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A Monte Carlo Method for Solving a Class 6f 
Integral Equations 1 

R. E. eu tkosky 

This note descr ibes a random walk equ ivalent to the Neumann series solution of an 
in tegral equat ion. A diffusion analogy and t he problem of importance samplin g are 
discussed briefly. 

Certain types of matrices can be inverted by a 
Monte Carlo method that was devised by J . von 
Neumann and S. M . Ulam, and th at appears in a 
paper written by G. E. Forsyth e and R. A. Leibler.2 
In the following it is shown that this method, when 
suitably generalized, can b e used to approximate the 
Neumann series solution of an integral equation . 
This procedure is th en sh own to b e similar to those 
u sed to solve cerLain problems dealing with sca t tering 
of particles, which can be formulated in terms of a 
nonhomogen eous in tegral equation, and which have 
been described by H erman Kahn.3 

We wish to solve Lhe following equation for 1> (x) 

cp(x)= j (X)+ A J bK (x, y)cp(y) dy , (1) 

where we assume, for convenience, tha t K (x, y ) is 
uniformly continuous and a and b arc finite . A 
formal solu tion of (1), which is valid if A is smaller 
in absolute value Lhan the eigenvalu e of the eo['
responding homogeneous equation , which is small es t 
in absolute value, is given by Neumann's series 4 

cp(x) = j (x) + A Jb K (x, y)j (y)dy 

r b 
+A21 K (2) (X, y )j (y)dy + · . " (2) 

usc the fact that L satisfies the following equation 

L (x , lI)= K (x, y)+ A Jb K (x, ~)L ( ~, y) d~. 

The series (2) can be evaluated by a Monte Carlo 
procedure consis ting of two steps: first, a random 
process by which a parLicular Lerm of the series is 
selec~ed , and second, a random process by which the 
mult.lplc mLegral defining the term selected is ap
proxlmated (sec footnoLe 3) . This, when multiplied 
by a suitable weighting facLor , will provide an 
esLimate of the value of cp (x) fo], a particular x. ,liT e 
notice, however, that in series (2) each Lerm is ob
tained ?y a simple operation on the preceding one, 
and tIllS allows LI S to consLru cL a simple random 
walk for approximaLing (2) . 
Th~s random walk is defined by a sequence of 

funetlOns Pn(x,y), defined for a ~x~ b , a ~ y ~ b , and 
n = O, 1, 2, . . . , whe['e P n(x,y) > 0 and 

In t erms of this sequ ence we also define 

AK(x, y) 
V n(x, y)=-P- ( - )- ' 

n z ,y 
' r where and 

\I 
I 

We may write this as 

cp(x) = j (x) + A J bL(x,Y)j (y)dy , 

where 

We need consider hereafter only the series (2)- if 
we wish to obtain the resolvent kernel L, we may 
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• R. Courant a nd D . Hilbert, M ethoden cler Matbemat ischen Physik (J. 
Springer, Berlin , 1924-36). 

In addition, we must also require that IAI be smaller 
than the smallest eigenvalue of K' (x, y)=IK (x, y)l . 
To estimate cp(x) , we start a random walk at the 
poin~ x <?f the interval (a,b). With a probability 
denSity given by P O(x,xI ) we jump to the point Xl , or 
we stop the random walk, with probability Po(x). 
Suppose that we have made k jumps, and have 
rea.ched the point Xk . Then with probability density 
P k(Xk ,Xk+ l ) we jump to the point Xk+L, or we stop the 
random walk with probability P k(Xk) ' If our ran
dom walk has traversed the path 'Y: X--7XI --7 . • . --7 

Xk _ I--7Xk, stopping at Xk , we define 

and llse V ('Y/x) as an estimate of cp(x) . The expecta-
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tion of V('Y/x) is defined by 

E (V('Ylx)) = f V ('Ylx) dP ('Ylx)- (4) 
Au1' 

Since the probabilities used at each step are con
ditional probabilities, the probability measure de
fined in the space of paths with exactly k steps is 
given by 

dP('Ylx)= Po(x,x1) ••• 

Pk-l(Xk-l,Xk)Pk(Xk)dxl .. . dXk, (5) 

and thus the integral (4) can be represented by a 
sum of integrals, the kth of which corresponds to 
those 'Y with k steps. In this way we obtain 

+ .... 

In the particular case that P n(x,Y) is independent 
of n, that is the probabilities depend only on where 
we are, and not on how many steps we have taken, 
(7) reduces to a rather simple form . In fac t, if we 
define K n(x,Y) = K (x,Y) v n-l(x,Y) the nth moment 
satisfies the following equation 

(8) 

(assuming I xl is sufficiently small). 
Let us now turn our attention briefly to the prob

lem of finding a set of functions P n(x,Y) such that 
the variance of the estimate of cp (x) will be as small 
as possible . We might expect that if we knew cp(x) 
we could find a Monte Carlo procedure tha t would 
give us the correct answer with probability 1 (see 
footnote 3). It is convenient to use an argument 
based on the two-step method mentioned earlier . 
In the series (2) denote the nth term by I n(x) . 
Our l\10nte Carlo process gives us a set of functions 
P (n,x) and v(n,x) ; where P (n,x)v(n ,x) = I n(x), and 
P (n,x) is the probability of taking exactly n steps if 
we start at the point x. R eferring to (5), we see that 

p en, x) = Sab ... 

f: Po(x, XI) •.. P n- I (Xn-I, xn) P n (x n) dx[ ... d Xn. 

W e would like to choose P (n,x) so that P (n,x)= 
I n (X) jcp (x) , as then v(n,x) = cp (x) . To estimate I n(x) 

... 

E(V(,,(/x)) = f(x) + }.. i b K (X,Xl) f (xl) d Xl 

+ 'Y2 Jab ib K (x ,xl)K (x I, x2)f(X2)dxldx2+ ' .. 

= cp (X), 

(6) 

which proves that V('Ylx) is an unbiased estimate of 
cp (x) . Because of the condition on 'Y, the above in
tegrals and series are absolutely convergent. 

Similarly we obtain for the nth moment of the 
V ('Y/X) , (assuming the nth moment exists), 

(7) 

correctly with probability 1, we must have K (x, y) 
and f(x) non-negative, as we cannot allow negative 
probabilities. It may be convenient to introduce 
a sequence [Un(x)}, which has a known sum Sex), 
and estimate cp(x) + S(x) by the quantity v*(n,x) = 
v(n,x) + Un (x) /P (n,x). 

The above discussion is of course of little more 
than academic interest, but it gives an insight into 
the problems involved in minimizing the variance 
of the estimate. One thing we notice in particular 
is that the optimum choice of the sequence {P n(x,Y)} 
will depend, in general, on the point x at which we 
wish to find cpo 

As promised in the introduction, this method 
can be shown equivalent to Monte Carlo techniques 
often used to solve problems formulated in a 
different manner. Suppose we consider the prob
lem , important in certain applications, of the diffusion 
of the neutrons through a thick slab of scattering 
material. L et the slab lie between the planes X= 0 
and x=a. Let f eE, f), cp, x) give the number of 
neutrons incident with energy E, at an angle given 
by f) and cp, which make their first collision at a 
distance x from the front of the slab. Let 
K (E', f)', cp', x' , E, f) , cp, x) give the probability that a 
neu tron tha t makes a collision a distance x from the 
front of the slab, and has an initial energy E and an 
initial direction of travel (0, cp ), will proceed in the 
direction ( f)' , cp'), have energy 1£' , and make its next 
collision at a distance x' from the front. A colli
sion at x> a corresponds to a neutron passing through 
the slab, and a collision at x<O corresponds to a 
neutron reflected back, which we assume stops the 
process. Let if; (E, 0, cp ) give the number of neutrons 
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that penetra te the slab with energy E , and have 
the direc tion of motion 0, ¢. 
Then clearly 

if;(E , O,¢)=J a'" f eE , 8, ¢, x)dx 

+ rx=", r x'=a r K(E, 0, ¢, x,E', 0',1>' , x') 
J x+a Jrl=o J E',81,cP' 

. f(E' , 0' , ¢', x')dE'dO'd¢'dx'dx (9) 

+ higher terms representing multiple collisions. 
This is very similar to equation (2) . 

The usual Monte Carlo method for evaluating 
(9) is to consider a randomly selected incident particle 

..... seu 

and trace its path thru the slab, u ing some chance 
device to determine the r esult of a colli ion (see 
footnote 3). The method we have found for 
evaluating series (2) corresponds to ehoo in o' a par
ticular particle that has penetrated the slab, tracing 
i ts path backward thru the slab, and then multi
plying by the density of particles that have the same 
entrance characteristics. Although both the posi
tion of the particle making the random walk and it 
final weight must be remembered from st,ep to step , 
only the final weight is needed for the answer in 
our method, while in the other both the final position 
and final weight are needed, and a histogram 
must b e plotted . Thus if an answer is desired for 
only a few points, our method may be simpler. 

Los ANGELES, August 16, 1950. 
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