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A Monte Carlo Method for Solving a Class of

Integral Equations'
R. E. Cutkosky

This note describes a random walk equivalent to the Neumann series solution of an

integral equation.
discussed briefly.

Certain types of matrices can be inverted by a
Monte Carlo method that was devised by J. von
Neumann and S. M. Ulam, and that appears in a
paper written by G. K. Forsythe and R. A. Leibler.?
In the following it is shown that this method, when
suitably generalized, can be used to approximate the
Neumann series solution of an integral equation.
This procedure is then shown to be similar to those
used to solve certain problems dealing with scattering
of particles, which can be formulated in terms of a
nonhomogencous integral equation, and which have
been described by Herman Kahn.?

We wish to solve the following equation for ¢ (x)

o(r)= @)+ j " Ko, o) dy, (1)

a

where we assume, for convenience, that K (z,y) is
uniformly continuous and @ and b are finite. A
formal solution of (1), which is valid if X 1s smaller
in absolute value than the eigenvalue of the cor-
responding homogencous equation, which is smallest
in absolute value, is given by Neumann’s series *

(@)= f (@)L j K, ) @)y

a

b
a2 j KOG, yf@)dy+ -, @)

where

K™ (x,y) :J g (x, K (& y)dE.
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‘We may write this as

o(z)=f(x)+ XJ Lz, y) f(y)dy,
where
S R R IR C R 5 S S

We need consider hereafter only the series (2)—if
we wish to obtain the resolvent kernel L, we may
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A diffusion analogy and the problem of importance sampling are

use the fact that L satisfies the following equation
Lz, y)=K(,y)+x f Kz, )L y) dE.

The series (2) can be evaluated by a Monte Carlo
procedure consisting of two steps: first, a random
process by which a particular term of the series is
selected, and second, a random process by which the
multiple integral defining the term selected is ap-
proximated (see footnote 3). This, when multiplied
by a suitable weighting factor, will provide an
estimate of the value of ¢(x) for a particular . We
notice, however, that in series (2) each term is ob-
tained by a simple operation on the preceding one,
and this allows us to construct a simple random
walk for approximating (2).

This random walk is defined by a sequence of
functions P, (z,y), defined for e <2 <b, a <y =<b, and
=) 1L 2 ., where P,(z,y) >0 and

h
j Pu(e,y) dy<1—3, 5>0.

a
In terms of this sequence we also define

NK (x,y)

L/Yn(-l')?/): P (2 ?/) ’

and
*h
pﬂ(x> =1 —J I)IL('FY?/> d?/

In addition, we must also require that |\ be smaller
than the smallest eigenvalue of K'(z,y)=|K(xy)|.
To estimate ¢(x), we start a random walk at the
point z of the interval (a,b). With a probability
density given by Py(x,x;) we jump to the point x;, or
we stop the random walk, with probability pg(x).
Suppose that we have made & jumps, and have
reached the point 2;. Then with probability density
Pr(wy,25,) we jump to the point x;,, or we stop the
random walk with probability p.(z;). If our ran-
dom walk has traversed the path y:z—2,— . . . —
X —>ay, stopping at x;, we define

Vi1 (@r—1,25) Jf@i}’ (3)

V(’y/.’l’,‘):‘/yn (I,I‘l) s pA(I)

and use V(y/z) as an estimate of ¢(z). The expecta-
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tion of V(y/z) is defined by
E(V(y/2)= Lu Viv/z) dP (v/z)- 4)

Since the probabilities used at each step are con-
ditional probabilities, the probability measure de-
fined in the space of paths with exactly k steps is
given by

dP(y[x)=Py(x,x;) . . .
k—l(irkalv‘rrk)])k('fk)dfl .

(5)

and thus the integral (4) can be represented by a
sum of integrals, the kth of which corresponds to
those v with £ steps. In this way we obtain

day.,

E(V(y/e)=f(z)+) f  K(e,2) f(z) day

b (b
+72LLK(T;xl)K(Il,TQ)f(IQ)dxldx2+‘ N

=¢ ($>,
(6)

which proves that V(y/z) is an unbiased estimate of
¢(x). Because of the condition on v, the above in-
tegrals and series are absolutely convergent.

Similarly we obtain for the nth moment of the
V(y/z), (assuming the nth moment exists),

I (x)
TSy

(@) =E(V"(v/z))=

b
+vf K @, o) K @, 0 Vi~ @, 2) Vi (@, 29) 2o dz, da
. P ey
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b
+>\fa K@, z)Vi ' (x,2) Pri(ey dx,

f"(xl)

@)
I (x,

In the particular case that P,(z,) is independent
of n, that is the probabilities depend only on where
we are, and not on how many steps we have taken,
(7) reduces to a rather simple form. In fact, if we
define K, (z,y)=K(x,y) V" '(z,y) the nth moment
satisfies the following equation

Vn(T)_ ]’n (x)

_pn -1 (x> (8)

b
+>\L K, (x,y)v.(y) dy,

(assuming |\| is sufficiently small).

Let us now turn our attention briefly to the prob-
lem of finding a set of functions P,(z,7) such that
the variance of the estimate of ¢(z) will be as small
as possible.  'We might expect that if we knew ¢(z)
we could find a Monte Carlo procedure that would
give us the correct answer with probability 1 (see
footnote 3). It is convenient to use an argument
based on the two-step method mentioned earlier.
In the series (2) denote the nth term by I,(x).
Our Monte Carlo process gives us a set of functions
P(n,x) and »(n,x); where P(nx)v(n,x)=1I,(x), and
P(n,z) is the probability of taking exactly n steps if
we start at the point z. Referring to (5), we see that

e Pp 1@y, @n) Py (@) daoy - - - day.

We would like to choose P(n,z) so that P(n,z)=
1,(x)/¢(x), as then v(nx)=¢(x). To estimate I,(z)

correctly with probability 1, we must have K(x,)
and f(z) non-negative, as we cannot allow negative
probabilities. 1t may be convenient to introduce
a sequence {U,(z)}, which has a known sum S(x),
and estimate ¢(z) +S(z) by the quantity »*(n,r)=
v(n,x) +(]n('l.)/P(n;'I")

The above discussion is of course of little more
than academic interest, but it gives an insight into
the problems involved in minimizing the variance
of the estimate. One thing we notice in particular
is that the optimum choice of the sequence {P,(z,y)}
will depend, in general, on the point 2 at which we
wish to find ¢.

As promised in the introduction, this method
can be shown equivalent to Monte Carlo techniques
often used to solve problems formulated in a
different manner. Suppose we consider the prob-
lem, important in certain applications, of the diffusion
of the neutrons through a thick slab of scattering

material. Let the slab lie between the planes =0
and z=a. Let f(£, 6, ¢, x) give the number of

neutrons incident with energy £, at an angle given
by 6 and ¢, which make their first collision at a
distance 2 from the front of the slab. Let
K(E', 0, ¢, 2, E, 0, ¢, z) give the probability that a
neutron that makes a collision a distance = from the
front of the slab, and has an initial energy £ and an
initial direction of travel (6, ¢), will proceed in the
direction (8”, ¢’), have energy £’, and make its next
collision at a distance z’ from the front. A colli-
sion at ©>a corresponds to a neutron passing through
the slab, and a collision at <0 corresponds to a
neutron reflected back, which we assume stops the
process. Let (7, 0, ¢) give the number of neutrons
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that penetrate the slab with energy 7, and have
the direction of motion 6, ¢.
Then clearly

W, 0,¢)= f ", 0,6, 2)da

r=» (*z'=q
T K@ e, a 0,400
zt+ae Jr’'=0 7,0,

G, S, 2)dE A d de'dr (9)

~+higher terms representing multiple collisions.
This is very similar to equation (2).

The usual Monte Carlo method for evaluating
(9) is to consider a randomly selected incident particle

and trace its path thru the slab, using some chance
device to determine the result of a collision (see
footnote 3). The method we have found for
evaluating series (2) corresponds to choosing a par-
ticular particle that has penetrated the slab, tracing
its path backward thru the slab, and then multi-
plying by the density of particles that have the same
entrance characteristics. Although both the posi-
tion of the particle making the random walk and its
final weight must be remembered from step to step,
only the final weight is needed for the answer in
our method, while in the other both the final position
and final weight are needed, and a histogram
must be plotted. Thus if an answer is desired for
only a few points, our method may be simpler.

Los AxcrLes, August 16, 1950.
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