value of densities of a lamina of distance
1 from the cathode surface,
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Ficure 6. Geometrical and physical quantities relating to the

diffusion layer in Brenner’s tests.

Let the average density reduction in the lamina of
length /; and of distance ¥, from the cathode surface
be denoted by Ap’.  Mathematically,

1

RY
Ap’:—J "Ap da. (106)
L Jo

Let I, be the value of z for which the boundary layer
thickness equals 7, (see fig. 6). Obviously, for values
of x<l,, Ap=0, and thus,

1 (1
A=, J 'Ap dz. (107)
v1

lO
Since, according to the present solutions, the density
reduction at y=1, is given by the relation

Ap:Apm<] —sin T ﬂ)

3 g, (108)

(from eq 82), then

T Y1

Npl—h [1 LF R { 1
o' =Apn, [lﬁo(x—zljlo smia(rjl- (109)

It must be remembered in effecting the integration
of the second integral of the right-hand member, that
y1 1s held constant. Putting

Yi/Yys=8,
and

Y1/Ys1=B1, (110)

It is seen from the law of the layer thickness, eq 89,
that

]1:]0/’5‘:; (1 1 ])
.T:[()/ﬂ“, (112)

and thus,
dx=—4l,dB/B°. (113)

Accordingly, in terms of the new variable 8,

T (l[i'

8
ap'=pn| 1=t apt [MsinT g 58 119)
1 2" p
For convenience, we may write
8
Fe)=pt—apt ["sin T8 % (15)
1 B
and hence,
Ap,/Apm:]_F(Bl)‘ (116)
Since B1=1,/ys1, we have also
Ap'[Apm=1—F(y:[ys). (117)

This is the desired formula that will be used in
analyzing the experimental data of Brenner. It
involves the average reduction of density over a
lamina, the average maximum reduction of density
at the cathode surface, the distance of the lamina
from the cathode, and the maximum thickness of
the diffusion layer. The determination of the
function F(B;) was carried out by replacing the term
sin (w/2)B appearing in the integrand by a power
series in B and then effecting the integration. The
results of this determination are given in table 1.

10. An Analysis of the Results Obtained by
Brenner with the Freezing Method

The comparison between the results of the present
analytical theory of the cathode diffusion layer and
the results of the Brenner experiments on the
reduction of the densities in the diffusion layer will
be carried out along the following lines. First, from
the observed values of the reduction of density at
the cathode surface, Ap,, the maximum thickness
of the diffusion layer, 7, will be computed and
compared with the observations. Second, using the
same observed values of Ap,, the ration Ap'/Ap,
will be computed for the distance y,, and these will be
compared with the observations. Third, Ap,, will be
computed from a consideration of the electric
current intensities used in the expeiments and will
be compared with the observations.

TaBrLe 1.  Numerical values of the function F (yi/ys1)
1 /Y1 ‘ F(/ya) ‘ Y1/yst [ FQnlys)
| 0 0. 0000 0.6 | 0.8926
|01 . 2070 .7 | L9388
.2 . 4024 8| L9640
‘ v . 5708 .9 L9796
.4 L7099 1.0 1. 0000
i .5 L8180

The Brenner [6] results relate to electrolytic baths
of copper sulfate and nickel sulfate. The baths
actually used were not pure binary systems, but
this fact will be ignored. The complete data from
the Brenner tests are collected in table 2. The
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TaBLE 2.  Diffusion layer densities of the Brenner test

Distance ‘ Normal- ¢+ | Current alli
from ity, Deng,nty, intensity, M(;t‘ll“lc
cathode, 71 N 4 1 O
Gram
cm equiv/liter | g/em? | amplem?
3.69X10-2 1.274 1. 1009
11.16 1. 522 1.1174
18. 7 1. 800 1. 1381 0.04 Copper
27.63 1. 920 1. 1465
37.63 1. 931 1. 1473
3.83 1. 741 1.132
11.18 1. 885 1. 142
21. 05 1.971 1. 149 0.01 Nickel
32. 46 1. 985 1. 150
44.12 1. 985 1. 150
3.83 1. 561 1.118
12. 36 1. 724 1. 130
21. 05 1.872 1. 139 0.02 Nickel
30.00 1.935 1. 146 ]
40. 00 1. 959 1. 148
| |
| 3.83 | 1.382 1. 105
| 12.36 1. 694 ‘ 1.128 l
| 21.05 1. 900 1. 143 0.04 Nickel
30,00 1.947 1. 147 J
| 40.00 1. 981 | 1.149
L |

concentrations in the original data are in terms of
the normalities. The densities as derived from the
normality values are added. The average densities
p’ taken from the table are plotted against 7, in
figure 7, and smooth curves are drawn through the
points of observation. The extreme values p, and p;
of the densities are read from the curves. The
differences (p,—p,) give Ap,,, the average maximum
reduction of densities at the cathode surfaces. The
difference (p;—p”’), where p’ is the observed value
of the densities corresponding to the distance
gives Ap’, the average reduction of the densities
corresponding to the distance 3, All these quan-
tities, together with the ratio Ap’/Ap,,, are entered
in table 3.

From the observed values of Ap,, and p, the maxi-
mum layer thickness, 7, may be computed from
the theoretical formula in eq 89. However, the use

TasrLE 3. Reductions in the diffusion layer densities of the Brenner tests

of eq 89 for this purpose requires that the parametric
diffusion number, v, be known. This number in-
volves the ratio of the kinematic viscosity u, to the
diffusion constant 1), for each of the two electrolytic
solutions.  The viscosities of the electrolytes may
be determined from the normalities using the
Arrhenius [7] formula,

p=mum",

where g, is the specific viscosity of a normal solution
referred to the solvent at the same temperature,
w is the specific viscosity of the solution having the
normality N.  Wagner [8] gives u=1.358 for copper
sulfate and u;=1.361 for nickel sulfate at the tem-
perature 25° C. The normalities of the bath solu-
tions in the Brenner tests being 2 and the densities
about p=1.151, the kinematic viscosities of the two
solutions are practically equal and so p=0.0144
em?/sec.  Regarding the diffusion coefficient D, the
Thovert [9] values for copper sulfate may be sup-
posed to apply as well to nickel sulfate. For copper
sulfate at a temperature of 17° C, N=1.95, the dif-
fusion coeflicient is D=2.66 107" ecm?/sec. Hence
the value

v=0.572X10*

may be used for the two solutions. As regards the
cathode immersion length /,, we take it to be 10 em,
this being the value communicated to the author
orally by Brenner.

Using the above-mentioned values of the pertinent
quantities the magnitudes of the maximum layer
thickness were computed from eq 85, and these are
shown in table 4. Also there are given in the table
the observed values of the same quantity as read
from the curves in ficure 7. At instances equalling
the maximum layer thicknesses the average densities
equal the bath densities. There is some difficulty

i a | | f
| : . . Theoretical |Proportionate| o, e ( ST falli
Distance Reduction of | Reduction of e Sl Proportionate Current Metallic
from cath- density at density in maugm}m - density re distance from intensity, ion
5 y layer thickness duetion
ode, 1 cathode, Apm layer, Ap’ s Yot > I—Ap’/Ap‘m cathode, 11/ya ' I
cm g/c em3 g/c cm? cm amp/em?

0.00 0. 061 0.00 0.00

3. 69X10-2 . 047 . zg . 15
11. 16 . 031 5 o N
18. 7 0. 061 " 010 0. 0302 84 62 0.04 Copper
27.63 . 002 .97 .91
37.63 . 000 1.00 1.25

0.00 . 025 0.00 0. 00

3.83 . 018 - 22 5 ;g
11.18 . . 008 oF
21,05 0.025 " 001 0. 0382 96 55 0.01 Nickel
32.46 . 000 1. 00 .85
44.12 . 000 1.00 1.15

0. 00 . 040 0.00 0.00

3.83 . 030 ] %i & ;;
12.36 L018 , 57 .3
21.05 0. 040 " 009 0. 0347 77 61 0.02 Nickel
30. 00 . 002 .95 .86
40. 00 . 000 1.00 1.15

0.00 . 059 0.00 0. 00

3.83 . 044 5 2:‘;) 5 g ‘
12. 36 . 021 .6 o e |
21. 05 0.059 T 006 0. 0315 90 65 0. 04 Nickel
30. 00 . 002 | .97 .95
40. 00 . 000 1.00 1.26 \

957570—51——4
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Ficure 7. Graphical representation of the data from Brenner’s
tests.

in identifying the exact magnitude of the maximum
layer thickness from the curves of figure 7. If this
element of uncertainty be ignored, the agreement
between the theoretical and observed values may be
judged to be fairly satisfactory.

The second question to be considered is the dis-
tribution of the mean densities in the layer itself,
that is the variation of Ap’/Ap, with y;/yq. The
observed proportional density reductions for a given
relative distance are given in table 3. The method
of determinations is obvious from the contents of
the various columns. In forming the ratio /¥y,
the theoretical values of 1y, are used. Values from
the table are plotted in figure 8. The curve drawn
is the theoretical distribution and is the plot of eq
117. Again the agreement between observation and
theory may be judged to be fairly satisfactory.

The third question to be examined is the depend-

1.0 —e— o
L 4
° / O
/ A
0.8
/T
°
v
g 06
% []
< . SYMBOL CURRENT SALT
QU amp/cm?
<11_ 04 ° 0.01 Ni
= L] 0.02 Ni
v 0.04 Ni
) L 4 0.04 Cu
0.2 /
0.0
0.0 0.2 0.4 0.6 08 1.0 12
Y./ Yo,
Ficure 8. Distribution of densities of the diffusion layer

according to theory and observation.

ence of the average density gradient at the cathode
surface upon the intensity of the electrical current.
This question deals with the electrochemical bound-
ary condition represented by eq 37. Since the
average gradient according to eq 95 is

P
oy /o Ysi ’

eq 37 may be changed to

_ U 1
2.1m DApn=p5—"0m 1 (118)
ysl
This relation may be examined in two ways. If the

transport number of the cations (nickel and copper)
are known, the relation may be used in computing
Apn, the average density reduction at the cathode.
Or, using the observed value Ap,, the transport
number of the cations may be determined. The
second method will be used here.

From the datain table 3 the ratios Ap,,/ys are com-
puted and these are plotted against current density
in figure 9. The distribution of the points is linear,
and the equation of the line drawn is

Ap /() =0.5%X 102 (119)

TaBLE 4.— Theoretical and observed mazimum diffusion layer thickness in the Brenner experiments

. ) Reduction of Cathode Observed Theoretical Allie
dgégl Sgﬁ?&g‘ density at immersion |maximum layer|maximum layer lgtl;;r:l?t I\I(i“f;;]]lt
: Vs 4 cathode, length, thickness, thickness, A 7
P ‘ Po Apm U Yol Ys1 1
glem 3 glem 3 glem 3 cm cm cm amp/cm ?
1. 148 1. 087 0. 061 10 0.032 0.0302 0.04 Copper
1. 150 | 1.125 . 025 10 . 032 . 0382 .01 Nickel
1. 148 1.108 . 040 10 . 037 . 0347 .02 Do.
1. 149 ’ 1.090 £059 10 .034 .0315 -04 Do.
|
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We also have

F.-D=256x10""
and
m=1.32X10"2

Substituting these values in eq 118, it is seen that

[JYQ

U0, 0.356. (120)

Accordingly, the transport of the cations, nickel, is
n,=0. 644 a value very close to the renelall\ ac-

copted value determined by other mothodq Thus

in this respect also there is agreement between theory

and observation.

Another element of the theory that could be ex-
amined with considerable signficance is the question
of the vertical velocities. Unfortunately in the ex-
periments of Brenner this matter was not touched.
To give an idea of the order of magnitude of the
velocities involved, we may compute the maximum
upward velocity in a normal section of the diffusion
layer using eq 99. Consider the case of copper sul-
fate. Corresponding to the current intensity of
I=4X10"* amp/em? the density reduction at the
cathode surface is Ap,,,/px—.) 3l ><10* Since 1/y=
1.74 X107, the formula gives for maximum velocities

L
Joz

—=2.50X1073,

Thus at a point =10 e¢m, u, equals 2.48 mm/sec.

The discussion presented above must lead one to
the following conclusion. The approximate analyti-
cal theory of the diffusion layer based on the assump-
tion of a uniform density reduction along the entire
cathode surface gives fairly satisfactory results
regarding the maximum width of the layer, the aver-
age densities in planes parallel to the cathode surface,
and the transport number of ions. Brenner is now
engaged in further work on the variation of densi-
ties 1n planes parallel to the cathode surface. In-
formation of this kind may possibly point to defects
in the present theory. In that event it might be
necessary to base the theoretical investigation of
the problem on the assumption that the gradient
of the density and not the density is uniform. along
the cathode surface.

The author expresses his sincere appreciation to
W. Blum for the guidance shown in the beginning of
the investigation, and to A. Brenner for advice given
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Frcure 9. Relation of maximum density reduction to the

intensity of electric current.

during the progress of work. Thanks are due also
to K. Hilding Beij, and to John L. French for review-
ing the paper.
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