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Hydrodynamics of Cathode Films 
Garbis H. Keulegan 

A hydrodynamical t heory of t he ca thode diffusion layer based on t he assumption of 
a uniform density reduction at t he cathode surface is presented . By means of an approxi
mate solution for t he flow and t he diffusion eq uations, t he layer dimensions, t he velocity 
distribu tions, and t he densities are determin ed. Further derivations from t he solutions 
directly applicable to results obtained by t he freezing method are effected . The data of 
Brenner on copper and nickel baths a re considered. Usin g t he observed values of t he 
density reductions at t he cathode surface, t he maximum width of t he layer, t he average 
densit ies for a given distan ce from t he cathode, and t he mobilities of t he ca tions are deter
mined and compared with t he observations. The agreement between observed and com
puted values is regarded as fairl y sat isfac tory . 

1. Introduction 

N either the cognizance of the phenomenon repre
sellting the subject matter of the present paper, nor 
the statement of the basic causes producing it is 
original with us. Some 12 years ago, W. Blum, 
Chief of the Electrodeposition Section, National 
Bureau of Standards, described to us the cathode 
film phenomenon as a thin layer of moving material 
very close to the cathode surface and as being 
caused by the continued reduction of the densities 
due to electrodeposition. Since the phenomenon in 
question is also partly hydro dynamical in nature, 
he suggested that we should prepare a theoretical 
study with a view to determining the density dis
tributions in cathode films. 

Blum's first thought was that the film might con
stitute a seat of discontinuity in densities , since to 
the naked eye a line of demarcation between the 
contiguous layers of liquid near the cathode surface 
is distinctly visible. The line of demarcation 
should be due to the different indices of refractions 
of the liquid layers on the two sides of the line. Thus, 
according to these ideas the flow near the cathode 
surface is in one or two layers having dissimilar 
densities with sharp discontinuities. But, despite 
the appearance of the region close to the cathode 
surface, the opinion was ventured on our part that 
the exsitence of the sharp discontinuities could not 
be shown on the basis of purely hydrodynamical 
reasoning. The basis for this opinion was the belief 
that the phenomenon in question was essentially 
similar to the type of flow encountered when a 
heated vertical plate in the presence of cold air 
se ts up convection currents. Since experience in 
this particular case does not show any discontinuities 
in temperatures, it might be expected that density 
discontinuities would not be present in the cathode 
plate problem. Unfortunately, du e to other pressing 
work at that time, it was impossible to proceed 
wi th a mathematical solution of this interesting 
problem . 

About 3 years ago , Blum repeated his request for 
an analytical study of the problem, since he was 
planning to resume the experimental investigation of 

cathode films. The computations that appear in 
this paper were completed shortly after the receipt 
of this request. M eanwhile two other papers on 
the subj ect, one by Agar rIll and the other by 
Wagner [2], were published. Since the present 
work proceeds on a mathematical basis different 
from these two papers and since the work was 
conceived with a view of interpreting the results 
of A. Brenner, a member of the staff of the Bureau, 
on cathode film densities, it is hoped that some interest 
in the results achieved will develop. 

In the present treatment it is assumed that the 
reduction of densities over the vertical cathode 
surface is constant. On the whole the treatment is 
self-contained and is given in full detail. In general, 
the results shown are approximate and sufficient, 
it is believed, to evaluate average densities in a 
vertical plane parallel to the cathode surface. In a 
future publication it is proposed to investigate the 
problem of cathode films with the basic assumption 
that the density gradient at the cathode surface is 
constant and uniform, rather than the density. 

2 . Molecular Character of Electric 
Conduction in Solutions 

Certain fundamental relations of electrochemical 
import that will be considered during the course of 
the analysis are based on the ideas of Larmor [3] in 
the matter of electrolytic conduction. 

Taking an idealized situation it will be supposed 
that the electrolytic solution is a binary system and 
that ionization is complete. In each portion of the 
solution the number of the positive ions and the 
negati ve ions is the same and the conditions are 
steady, that is, independent of time . At a point of 
the solution let the number of ions of each kind 
per unit volume be n . Measuring positive y horizon
tally away from the plane cathode surface toward 
the anode, let a section normal to y be selected. 
Let dNI be the number of the cations and dN2 the 
number of anions crossing the section per unit area 
during time dt. The motions of the ions are due in 

1 Figures in brackets indicate the literature references at the end of this paper. 
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part to the electrical force dP/dy , P being the elec
trical potential , and in part to the forces producing 
diffusion. If UI be the specific mobil ity of the cations 
and kl the coefficient of diffusion of these ions, 

(1) 

and for the anions, in similar manner , 

(2) 

Since there is no accumulation of electri city at a 
point, the relation between the electrical curren t 
intensity, I , and the motion of the ions will be 

(3) 

where se is the charge on each ion. Applying the 
principle of continuity of the ionic flows, 

l. ~ (dNI _ dN2) = dn. 
2 dy dt dt dt 

(4) 

On the other hand , the curren t intcnsity remaining 
constant, from eq 3 

and this together with eq 4 gives 

and 

d2N I dn 
dydt= dI' 

(5) 

(6) 

(7) 

Differ entiating eq 1 and 2 with respect to y and 
using the relations just given, 

and 
dn d (dP) d2n dI= - U2dy n dy +k2dy2· 

(8) 

(9) 

:Multiply the first of these by U2 , the second by UI , 

and adding the resulting equations, one obtains 

dn k2U I+ k I U2 d2n 
dI U I + U2 dy 2· 

(10) 

Now t he form of this equation is exactly the form of 
the diffusion equation of an ordinary nonelectrolytic 

, solution. H ence, the changes in th e concentrations 
of an electrolyte proceed with the cliffusitivity con

G stan t 

D k2 U I + k I U2 

UI + U2 
(11) 
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FIGURE 1. Geometrical and physical q1tantities relating to the 

diffusing laye?·. 

As this relation holds good however slight the electric 
current may be, it may be supposed that the relation 
holds in the limi t when the current is n il. Therefore, 
D i the ordinary coefficient of diffusion of the solu
t ion, and thus a relation exists connecting this coeffi
cient with the ionic quantities, that is, with the spe
cific mobilities and the coeffi cients of diffusion of the 
two ions. 

H the rela tions 

(12) 

exist, where 0 is a constant independent of the con
cen tration of the ions, then 

N ow, from the theory of electrolytic diffusion b y 
Nernst [4] we have 

D = 2 UI U2 RT (14) 
UI + U2 ' 

where T is the absolu te temperature and R the gas 
cons tant. Accordingly, the constan t 0 in eq 13 
may be identified with the product RT in eq 14. 

3 . The Equations of Motion and of Diffusion 

Taking the case of a plane cathode surface, held 
vertically, a point at the lower edge may be chosen 
as the origin of the rectangular coordinate system 
(x, y ) (see fig . 1) . The positive x axis is drawn 
vertically upward and the positive y axis normal to 
the smface and into the electrolyte body. D enoting 
the velocity components along the x and the y axes 
by u and v, respectively, the equations of motion are 

and 
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1 op 
0 = - - - , 

P oy 
(16) 

where p is the pressure, I' the kinematic viscosity 
of the solution, P the density, and g the constant of 
gravitational acceleration. These are the equations 
of motion used in viscous boundary layer theory. 

The pressure must be expressed in terms of t~ e 
d ensities. D enoting the densIty of the electrolytIc 
bath at points far removed from the cathode surface 
by PI , the density near the surface may be expressed 
by the r ela tion 

(17) 

where C:,.p is the deficien cy of the density in the layer . 
The greatest reduction of density is at the cathode 
s urface, that is at the plane y = O. Let the average 
value of 6.p over the entire length of the cathode sur
face be denoted by c:"p m. The study of the densities 
in the layer is done convenien tly, as will be seen 
later, by considering the ratio 

N ext will be considered the equation of diffusion. 
In the presence of convective currents, the diffusion 
equation takes the form 

on on on (o2n o2n) 
(5t+u ox +v oy= D OX2+oy2 ' (25) 

where n is the number of particles of the diffusing , 
material per unit volume. This relation reduces to 
Fick's equation when convective currents are absent. 
Although the equation is well known, it may b e h elp
ful to give a derivation in order to clarify the ideas 
involved. N either the name of the investigator 
giving the first deriva tion nor the manner of deriva
tion is known to us. 

Consider a parallelepiped of sides dx, dy, and l. 
Let the number of particles crossing the face at x per
pendicular to the x axis during time dt be 

Nil ely elt, 7\ T _ D on+ 
1 \ 11 - - ox nu, 

(18) and the face at x+ dx be c:"p 
a=--' 

6.p m 

Another quantity important for the analysis is the 
effective gravity 

c:"P m G g --= . 
P I 

(19) 

Now, the second boundary layer equation, eq 16, 
states that in the layer next to the cathod e surface 
the pressure along a horizontal plane remains con
stan t . Moreover, all motions being nil in the main 
body of the bath solution , the pressures are hydro
static and hence 

(20) 

where Po is the pressure at points in the horizon tal 
plane passing through the origin. Thus, 

1 op P I --=-g - ' 
P ox P 

(2 1) 

R emembering that c:"p is a small quanti ty and mak
ing usc of the r elations in eq 18 and 19, we have 

1 op -p ox - g= Ga, (22) 

and thus eq 15 reduces to 

OU OU 02U 
U ox +v oy = 1' oy2+ Ga. (23) 

TIlls is the equation of motion that is appropria te to 
the problem at hand. To tills must be added the 
conditions of con tinuity, 

(24) 

N12 dy dt = ( Nll + 0i:xll dx ) dy dt. 

Similarly, let the number of particles crossmg the 
face at y perpendicular to the y axis be 

N 21 dx dt, 

and the face at y+ ely be 

N 22 ely elt= ( N 21 + O~21 ely) dx dt, 

so th e accumula tion of the par ticles in the parallele
piped is 

_ (ON ll + ON 21)elx dyelt. 
ox oy 

But the accumulation is also 

on 
(5t elx ely elt. 

H ence, 

or 

The last term in the right-hand number vanishes 
because of the incompressibility of the solution. "
This now proves the general equation of diffusion 
given by eq 25. A tacit assumption of the derivation 
is that the ratio of the volume of the diffusive 
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particles to the volume of the solution is a small 
fraction. Stated otherwise, the result is valid for 
small concen trations. 

The diffusion equation is much simplifir.d when 
applied to the cathode film boundary layer . First , 
the concentrations do not vary appreciabl.v wi th 
time. Second, the layer being very thin and co rro.
paratively very long, thr. quantity 02n/ox2 is sm.all in 
eomparison with 02n /oy2. Accordingly , eq 25 becomrs 

on on o2n 
u~+v~=D~, 

u X u y u y 

and since n is proportional to £x, also 

(26) 

This is the diffusion equation appropriate to the 
problem at hand . Equations 23, 24, and 26 govern 
1,he movement of liquid and the distribution of the 
densities in the cathode film subject to the boundary 
conditions. 

4. Boundary Conditions 

The boundary conditions to be considered are of 
two kinds. One kind relates to the velocities and the 
other to the densities, the latter having electro
chemical implications. 

The boundary conditions to be assigned to velocity 
components are the most obvious ones. The solu tion 
or the liquid of the film being viscous , u and v vanish 
nt the cathod e surface; that is 

u= v= o, y = o. (27) 

To state the condition for the velocities at large dis
tances away from the cathode surface i t is necessary 
to introduce first the concept of the boundary layer 
thickness (see fig. 1). The boundary layer thickness, 
Ys, is such that the density of the solution at tIllS 
distance from the cathode differs only imperceptibly 
from the density of the bath . Since the movement 
of liquid in general is nil in the main portion of the 
bath, a second condition for the velocities is 

u=o, y = YS' (28) 

It is obvious that the thickness Ys of the boundary 
layer at the lower edge of the cathode surface, that is 
at ),=0, vanishes. This means that the liquid moving 
upward in the film must be replenished by a later 
and horizontal movement of the bath solution into 
the film region. Hence 

y = y., . (29) 

The assumption of vanishing velocities in the bath 
in the vertical direction is an idealization. Under the 
actual conditions of experimentation, arbitrary move
ments in the bath may be present even when forced 
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agitation is not resorted to. Since the movemrnt of 
liquid in the film next to the cathode surface is up
Wal d and in the film next to the anode downward, 
it is obvious that a circulation is induced in the bath 
liquid. Due to accidental variations of temperature 
at places the regularity of the circulatory motion will 
be dist urbed and will give rise to weak: eddying mo
tions. These will be most noticeable near the upper 
surface of the bath and close t.o the cathode. Such 
accidental distmbances can be imagined to have only 
minor effects on the main motion in the film and thus 
will be ignor8d. 

The boundary conditions that are to be assigned 
to the densities are not obvious, especially the one 
relating to the value of the densities at the cathode 
surface. R egarding this, it seems that two different 
statements may be made depending on whether the 
transmitted electric current is of the limiting valu e 
or is inferior to this limiting value. Taking the case 
of weak electric currents, we may consider the ques
tion of the densi t ies at the cathode s urface as follows: 

Assume that the ionic system is binary and 
ionization is complete. Since at the cathode surface, 
that is at y= O, dN2/dt= 0, eq 3 gives 

and thus eq 1 and 2 now become 

and 

I dP dn 
-=nUI -d +k l -d ' se y y 

dP dn 
0= nU2 -- - k 2 - , 

dy dy 

where n is the number of ions of each kind per unit 
volum e. E liminating the potential gradient between 
these two equations and making use of eq 11, 

(30) 

This is the relation between the electric current 
intensity and the gradient of n at the cathod e surface. 

It is desirable that the quantity n in eq 30 be 
replaced by c, the latter being defined as the gram 
equivalent of the salt per cubic centim~ter of the 
solu tion. In a unit cube there are n catIOns and n 
anions each of ionic valence s, and the system is 
completely ionized. Introducing N, the Avogadro 
number, the molar concentration is n/N and hence 
the concentration in gram equivalent of the salt per 
cubic centimeter of the solution is 

ns 
c=N' 

and eq 30 now becomes 
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Since eN is the universal constant F, with the 
numerical value F=96450, and with the dimensions 
coulomb per gram equivalent, 

(32) 

The same condition may be expressed in terms of 
densities instead of concentrations. For the major
ity of electrolyte solu tions the variation of densiti es 
with th e concen tration is lin ear ; that is 

de 
dp = m. (33) 

For copper sulpha te m= l. 32 X 10- 2 gram equivalent 
per gram ; and for nickel chlorid e m = I .71 X 10- 2 

gram equivalen t per gram. Equation 32 may now 
be written as 

D dp 
m dy y= o. (34) 

This is th e r elation between the intensity of the 
electric current and the gradient of the density at a 
point of the cathod e surface. It is the only relation 
that may be derived on the basis of simple concepts 
of an electroch emical nature. Accordingly, we are 
not cer tain of the state of th e densities at the cathode 
surface for the present. 

Two simplifying assumptions may b e made. First, 
it may be supposed that the current intensity is 
uniform at the cathode surface . The r esulting 
boundary condition would be that the density gra
dient is uniform at the cathode surface. Second, it 
may be supposed that the density is constant at the 
cathode surface. For the present analysis we shall 
adopt the second alternative simply for the reason 
that the corresponding analysis may be completed 
with ease. Thus it will be supposed that, 

/:;.P = /:;.Pm, y = O, 
and 

/:;.p = O, y = CD. 

In view of eq 18 
a= l , y = O, (35) 

and 
a= O, y = CD. (36) 

The set of equations 27 , 28, 35, and 36 constitute the 
boundary conditions to be considered in solving the 
set of equations 23, 24, and 26. 

Since the relation implied in eq 34 is valid for all 
condi tions, i t may be used to consider average effects. 
Expressing P in terms of a through the use of eq 18, 
multiplying th e two sides of the resulting equa tion 
by dx, and integrating between x= O and X= ll, where 
It is the length of immersion of the cathode surface, 

( II (da) 
- mD/:;. Pm Jo dy dx (37) 

where now I is the average intensity of the electric 
current measured in amperes per square centimeter. 
W e shall use this rela tion to compute the transport 
number of copper ions taking our data from the results 
of the Brenner experiments. 

5 . The Dimensional Form of the 
Basic Equations 

The solution of th e basic eq uations subj ect to the 
boundary conditions indicated above will be greatly 
simplified if the equations are ch anged in to forms in
volving dimensionless quantities only. The clue to 
the proper course of analysis may be found in th e 
method of Blasius for treating th e viscous boundary 
layer of plates in a current of air. 

The limiting values of the densities and the veloc
ities being uniform at the boundaries of the cathode 
film or of the diffusion layer, it is to be expected that 
the dis tribution of the velocities and of the density 
reductions in different normal sections are affine to 
each other. The affinities will be establish ed by th e 
introduction of the characteristic length 0 and the 
characteristic velocity U, bo th of which are functions 
of x only. 

Introducing the stream function if; , su ch that 

oif; 
U=-, 

oy 
oif; 

V=--, 
ox 

(38) 

the condition of incompressibility, eq 24, is automa
ticallysatisfied. In terms of the stream function the 
equation of motion, eq 23 , and the equation of diffu
sion, eq 26, transform to 

ann 

(40) 

Introducing the new variables 

7] = y/ o, (41 ) 
and 

(42) 

ancl r emembering t hat U and 0 3,1'e functions of x 
only, we h ave, first 

(43) 

and 
o 07] d 7] do d 

ox = ox d7] = -a dx dr" (44) 

and h ence 

(45) 
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o if; = U dJ-l, 
oy d'Y} 

(46) 

(47) 

(48) 

and 

(49) 

Substitut ing th ese expressions in eq 39 and 40, 

and 

It is now obvious that U and 0 each arc single 
power terms of x. Assuming 

U = A xr , 

o= B :r:', 

(60) 

(61 ) 

where A and B are constants involving the physical 
characteristics of the electrolytic solution. Substi
tuting these expressions in eq 57, 58, and 59, eom
paring the powers of x and the coefficients for the 
individual equations, the comparisons yield 

1\1> =1112 (8 + 1'), (62) 

J12 (8 + 1')AB 2= v/ 'Y (63 ) 

28+ 1'- 1= 0, (64) 

1'= 28, ~65 ) 
and 

vA= 'YB2G. (66) 

where 
v 

'Y = D' 

Equations 64 and 65, yield 1' = 1/2 a,lI d 8= 1/4. 
(52) Equation 62 now yields 

Now eq 50 and 51 will be freed of the difl'erel1tial 
operators involving x if one can write 

and 

M2 ~ (Uo) =~, 
o dx "10-

(54) 

where Ail and 1112 are num erical constants. In view 
of these provisional relations, the two equations 
simplify to 

(55) 

and 

(56) 

In fact, the provisional equations 53 and 54, 
determine the dependence of the characteristic 
velocity U and the characteristic length 0 on the 
variable x. The provisional equations 53 and 54 
imply 

(57) 

2J\1[j- 3M2= 0 . 

For sim.plicity subject to the last derived eq uations, 
we may put 1111= 1/2 and M 2= 1/3. . 

Substituting the values of t he constants A and B 
that are obtained from. rq 63 and 66 into eq 60 and 
61 , there results 

(67) 
and 

(68) 

which are the functions showing the dependence of 
the characteristic velocity U and the characteristic 
length 0 on the independent variable x. 

Substituting the values of 1111 and 1V!2 as found 
above into eq 55 and 56, these simplify into 

(69) 

and 

(70) 

which are the equation of motion and the r quation 
of difl'usion expressed in dimensionless forms. 

In terms of the new variables, the velocity com
ponen ts u and 1) are, using eq 38, 45, and 46, 

(71) 
d v 

M 2 o-d (Uo) = - , 
x 'Y 

(58) and 

and 
VU= ,,/02G. (59) 
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and the boundary conditions are 

H = O, (!Ji= o 
d7] , 7] = 0 , 

dH= O 
d7] , 7] = 00, (73) 

a= l, 7] = 0 , 

a= O, 7] = 00. 

The two equations 69 and 70 become the basic 
equations for the problem of temperature variation 
of a heated plate placed vertically in a cool air bath, 
when 

(74) 

where T is the temperature near the plate, To the 
temperature of the plate, and Tl that of the cool air, 
and the parameter 'Y is replaced by 

(J = v/k, (75) 

where k is the thermometric conductivity. 
Goldstein [5] has discussed the Pohlhausensolution 

of the heated plate problem and the equations con
sidered are similar to eqs 69 and 70 , when allowances 
are made for the variations in some of the coeffi
cients. Thus, in the two basically different phe
nomena of the diffusion layer near a cathode plate 
and of the conduction layer near a heated plate, 
the corresponding parameters 'Y and (J play identical 
roles. The latter is well known as the Prandtl 
number. The former will be called the diffusion 
parameter for the present, since it is a dimensionless 
number expressing the ratio of the kinematic vis
cosity to the coefficient of diffusion. In forming 
the numerical value of 'Y, both D and v must be 
expressed in square centimeters per second. 

6. An Approximate Solution of the Basic 
Equations 

Since an approximate solution is adequate for 
the present objectives, it is hardly necessary to 
effect a rigorous solution of the two equations, 69 
and 70. To prepare the way for the approximate 
solution, it is necessary to introduce the boundary 
layer thickness y., which is a function of x. To 
the distances y and y. correspond the parametric 
distances 7] and 7]., such that 

'1J = y /o and 7] s=Y./o. (76) 

We introduce the ratio 

It is obvious that Lhe quantity 0 will serve as the in
dependent variable in the place of 7] . Indeed, the 
basic equations 69 and 70 transform to 

(78) 

and 

(7 9) 

with the bounrlary conditions 

H = O, 0= 0, 

dH= O 
do ' 0= 0, 

dH 
Te = O, 0= 1, 

(8 0) 

a= l , 0= 0, 

a= O, 0= 1, 

in place of the set shown by eq 73. 

It is obvious, intuitively, that the space rate of 
change of the velocity components, ou/oy and ov/oy, 
each vanish at large distances from the cathode sur
face. These conditions are fulfilled likewise quite 
approximately at distances equaling or exceeding y •. 
This observation suggests the additional boundary 
conditions 

d 2H 
d02 = 0, '~ lJ 
da 

(8 1) 

dO = O, 0= 1, 

the first of these resulting from eq 48 . All the 
boundary conditions of eqs 80 and 81 are satisfied 
if it is assumed that 

and 

a= I - sin~ 0 
2 ' 

H= AI[~_COS 7rO-l. cos 27rOJ . 
7r 4 4 

(82) 

(83) 
{ 

The above analysis involves the quantities Al 
and 7]., which at present are not known. For the 
determination of their values the differential equa
tions 78 and 79 are at our disposal. Multiplying 
these equations by dO, integrating between the 
limits 0= 0 and 0= 1, and making use of the boun- 'i 
dary conditions, the r esult is I 

(77) 
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and 

( da) (1 dH 
do 0 +31),,}0 a de dO=O, ( 5) 

after resorting to the rules of integration by parts. 
Introducing the values of a and H from eq 82 and 
83 and effecting the integrations, we find 

A 25 A2 f- 3 (7r -2) 0 - 27r'Y 1 - 8 1) . 1 - 1) 8 - 7r- = , 

and hence 

1)! 57r4 ( 125) 
14(7r-2) 'Y+ 448 7r ' 

(86) 

and 
57r2 

(8 7) A 1= --· 
281) . 

The expressions for 1). and Al as given by eq 86 
and 87, respectively, and the expressions for a 
and H as given by eq 82 and 83, respectively, con
stitute the first approximate solution of the diffusion 
layer problem based on the assumption t hat the 
reduction of dens ities, or concentraLions, at the 
cathode surfacc is cll1iform. 

7 . Thickness of the Cathode Diffusion Layer 

Inasmuch as the diffusion parameter 1' = vlD is or
dinarily a very large quantity, it is su fIi cient to write 
in the place of eq 86 

(88) 

Introducing the value of Ys from eq 76 and the value 
of 0 from eq 68, we find first 

and next introducing the value of G from eq 19 

Ys = 3.33(~)1/4Xl / 4. 
gtJ.P m'Y 

(89) 

This is the expression that gives the thickness 
of the diffusion layer along the cathode surface 
(Sec fig. 2). The thickness is not uniform, but 
increases from the zero value at the lower edge of 
the cathode surface to a maximum at the upper end 
of the cathode surface still in contact with the 
electrolyte . The rate of increase of the thickness , 
however, is very gradual due to the fact that the 
thickness if proportional to the one fourth power 
of x, the distance from the lower end of the cathode. 
Again at a chosen point x the thickness of the layer 

1.2 
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FIGURE 2. Shape oj the boundm'Y of the diJIusion layer. 

decreases when tJ.Pm, the maxim.um reduction of the 
density at the cathod e surface, is increased . Since 
t he decr ease of density at the cathode surface is 
proportional to Lhe electrical current density, when 
the lattcr is in ferior to iLs lirniting value, it is Lo 
be cx pected thaL a decrease in Lho intensity of 
current will cause the thickness of the diffusion layer 
to be augfT1.enlcd. 

Having established the magnitude of the diffusion 
layer thickness, it is of interest to inquire n ext into 
the normal den s ity gradient at the cathode surface. 
The variation of the den si ty graciien t will b e b est 
understood if it is expressed in terms of the average 
cl ensi ty grad ient, the averaging b eing m ade over the 
e11 Lire cathod e surface. In view of eq 18, the quan
tity 

(oa) /(oa) _ B oy 0 oy 0- " 
(9 0) 

where the numerator on the left-hand side refers to 
local values at the point x and the denominator to 
the average values, is the ratio to be considered. 
Sin ce 

Oa Oa 00 
oy = 00 ' oy' 

we have from eq 77 and 82 

or 

where 
7r ( Pl v2 ) - 1/4 

Cl = 6.66 gtJ.Pm'Y . 

(91) 

(92) 

Accordingly, the average value over the length l1 
of the cathode surface is 

(93) 
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and the desired ratio is 

R-- - , _ 3 (ll)I!! 
4 x 

(94) 

which gives the proportionate variation of the normal 
density gradient over the cathode surface The 
variation is shown graphically in figure 3. In the 
sec tion of the cathode from x/II = 0.2 to x/II = 1.0 the 
ratio is nearly constant. This circumstance assures 
the utility of the present solutions even for the case 
in which the normal concentration gradient is strictly 
constant over the entire surface of the cathode, pro
vided that on e deals with the average values of the 
densities in the planes close and parallel to the 
cathode surface. 

If the diffusion layer thickness at x= lt, that is at 
the upper end of the cathode surface just in contact 
with the bath, be denoted by Ysl, then the average 
value of the normal density gradient, expressed in 
terms of the maximum density r edu ction, is 

(oa) 2.1 
oy o= -Y:;· (95) 

Use will be made, subsequently, of this r elation. 

8. Velocitus in the Diffusion Layer 

Consider first the velocity component u, that is 
the component parallel to the surface of the cathode. 
Now, 

where 

Since 

2 .0 

\ 

dH dH do 
([;J = To . dr,' 

(71 ) 

(67) 

\ 
1.6 

1.2 

O.B 

0 . 4 
0 .0 

FIGURE 3. 

~~ 
r----t---

0 .2 0 .4 X/f.
1 

0 .6 O.B 1.0 

Val·ia/ion of the density gmdien/ along the cathode 
sU1Jace. 

eq 71 may serve , in view of eq 77 , 83, and 87, to 
give the distribution of the velocities in a normal 
section of the diffusion layer. There is, however , 
another method for representing the velocity dis
tribution. Moving away from the cathode surface 
in a normal section, U is zero at the cathode surface, 
increases to a maximum value U rn, and then de
creases to zero at the limit of the boundary layer, 
that is at y = Ys. Thus, the distribution of the 
velocity may be obtailled also by considering the 
ratio u/urn . Now 

(96) 

In terms of the variable 0, 

(dI-I\ 1 (dH) 
([;/ }m =-:;. de m· (97) 

If 01 be the value of 0 that makes U a maximum, we 
ha ve from eq 83, 

(dH) A [ . + 1. J YJ s ([;/ rn = I sm 7rOI "2 sm 27rel . 

The value of 01 =}~ satifies the relation. 

This makes 

and therefore 

(dH) ([0. m = l.299 A l (98) 

S.ubstituting into eq 96, from eq 98, 97, 88, and 67 
gIves 

( G)I!2 
u m =0.82 -:; XI !2, 

or using eq 19, 

(99) 

Accordingly, the maximum value of U in a normal 
section changes from one section to another and 
increases with the one-half power of the distance 
from the lower end of the cathode. 

Since, 

and introducing the relations in the equations 97 and 
98, the distribution of the velocity component U in a 
normal section in the diffusion layer becomes 

U /U m = 0.77 [ sin 7r lL+-21 sin 27r lLJ. (100) 
y , Ys 
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The graphical representation of the dist ribution is 
given in figure 4. 

N ext consider v, th e velocity componen t normal to 
the cathode surface. The velocity can be written 
from eq 72 as 

do [ dEl] v= -u dx 3El- ." ([;J . (101) 

The magnitude of v is largest at the liq uid boundary 
of the diffusion layer. Let Vm be tIllS largest value. 
Tills occurs at ." = ." s . Let Els be the value of El at 
." = .,, s 01' at (J = l. At ", = "' s, dEl/d.,, = O, and thus 

where 

do 
vm = - 3 dx ElsU, (102) 

(103) 

In view of the values of U and 0 from eq 67 and 68, 

U do = 1:.. (4v2G)I /4X-I/4'Y-1 /2. 
dx 2 

Substituting the above r esult in eq 102 and also 
introducing the value of Al from eq 87, 

(104) 

Accordingly , the liquid of the bath moves hori
zontally in to the cathode diffusion layer. The veloc
ity with willch the liquid approaches the cathode 
surface is variable along th e length of the cathode 
surface , the maxim.um value occurring at the lower 
end of the cathode surface. After a certain elevation 
is reached the variation in the value of Vm ceases 
to be pronounced . 

-. -- --~-- -~--

1.0 

O.S 

0 .6 

E 
> 
"-> 

0.4 

0 .2 

~/ 
0 .0 

0 . 0 0.2 

v 

/ 
II 

/ 

/ 
II 

/ 

0.4 0 .6 O.S 

Y/Ys 

-
I 

1.0 

FIG U RE 5. Dl:stl'ibution oj the horizontal velocity component. 

The representation of the dis tribution of v in a 
normal section of the layer is most conveniently 
done by considering the ratiD v/vm . Now, 

~=_] [El _'!L. dEl] , 
v", Fls 3 d." 

or in te rms of (J , 

~=_l [ El _! dEl] . 
Vm Fls 3 d(J 

This gives, in view of cq 83 and 103, 

v 5 1 1 7r(J . 7r(J . 
-=- - - cos 7r (J - - cos 2 7r (J - - Sill 7r(J - - sm 27r(J. 
Vm 8 2 8 6 12 

(105) 

The graphical representation of the d istribution is 
shown in figure 5. 

9. The Brenner Freezing Method and the 
Laminar Mean Densities 

In the Brenner method [6] the electrolytic solu tion 
near a cylindrical cathode is suddenly frozen , succes
sive layers of the solid of 0.003- to 0.004-inch thiclc
ness are carved off on a lathe, and the compositions 
of the layers are determined . Thus, in this method 
the average concentration or the average density of 
a lamina of thickness dYI, of distance YI from the 
cathode and of length II are determined. Accord
ingly, if theoretical results are to be compared with 
the observed results of the Brenner experiments, it 
becomes necessary to derive a formula giving the 
average value of densities of a lamina of distance 
YI from the cathode surface , 
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FIG U RE 6. Geometrical and physical quantities relating to the 
diffusion layer in Brenner's tests. 

Let the average density reduction in the lamina of 
length II and of distance YI from the cathode surface 
be deno ted by /1p'. Mathematically , 

1 ( II 
/1P' = I;. J o /1pd x. (106) 

Let lo be the value of x for which thc boundary layer 
thickness equals YI (see fig. 6) . Obviously, for values 
of x < lo, /1 p = O, and thus, 

111
1 /1P' =-l /1pd x. 

I 10 
(107) 

Since, according to the presen t solutions, the density 
reduction at Y= YI is given by the relation 

( . 7r YI) /1p = /1Pm 1 -S111 -· -
2 Ys 

(10 8) 

(from eq 82) , then 

/1p = /1P m - d x- - Slll - - dx . , [ll l
1 1 fz ll . 7r Y1 ] 

II 10 II 10 2 Y s 
(1 09) 

It must be remembered in effec ting the integration 
of the second integral of the righ t-hand member , that 
Yl is held constant. Putting 

and 
(110) 

It is seen from the law of the layer thiclmess, eq 89, 
tha t 

and thus, 

(111) 

(112) 

(11 3) 

Accordingly, in terms of the new variable {3 , 

, [ 1 {34 + 4{34 ( Ill. 7r {3 d{3 
/1p = /1p m - 1 1 J 1 S lll 2 (35' (114) 

For convenience, we may write 

(115) 

and hence , 
(116) 

Since (31 = y J/YsI, we have also 

(117) 

This is the desired formula that will be used in 
analyzing the experimental data of Brenner . It 
involves the average reduction of density over a 
lamina, the average maximum reduction of density 
at the cathode surface, the distance of the lamina 
from the cathode, and the maximum thickness of 
the diffusion layer . The determinat ion of the 
function F ({31) was carried out by replacing the term 
sin (7r/2 ){3 appearing in the integrand by a power 
series in (3 and then effecting the integration , The 
results of this determination are given in table l. 

10. An Analysis of the Results Obtained by 
Brenner with the Freezing Method 

The comparison between the results of the presen t 
analytical theory of the cathode di.ffusion layer and 
the resul ts of the Brenner experiments on the 
reduction of the densities in the diffusion layer will 
be carried out along the following lines. First, from 
th e observed values of the reduction of density at 
the cathode surface, /1Pm, the maximum thickness 
of the diffusion layer , VsI, will be computed and 
compared with the observations. Second, using the 
same observed values of /1Pm, the ration /1p' //1 Pm 
will be computed for the dis tance YI, and these will be 
compared wi th the observations. Third, /1Pm will be 
compu ted from a consideration of the electric 
current in tensities used in the expeiments and will 
be compared with the observa tions. 

T AB L E 1. Numerical values of the fun ction F (y IiY,l) 

yl/y., F (yl/ y. ,) yl/y. , F(yl/y. ,) 

0 0. 0000 0.6 0. 8926 
0. 1 . 2070 . 7 . 9388 
.2 . 4024 .8 . 9640 
.3 .5708 . 9 . 9796 
.4 .7099 LO LOooo 
.5 . 8180 

~ 

The Brenner [6] r esults r elate to electrolytic baths 
of copper sulfa te and nickel sulfa te . The baths 
actually used were not pure binary systems, but 
this fact will be ignored. The complete data from 
the Brenner tes ts are collected in table 2, The 
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T ABLE 2. Diffusion layeT densities of the B renner test 

Distance N ormal- D ensity, Cmrent M etall ic from ity, intensity, 
cathode, VI N p' I jon 

---

Gram 
em equ;v!liter y/em' amp/em ' 

3.69 X IO -' 1. 274 1. 1009 

I 11. 16 1.1)22 1. 1174 
18.79 1. 800 1. 1381 0. 04 Co pper 
27.63 1. 920 1. 1465 
37_ 63 1. 931 1. 1473 

3.83 1. 741 1. 132 

I 11. 18 1. 885 1. 142 
21. 05 1. 971 1. 149 0. 01 Nickel 
32. 46 1. 985 1. 150 
44. 12 1. 985 1. 150 

3.83 1. 561 1. 118 

I 12.36 1. 724 1. 130 
21. 05 1. 872 1. 139 0. 02 NiCKel 
30. 00 1. 935 1. 146 
40.00 1. 959 1. 148 

3. 83 1. 382 1. 105 

I 12. 36 1. 694 1.128 
21. 05 1.900 1. 14:1 0. 04 N ickel 
30.00 1. 917 I. 147 
'10.00 J. 981 I. 149 

concentrations in tbe original data are in term of 
the normali tiei:'. The densities as derived from the 
normality values arc added. The average densit ies 
p' taken from the table arc plotted agains t YI in 
figure 7, ancl smooth curves are drawn thl'ough the 
points of observation. The extreme values Po and P I 
of the densities are read from the curVC's . The 
differences (PI - Po) give .6.p m, the average maximum 
reduction of densities at the cathode surfaces. The 
difference ( PI- p' ), where p' is th e observed vn, lu e 
of the densities eOl'l'esponding to th e dis tance YI 
gives .6.p' , the average r eduction of the densiLies 
corresponding to th e dis tance YI All these quan
tities, together with the ratio .6.p' /.6.P m, are entered 
in table 3. 

From the observed values of .6.p", and PI the maxi
mum layer thickness, YSI, ma~T be comp uted fro m 
the theoretical form ula in eq 89. However , the use 

of eq 89 for this purpose requires that the parametric 
diffusion number, "I , be known. This number in
v?l ve~ the ratio of the kinematic viscosi ty iJ., to the 
dIffUSIOn constant D , for each of th e two electrolytic 
solutions. The viscosities of the electrolytes may 
be determined from the normalities using the 
Arrhenius [7] formula, 

where iJ.I is the specific viscosity of a normal solution 
referred to the solvent at the same temperature 
iJ. is the specific viscosity of the solu tion havino- th~ 
normality N . Wagner 18] gives iJ.l = 1.358 for c~pper 
sulfate and iJ.1 = 1.361 for nickel sulfate at the tem
perature 25° C. The normalities of the bath solu
tions in the Brenner tests being 2 and the densities 
about p= 1.151 , the kinematic viscosities of the two 
solutions are practically equal and so iJ. = 0.0144 
cm2/sec. R egarding the rlifl'usion coefficient D, the 
Thovert [9] values for copper s ulfate ma~T be sup
posed to apply as well to nickel sulfate. For copper 
sulfate at a ten perature of 17° C, N = 1.95, the dif
fusion coefficient is D = 2.66 X lO- 6 cm2/sec. Hence 
the value 

may be lIsed for the two sol u tions. As regards the 
cathode immersion length tl , we take it to be 10 em, 
this being the value communicated to the author 
orally by Brenner . 

Using the above-mentioned values of tbe pertinen t 
quantities the magnitudes of the maximum layer 
thickness were compu ted from eq 85, and these are 
shown in table 4. Also t here ar e given in the table 
the obsen Ted values of the same quantity as read 
from tbe curves in figure 7. At instances equalling 
t he n axin um layer thicknesses the average densities 
eq ual the bath densi ties. There is some difficLllty 

T ABLE 3. R eductions in the diffusion laye?' densl:ties of the H1'ennel' tests 

f) istance ll ccl uction of Hcduction of 'rheorctical Proportionate Proportionate Current Mctallic 
from cath- density at ci ensity in m ax imum dcnsity re- distance from intensity, ion 

odc, YI ca thode, 6.p m layer, /lp' layer th ickness, ducLinn , cathode, y l/y, I I 
y" I - !'.p'/!'.pm 

em o/e em' o/e em' em amp/em' 
0. 00 0.061 

1 

0.00 0. 00 
3. 69X 10- 2 . 047 .23 . 12 

11. 16 0.061 . 031 0.0302 . 49 .37 0. 04 Copper 18. i9 . 010 .84 .62 
27.63 . 002 .97 . 91 
37.63 . 000 1. 00 1. 25 

0.00 . 025 0.00 0. 00 
3.83 .018 . 28 . 10 

11. 18 0.025 . 008 0. 0382 . 68 .29 0. 01 Nickel 21. 05 . 00 1 . 96 . 55 
32.46 . 000 1. 00 .85 
44.12 . 000 1.00 1. 15 

0.00 .040 

I 
0. 00 0.00 

3. 83 . 030 . 25 . 11 
12.36 0.040 . 018 0.0347 .55 . 35 0. 02 Nickel 21. 05 . 009 . 77 . 61 
30.00 . 002 .95 .86 
40.00 . 000 1. 00 1. 15 

0. 00 .059 

1 

0. 00 0.00 
3. 83 . 044 . 25 . 12 

12.36 0.059 .021 0.03 15 . 64 . 39 0.04 Nickel 21. 05 . 006 . 90 . 65 
30.00 . 002 . 97 . 95 
40.00 .000 1.00 1. 26 
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G ra phical re pl'esentation of the data from Brenner's 
tests. 

in identifying the exact magnitude of the maximum 
layer thickness from the curves of figure 7. If this 
element of uncertainty be ignored , the agreement 
between the theoretical and observed values may be 
judged to be fairly satisfactory. 

The second question to be considered is the dis
t ribution of the mean densities in the layer itself, 
t hat is the variation of D.p' / D.prn with YI /YSI' The 
observed proportional density reductions for a given 
relative distance are given in table 3. The method 
of determinations is obvious from the contents of 
the various columns. In forming the ratio y I/YSi) 
the theoretical values of Ysl are used . Values from 
the table are plotted in figure 8. The curve drawn 
is the theoretical distribution and is the plot of eq 
117. Again the agreement between observation and 
theory may be judged to be fairly satisfactory. 

Tllf~ third question t o be examined is the depend-
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F I G UR E 8. Distribution of densities of the diffusion layel' 
according to theory and observation. 

ence of the average density gr adien t at the cathode 
surface upon the intensity of the elec trical current . 
This question deals wi th the elec trochemical bound
ary condition represented by eq 37. Since the 
average gradien t according to eq 95 is 

eq 37 may be changed to 

2. 1m DD.P m 

Y sl 

(1 18) 

This relation may be examined in two ways. If the 
transport nwnber of the cations (nickel and copper ) 
are known, the relation may be used in computing 
D.P rn, the average density reduction a t the cathode. 
Or, using the observed value D.Prn , the transpor t 
num bel' of the cations may be determined. The 
second method will be used here. 

From the data in table 3 the ratios D.P m/Ysl are com
puted and these are plotted against curren t density 
in figure 9. The distribution of the points is linear , 
and the equation of the line drawn is 

(119) 

TABLE 4.- Theoretical and observed maximum diffusion layer thickness in the B renner experiments 

Bath Cathode R eduction or Cathode Ohserved T heoretical Current Metall ic 
density, density, density at immersion maximu m layer maxim u m layer intensity, ion cathod e, length , t hickness, thickness, 

PI PO !1prn It Y.I V.l I 

g/em 3 g/cm 3 g/em 3 em em em amp/em ' 
1. 148 I. 087 0.061 IO 0.032 0. 0302 0. 04 Copper 
I. 150 1. 125 .025 10 . 032 .0382 .01 N ickel 
1. 148 1. 108 .040 10 .037 . 0347 . 02 Do . 
I. 149 1.090 .059 10 . 034 . 0315 . 04 Do . 
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We also have 

and 
F·D = 2.56 X 10 - 1 

m = l.32 X 10 - 2• 

Substituting these values in eq 118, it is seen that 

(120) 

Accordingly, the transport of the cations, nickel, is 
n c= 0.644, a value very close to the generally ac
cepted value determined by other methods. Thus 
in this respect also there is agreement between theory 
and observation. 

Another element of the theory that could be ex
amined with considerable signficance is the question 
of t.he vertical velocities. Unfortunately in the ex
periments of Brenner this matter was not touched. 
To give an idea of the order of m.agnitude of the 
velocities involved, we n1.ay compute the maxim.um 
upward velocity in a normal section of the diffusion 
layer using eq 99. Consider the case of copper sul
fate. Corresponding to the current intensity of 
1= 4 X 10- 2 amp/cm 2, the densit,y red uction at the 
cathode surface is t.p ", / Pl = 5.31 X 10- 2• Since Vy = 
l. 74 X 10-4, the formula gi ves for maximum velocities 

Thus at a point x = 10 em, U m equals 2.48 mrn/see. 

The discussion presented above must lead one to 
the following conclusion. The approxim.ate analyti
cal theory of the diffusion layer based on the assum.p
tion of a uniform density reduction along the entire 
cathode surface gives fairly satisfactory results 
regarding the maximum. width of the layer , the aver
age densities in planes parallel to the cathode surface, 
and the transport number of ions. Brenner is now 
engaged in further work on the variation of densi
ties in planes parallel to the cathode surface. In
formation of this kind may possibly point to defects 
in the present theory. In that event it might be 
necessary to base the theoretical investigation of 
the problem on the assumption that the gradient 
of the density and not the density is uniform. along 
the cathode surface. 

The author expresses his sincere appreciation to 
W-. Blum for the guidance shown in the beginning of 
the investigation, and to A. Brenner for advice given 
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during the progress of work. Thanks are due also 
to K. Hilding Beij, and to John L. French for review
ing the paper. 
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