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of Gradients for the Calculation of the

Characteristic Roots and Vectors of a Real Symmetric

Matrix '

Magnus R. Hestenes and William Karush

Let A be a real symmetric matri
and £(x) the gradient vector of u(x).
of the operation T=z— a(z) £(x).

x’fy(x), The Rayleigh quotient formed with a vector z,
'fhe method of gradients consists in an infinite iteration
The convergence of the procedure is proved for several

choices for a(x), and the rate of convergence is studied extensively for one particular a(x).
The directions of the vectors in the sequence are seen to tend to that of the characteristic

vector belonging to the lowest characteristic value.

The method can be used for a numerical

determination of all characteristic vectors and values.

I. Introduction

With a real symmetric matrix

44:(aij)7aij:aji7 7’).7:1) 2; e,

is associated the Rayleigh quotient

(Az, z)
(@,2)°

whose critical points y are the characteristic vectors
of A. The gradient of x has the direction of

#(1’): x#0,

t(@)=Az—p2. (1)
Suppose now, given a vector x, we wish to modify z to
obtain a better approximation Z to a characteristic
vector Ymm corresponding to the minimum character-
istic root Npp=min x(z). It is natural to form

a>0, (2)
where @ may depend upon z. Similarly, to approxi-

mate to a characteristic vector max corresponding
t0 Amax=max u(z) we form

r=2 4+ af,

T=2— af,

a>0.

In the present paper we describe several convergent
iterative methods based upon this gradient process,
and investigate the convergence to the characteristic
roots and vectors of A. The results apply to an
arbitrary, real symmetric matrix. The methods can
be phrased to yield directly #min OF Ymay, as one
wishes. For convenience we direct our attention
mainly to ¥min.

In prescribing a gradient method one must specify
how the number « is to be chosen at each stage z* of
the iteration. It is shown that the vectors z? con-
verge to the appropriate characteristic vector if « is

Rl The preparation of this paper was sponsored (in part) by the Office of Naval
esearch.
2 For convenience we shall refer to £ as the gradient.
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any positive constant (independent of 4) less than
2/M, M=Xpax— M- The bulk of the theory is con-
cerned with this “method of fixed «.” If we impose
the stricter requirement a<1/M, we obtain in addi-
tion that the gradients ¢ converge in direction (i. e.,
the unit vectors £7/|£] converge) to a characteristic
vector; in fact the method will be generalized to yield
all of the characteristic vectors of A. As would be
expected, the nature of the convergence is essentially
geometric.

A second “method of optimum o'’ is treated in
which «, which now depends upon z, is selected in a
certain “best” way. In this method the approxima-
tions z’ converge to a characteristic vector, but the
gradients ¢* fail to converge in direction.?

The well-known method * of forming powers A
can be interpreted as a gradient method in which « is
chosen as —1/u. Here convergence, in general, is to a
characteristic vector corresponding to the character-
istic root of maximum absolute value. We remark
that, commonly, the gradients £ converge in direction
to a characteristic vector corresponding to a root of
next highest absolute value.

The chief virtue of the gradient methods seems to
lie in their simplicity. They are not put forth as
rapid procedures for a hand computer, but rather as
processes that might be adapted to automatic com-
puting machinery. A survey of methods for calcu-
lating characteristic roots and vectors of (more
general) matrices may be found in Hammersley.®

)

II. Properties of Symmetric Matrices

In this section we collect for reference some well-
known facts on symmetric matrices.

3 An extension of the method of optimum « to more general problems has been
outlined by L. V. Kantorovitch, On an effective method of solving extremal
problems for quadratic functionals, C. R. (Doklady) Acad. Sei., URSS (N. 8.),
48, 455-460 (1945). 'These results are closely related to some unpublished work of
M. R. Hestenes.

4 See H. Hotelling, Analysis of a complex of statistical variables into principal
components, J. Educ. Psych. 24, 417-441 and 498-520 (1933). In this paper,
Hotelling treats the symmetric matrix. For the extension to nonsymmetrie
matrices, see A. C. Aitkin, Studies in practical mathematics II. The evaluation
of the latent roots and latent vectors of a matrix, Proc. Roy. Scc. Edinburgh [A]
57, 269-304 (1937).

( 5 ’l‘)he numerical reduction of non-singular matrix pencils, Phil. Mag. 40, 783-807
1949).



Consider, for the moment, the space of complex
vectors z=(by, by, . . ., b,) over the field of complex
numbers. A number A is called a characteristic root
(number, value) of an arbitrary matrix B in case
there exists a nonnull vector z such that

Br—Aw.

The vector  is called a characteristic vector; we shall
say that it belongs to the characteristic root A.

For a real symmetric matrix A the characteristic
roots are real and the characteristic vectors can be
chosen to be real. Accordingly we henceforth limit
ourselves to the field of real numbers and to real
vectors. We let .o/ denote the space of real vectors
x. We use “(z, y)” for inner product, and “|z|”” for
length in this space. We note a fundamental

property of A:
(Az,y)=(z, Ay) (3)
Let the distinet characteristic roots of A be de-
noted by
A1<A2< R <Am

(eliminating the trivial case p=1). With each A, is
associated the linear subspace _#; of .oZ which is the
set of all characteristic vectors belonging to Ay,
together with the null vector. The dimension of
M. is the order of A,. The subspaces .7 are
mutually orthogonal and span the space .o/

To each nonnull vector z we attach the number

922)

_(Az,2)
T (w,x)

u(x)

The function u is homogeneous of degree zero;

p(bx)=pu(),

For a characteristic vector i belonging to a charac-
teristic root A,

b#0.

py)=A.

We have the following well-known relations between
w« and the characteristic roots.

A;=min u(z), A,=max u(z), z#0
z z
or, equivalently,
Ay=min u(z), A,=max u(x), =1L
z z

More generally,

Ay=minu(x), x7#0andorthogonalto. .z, ..., #_i;
Ar=max u(@), x7#0andorthogonalto. #,, ..., 4,

To study the behavior of subspaces of o/ under
the matrix A it is convenient to think of A as a
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linear operator, without regard for coordinate repre-
sentation. In general, if B is a symmetric linear
operator on a finite dimensional space &, then the
statements of the preceding three paragraphs hold
(by ‘“‘symmetry’”” i1s meant the property of (3)).
Now suppose that Z is an m-dimensional subspace
of o/ and let B be the operator A with domain
restricted to . 1f % is invariant under 4, 1. e., if
x belonging to Z implies Az belongs to %, then B
is a symmetric linear operator on . As such, B
has m characteristic roots (counting multiplicities),
a?(j4 the roots and vectors of B are roots and vectors
of A.

The characteristic roots of the matrix A are the
solutions of the polynomial equation

G

The multiplicity of a solution A, is precisely the dimen-
sion of the subspace .#, 1. e., the order of A;. We
remark that if A is regarded as a linear operator,
then this equation, formed with any matrix represen-
tation of A, yields the characteristic roots.

In our work we shall be dealing always with a
fixed initial vector 2°. Let 2° have nonnull projec-
tions in . //’k], ..., M, and only in these subspaces

M. We may represent 2° uniquely in the form
P=aly+- - -+aly, 4)
a; >0, h/f:zlx yjev/”kj’ 3=1,2,--.,r22.

(We exclude the trivial case r=1.) Let .o/ be the »

dimensional subspace spanned by ¥, .. ., ¥:;
r/f:(yl, Y2y * 0 yf)

Then .7 is an invariant subspace under A with

orthonormal basis (y;, ¥, ...,%,). The character-

istic roots of A relative to this invariant subspace

(i. e. the roots of the linear operator 4 with domain
restricted to .o7) are

R hgsl > #oslNe
)\j:‘\ki’

where

j:ly ROk
In the subspace each root X\; has order one, and has
as corresponding characteristic vector, y;. In the
following pages, after having selected an initial
vector 2°, and thus determined the invariant sub-
space .o, we shall be dealing exclusively with vectors
in this subspace.

III. Determination of a

This section is discursive; the theorems of the
following sections do not logically depend upon it.
A direct calculation shows that the gradient of u is

L2
(@, 2)

[Az— u(z)a],



and hence has the direction of £ given by eq (1).
As remarked, we shall refer to & as the gradient.
Observe the relations
(z, =0, (Az,H=(¢ 9. (5)
The gradient is the direction in which p locally
increases most rapidly. Thus if we form = from x
as in eq (2), with & >0 sufficiently small, we should
expect u(Z) to approximate A; more closely than

u(x). Beginning now with = and, say, @, we obtain
from eq (2) a next approximation z, etc. The
question then is to specify « systematically.
By direct computation we find
_a2—as) ,
p(x)—p@)= s t (6)
where
€
s=pu(§)— @), t:\J—"
That 1s,
K@@=, f@)=flan="2"%) ()

A natural requirement on «(z) in order to expect
convergence of u to N\, is then

flalx))>0.

A possible choice 1s a=const. with

2
0Lalgp (8)
where
M=A,—A\,
is the spread of the characteristic roots of A. Since

s< M it is easily seen that f(a)>0. The method
of fixed o, stemming from this observation, is treated
in sections 5 and 6 and generalized in sections 10
and 11.

Another possibility for « is that number y=v(z)

which maximizes f(«). From f’(y)=0 we obtain
oyt sy—1=0, (9)
from which
:sﬂ/;ﬁw. (10)
Computation shows that f(y)=+v. Hence
p(x)—p@)=7t*, T=r—7¢

The method of optimum «, based on this approach, is
treated in section 7. We note the following formula:

1

T w(®—u(®) e
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To verify this we write eq (10) as y(yt*+s)=1,
and note that the quantity in parentheses oqualb

(€)= ).

Remarks on the power method, i. e., forming suc-
cessive iterates A'r, will be made in section 8. In
that section and in the later section 12 modifications
of the methods of fixed and optimum « will be
suggested.

Before proceeding to any specific gradient method
we formulate some general results in the next section.

IV. General Gradient Method

We suppose given a real-valued function v such
that v(z) 1s defined whenever z#0 and z is not a
characteristic vector, i. e., whenever 20 and £30.
We require that

Fa(@)>0.

(See, e. the particular function vy determined by

o

o) . . . .
eq (10). Beginning with a vector z°, expressed in the
form (4), we construct the sequence of vectors
dattn==0 1 2 e s SR eaardine o
2 H=gi—y'g, where =), v'=7("). (12)
This is equivalent to
o't l=1+y'u)a’ —y  Az?, where p'=pu(z?). (13)

We must assure ourselves that {27} 1s well defined.
We note first that if 2?0 and &0, then z‘*!is
defined and not null. For, under the hypotheses,
't is defined and by eq (12),

‘Ii+112:J1‘i\2+7iQ‘£il‘z

We thereby distinguish two types of sequences.
The first, a trivial case, is one such that for some
first integer k,

F=0.

We terminate the induction at 7=Fk; the sequence

{x'}, i=0, 1, - - -, k, is finite with the last vector z*

a characteristic vector. The second type is charac-

terized as a sequence that is not of the first type.

In this case {z'} and {&} are well-defined infinite

sequences and
#0, §=0,1,2,.-

To enable us to formulate statements that hold
simultaneously for finite and infinite sequences we
make the following agreements: (1) if {p’} is an
arbitrary finite sequence, then lim p’ denotes the

1— o
last member of the sequence; (2) any statement or
formula involving an index is to be limited to
meaningful values of the index.

From eq (7),

= f(y)t* >0, (14)

Bt —p



Since w' is bounded from below, it follows that

there is a number » such that
lim pi=v. (15)

i>w®

The vectors z' and & lie within the invariant sub-
space .=y, Ys, - - - , Y,); their expansions in terms
of the characteristic vectors 7; are readily deter-

mined from eq (1) and (12). We find

T'=aiyF @yt ay,

ai= {14y "=N)}ai ™! (16)
G= {1y @A a T, §=1,2,- -7,

and ‘ . o
El:()\l_ﬁl)a;yl‘*ﬂ - “{’()‘r—ﬂl)a/:yr- (1 7)
Thus ‘
1xi>2:a;"+a;2+r~-+ai2, } e
E=0u— et O — w0

Theorem 4.1.
0K < f(v") and 0<~%,
Then

Suppose v’ is such that

for some constant K.

lim *

_ lim i
. le =1y, and ==

i—

We limit ourselves to the case when the sequence
{z'} is infinite; by appropriate simplification the
proof below applies as well to the finite sequence.

From eq (14)

) 1 ) )
tiz< 7 W=, (19)
Since p’—v, it follows that
t'—0.
Let ‘
bi—{2i.
|?]
Then by eq (18)
tzzmlﬂ i i 2b52 ibﬂ (20
lxzw e ()\j_ﬂ) i? £ =1 )
Consequently
}LII:I O‘ i)2bf'2:0: .7: 1) 2’ , 7.

Since (\;— u’)—(N\;— ) it follows from the last equa-
tion of (20) that for some specific value [ of the
index 7,

bi—1,

wi—sN, bi—0 for j=l.
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We wish to show that/=1. Supposel>1. Then
bi  |ai
=== =),
b lail

From the monotonicity of u?, we have p? >\, >\,
From eq (16)

0] _ |14y G =) o] Jaf]
lai ' 1+ —=N)|  [ai] = |af
Hence
| I Iall
0 for 1=0,1, 2,
jai] = fag] =0 for @

This contradiction shows that [=1. We now have

s
@
1

7] l‘l

a2 a3>0.

BNy, =51, *90 7#=1,

since

The theorem now follows from the first lequation of
(16).

Theorem 4.2. 1f, in addition to the hypotheses
of theorem 4.1, the sequence ' satisfies the condi-
tion

’YiSKg, ngconst.,
then the conclusion of that theorem may be strength-
ened to
lim z'= Ly,

i—w

where L is a positive constant.
By theorem 4.1 it is sufficient to show that |2/|— L.
From eq (12),

|2 P =[P+ (%) L+GYT . . . [+t

It is well known that the product on the right con-

verges if the series i} (v't")? does. From eq (19) the

series 2t° converges, and hence the first series does, by
the boundedness of 4*. This completes the proof

V. The Method of Fixed «

In this gradient method we choose y(z) to be a
constant « satisfying eq (8); thus,

B8

a=yp  0<B<2. (21)
It follows that
a(2—B)
f(a)_ 1+ 2t27 x#0.



.

From eq (1) we derive
|§|<2K|zx|,

where K is the bound of the matrix A. Hence ¢ is
bounded from above. Thus f(a) is bounded from
below by a positive constant. Theorem 4.2 is now
applicable.
Theorem 5.1.
satisfying eq (21).

Let 4% be chosen as a constant «
Then

lim p'=X\,.

i—®

lim 2'=Ly,,

i—®
For later use we note that

2,
@y

(22)

which was established in the proof of theorem 4.1.

We propose to show now that under a strengthen-
ing of condition (21) the gradients & converge in
direction to the second characteristic vector 7s,.
The new condition is

0<8<1. (23)

a:_M7

Lemma 5.1. Under the condition (23) the sequence
{x*} is infinite and

e (VR e S e (R D
From eq (16)
ai={14a(p''—N)}ai"% (24)
By eq (23), the expression in braces is positive. Hence,

from a2 >0, we have a: >0. From the second equa-
tion (18) and the assumption 7>2, it follows that
£5£0. The last inequality assures that {z'} is in-
finite.

We introduce the following notation

Ni—N .
d,=1—a(\;—N\)=1—28 fM Y §=1,2, ..., (25)
Thus, under the condition (23),

08, <0< .« <H<Oi=1.
Lemma 5.2 Under the condition (23),
141
lim % —=0p
lim a—7°=0,

for j<k.

The first equation follows from (24) and the fact
that pw*—>X\;. To prove the second equation notice
that for j<k,
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o, a
T
a;

% and O<g'—°< i &
i

ak 6j

i
> 4

Hence, for any e >0 there is a constant K and index

1o such that
% g (9‘+e>i,
a; 6;

Choose € so that the number in parentheses is less
than 1. This completes the proof.
Lemma 5.3 Under the condition (23),

12> 1%0.

€]

2

ich i2
L{;‘;&:()\Z_ lim ==

i—o

lim

i

), =A— A1

il

From the orthogonality relation (a7
eq (16) and (17) we obtain

M= pH)ai®+ Ny —pi)ai’+

Divide by ai* and take the limit as i—>o. The
first conclusion of the lemma then follows from
lemma 5.2. Using this result we establish the second
conclusion in a similar way by means of eq (18).
Theorem 5.2. liet the constant « be chosen to

£)=0 and

N —wha*=0.

satisfy (23). Then
£1m [szl 3/2, }lm /‘I'(Si) =

Divide both sides of eq (17) by as.
5.2 and 5.3 we obtain

Using lemmas

}LIB 2—320\2—)\1)2]2-
It follows that

ol

& af lgil‘%?h;

as desired. Also,

#(51

<|£l|> WA=

This completes the proof.

We remark that for the proofs of theorems 5.1
and 5.2 the conditions (21) and (23) could have
been relaxed by using \,—N\, in place of M =A,—A,.

We conclude this section with a reformulation of
theorems 5.1 and 5.2 for convergence to the two
highest characteristic vectors ¥,, y,_1.

Theorem 5.3. Let the constant « satisfy eq (21).
Define the sequence {z’} by the recursion formula

rl=gt | aft.



Then

lim z'=Ly,,

i—o

i &7} Cal)=—Na e ()%

i— o

If, further, « satisfies eq (23,) then

{liram ==

i if’l
This result is obtained by replacing A by B=—A

in theorems 5.1 and 5.2, and noticing that the char-
acteristic roots become

el N 2 e

with corresponding characteristic vectors ., ¥, .,
S
3

—Yr-1, =ik

lim u(g)=\

VI. Bate of Convergence for Fixed o

In this section we investigate the rate of conver-
gence of the sequences{z’}, {£'}and related sequences;
in the rest of this section we assume eq (23) holds.
For convenience we introduce the so-called “ratio”
of a sequence of real numbers as a measure of speed
of convergence to 0, and develop some elementary
properties of sequences with ratios. This notion
will also be useful in our later generalization of the
method of fixed a.

Let us agree that a sequence {b*} of real numbers
will be called positive (negative) if 6°>0(<0) for
121, 1 fixed. We shall understand that the se-
quence is monotonic in case it is monotonic for 7> 1,.

Definition. A sequence {b'} of real numbers will
be said to have the ratio « in case

1

=k with «>0.

i+

T

lim ——

i—o

Necessarily a sequence with a ratio is either positive
or negative.

The reason for this definition lies in the next
lemma, which is essentially a rephrasing of Lemma
5.2,

Lemma 6.1. The sequences {ai}, {ai/ai} (j, k=1,

r) have ratios 8;, 6x/6;, respectlvely

Sequences with ratios resemble geometric progres-
sions. If {b?} has ratio «, then for an arbitrary
€ >0, with e<«, there are numbers 7,>0, 7,>0
such that

Ti(k—e)' <|bt| < To(k+e).

Thus, if «<1, then b* tends to zero more rapidly,
eventually, than a geometric progression with ratio
«x+e and more slowly than the progression with
ratio k—e. Accordingly the ratio of a sequence is a
measure of the speed of convergence to zero. We
shall express our results on rate of convergence in
these terms. Notice that when k<1 the sequence {b*}
is monotonic; decreasing if the sequence is positive,
increasing if negative.
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Suppose {b'}, {c'} have ratios «i, & respectively.
Then clearly {b ¢'} has ratio xik; and {h¥/c?} has ratio
ki/ke. A convergent sequence {d’} with a nonzero
limit has ratio 1. Consequently each of the sequences
{b'd"}, {b'/d"} has ratio x;. The following lemma will
be used fr equently.

Lemma 6.2. Let {b'} have ratio x. Suppose {d?}
is a sequence such that d’/b? has a nonzero limit.
Then {d*} has ratio «.

For, d'/b* has ratio 1, and the product di= (d'/b?) b
has ratio «.

If k#1, then the sequence of differences h*—
has ratio «.

bit!also
For this we apply the last lemma with

di bl bH—l.
Lemma 6.3. Suppose {b} has ratio §< 1. Let
Lot
=i
Then
£ 1
i e

In particular, { %} has ratio 6.

Clearly we may assume that {b?} is positive. Se-
lect an arbitrary e with 0<e<6, 6+e< 1. Then for i
sufficiently large, (6—€)b' <b* ™' < (54€)b?, (5—¢)?h' <
b2 <(6+¢€)?b?, and in general

(6—e)b' < b < (54€)7b%, j=0,1,2,
Hence, summing,
il B 1
1—5+65F51—5—e
1 B 1
e < S
T—d+e hm s e

Since e is arbitrary, the desired conclusion follows.

Lemma 6.4. Suppose {b'} is a positive sequence
with ratio 6< 1. Let
Q=1(1+5).
=
Then
it ol
NidsE e e

The existence of the infinite product @' follows

from the fact that the series Z b’ of positive terms

i=i

converges. Now
H(1+b)= 1+ b4 . . . +b4)
(A Rt P B (/A L LU

When 1 is sufficiently large for b7, 1> 1, to be positive,



i+l i+l
SIMSTA+b)—1<B +BY+ . . . .

Allowing [— =, we obtain

L)t Bi

Dividing by b7, letting i— «, and using lemma 6.3
we obtain the desired result.

We are now ready to state the main results of the
section.

Theorem 6.1. Let eq (23) hold. ‘Then p’—N\,is a
positive sequence with ratio 63.

This result is an immediate consequence of lemmas
5.3, 6.1, and 6.2.

From this theorem it follows that u’— ™' is also a
sequence with ratio 6. Likewise, t” is a sequence
with the same ratio, as we see from lemma 5.3.

Lemma 6.5. The positive sequence L—aj has
ratio 5.

The number 7 is that of theorem 5.1.
ai—L. From eq (16),

We have

i—1
W= Ll
k=0

{14 a(t=a)}, L=a? I {1+e(F—A)}.

) k=0

Thus
L—adi=a: [:II {14 a(p*—N)} — 1]'
k=i

Since pf—N\; has ratio 6%, the conclusion follows from
lemma 6.4.

Theorem 6.2. Let eq (23) hold. Then the sequence
le'— Ly, | has ratio 6.

From (16)

x— Ly,=(ai— Ly, +asy.+ .

Thus

. tdiy.  (26)

|e— Ly, [*=(ai— Ly*+ai*+ . . . +ai’.

Hence the left side is a sum of terms having ratios
3, 83, 02, . . ., 62 Since each of these numbers, other
than the second, is strictly smaller than the second,
the theorem is established.

Concerning the convergence of [z| to L, we remark
that L—|z| is a sequence of ratio 63 The proof is
like that of lemma 6.5, with ai replaced by |z|%

Information on the convergence of each com-
ponent of z can be derived from eq (26). We write
xt=(b3, b, - -+, bi), yi=(c1, €3, - - -, €a). Now for
fixed j, b:— Le¢y is a linear combination of aj— L, a3,
-+ ., a!, these sequences having respective ratios 63,
8y, 03 -+-, 6. If the 7 component of v, the
coefficient of a3, is not 0, then b:— L ¢; has ratio &;
accordingly the difference sequence b;—b;*', which
is numerically available, has ratio 8, If the j™
component of 1, is 0, then, in general, b;— Le; will
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have a smaller ratio (assuming the sequence is not
identically 0).

For results on the convergence of sequences asso-
ciated with the second characteristic vector 7, we
appeal to the forthcoming theorems of section 11.
These results may be specialized to the sequence
{¢} by recognizing that in the notation of that
section,

g=2,

Also, we agree to interpet 6, as 0.

Concerning the rate of convergence of |£| to 0 we
have, from lemma 5.3, that {|£/} is a sequence with
ratio 6.

xi=2zj, pi=p@’), pr=npn(E).

Theorem 6.3. Let eq (23) hold and set n'=£'/|£|.

(1) If 63> 6,, then {\;— (&)} is a positive, monotonic
sequence with ratio 6, and {|n’—y,|} is a sequence
with ratio é,.

(2) If 65< 83, then {u(£)—N\,} is a positive, monotonic
sequence with ratio (6;/6,)% and {|n'—y,|} is a se-
quence with ratio 6s/6,.

(3) If 62= b, then w(£)—N,=0(82) and |n* — 15| = 0(5,).

These statements are interpretations of theorems
11.1, 11.2, and their corollaries for j=2. From
theorem 11.4 we derive the inequality

XQ_F(Ei)SN(-Ei)_)\Iv L:O, L2 e
the equality holding just in case r=2. From this
and the above theorem we obtain the following in-
teresting corollary.

Corollary. 1f 85 >6;, then for sufficiently large 17,

Aa— p(E)] < N—p(@?)].

More generally, when \,— u(&) is nonnegative,
and 7 is large, then w(£) is closer to N\, than w(z?) is
to A;.  On the other hand, for case (2) of theorem
6.3, the sequence {u(&)—N\,} has ratio (8/8,)% > 62.
But & is the ratio of {u’—2\,;}. Hence in this
instance u’ approaches \; more rapidly than u(g)
approaches \,.

Notice that for r=2, the inequality 6 >d; is
automatic. If »>2, then, from theorem 11.3, the
mequality & >d; holds whenever

Na— A > No— A\

VII. The Method of Optimum «

In sections 10 and 11 the method of fixed « will
be extended to obtain sequences that converge to all
of the characteristic vectors v, %, - - - ,y,. Before
proceeding to this generalization we wish to develop
first the method of optimum «, so that a comparison
of the two methods (and others) may be made at
the most advantageous point. The optimum pro-



cedure does not appear to generalize to a larger
number of characteristic vectors as simply as the
method of fixed .

According to eq (10) the iteration scheme is now
given by eq (12) with

: 2
= 247
& —4—\/8 —l—4t’2> 20

The numbms t* are bounded (see remarks precedmg
theorem 5.1); so are the numbers s’ Thus
JG@H=~'is bounded from below by a positive con-
stant. Accordingly, theorem 4.1 yields the follow-
ing lemma.

Lemma 7.1. Let v* be given by eq (31). Then the
conclusion of theorem 4.1 holds.

In order to apply theorem 4.2 it is necessary to
establish the boundedness of the v*. This is done in
the next lemma.

Lemma 7.2. Let v be given by eq (31). Then

hm'y <

i )‘2’_' )‘1
Since p—N\; it is sufficient, by eq(11), to show that

liLn #(fi)Z Az

i

Let T denote the inferior limit on the left. Let
n"—ii
|£]

Then T=lim u(n?).
that 7 =Tim u(n*).
{n'} that™ converges to, say, 7.
and lemma 7.1 we obtain

!t $l s
n ym)—('rhyl)'

Since 7 belongs to .7 (space spanned by ¥, - -
it follows that u(n)>N,. Hence

T=Ilim p(n*)=

l-®

Select a subsequence {7*} such
Select a further subsequence
From (% z%)=0

0=Ilim

l—®

'yyf)
#(7))2 )\21

as desired.
Theorem 4.2 now yields the principal result.
Theorem 7.1. Let v* be given by eq (27). Then
lim 2'=Ly,,

i— o

lim p?—\;.

That the vectors £/[£| do not converge in the
method of optimum « is a consequence of the next
theorem.

Theorem 7.2.

)

Under the hypotheses of theorem
(£ EH_I):O'
We have,

Tl

Proof.
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Hence

(&, 8 =(¢, Ax")—v(AE, &)+ p'Tyi(E, &)
={1—7*(u(E)—u* T} (&, &)
—\())

by eq (11).

The last theorem indicates that the coefficients ai of
eq (16) converge in an irregular fashion as i — .
Hence a determination of the rate of convergence
such as that given in section 5 for the method of fixed
aisnot to be expected here.

We conclude the section with a modification of
theorem 7.1 for convergence to the highest char-
acteristic vector y,.

Theorem 7.3. Let the sequence {z'} be defined

by
it =iyt
with
vi= 2
—si+\/si2—}—4t"2
Then

L>0.

lim z*—Ly,,

i—w®

This result is obtained by applying theorem 7.1
to the matrix B=—A.

VIII. Comparison of Methods

Each step in the preceding methods of gradients
consists of forming the subspace spanned by z and
£ 1. e, by # and Az, and choosing in that two-space ®
a next approximation z. In the method of optimum
a, the vector T is chosen so that x(7) is a minimum
in the subspace; in the method of fixed « the parti-
cular linear combination z— «af is chosen. Superfici-
ally, then, it would seem that the first method
should give more rapid convergence to \ and 1,
than the second. But the minimizing procedure can
only be recognized as an advantage when the vector
z* 1s common to the two methods. This certainly
holds for the initial vector 2°, but not necessarily
beyond this stage; hence the relative merits of the
two methods are not evident. It seems reasonable
that for low order matrices the procedure of finding
an optimum o might be advantageous, while for
matrices of higher order the fixed « procedure might
be superior. In practice a combination of the two
methods would be in order.

The method of fixed « has the advantage of com-
putational simplicity over the alternative method.
On the other hand the former requires some advance

6 We shall remark later on the possibility of dealing with subspaces of dimension
higher than two. Cf. a forthcoming paper by W. Karush, An iterative method
for finding characteristic vectors of a symmetric matrix. There the method of
optimum « is generalized to subspace of arbitrary (fixed) dimension.



information on the characteristic roots in order to
estimate an allowable «; computation by the method
of optimum « demands no such knowledge.

The method of fixed « is a smooth method. The
vectors £'/|£'| converge; by a relatively simple ex-
tension of the procedure we can obtain convergence
to all the characteristic vectors of .o (see section 10).
Furthermore the convergence is geometric in nature.
The method of optimum « has none of these advan-
tages. The successive gradients are orthogonal, and
the coefficients @, a, . . . of eq (16) do not tend to
0 smoothly.

Sequences {b'} with ratio 6< 1 provide examples of
“linear” convergence. If the ratio 6*"!/(b?)* has a
finite limit, then the sequence converges in a “quad-
ratic’” fashion. In the method of fixed « we have
convergence of a linear type. It is possible to
procure quadratic convergence by modifying the
method, but the price paid would be the solution of a
system of linear equations at each step of the
iteration.

A combination of the two gradient methods can
be used to advantage when the characteristic roots
N1, \s are close and relatively isolated from the other
roots. Suppose we begin with the fixed « iteration
and continue up to a certain stage. The last esti-
mate z and its gradient £ may not be good individual
approximations to ¥; and 7, but the pair may provide
an excellent approximation to the plane of 7, and ..
One application of the optimum « procedure at this
stage should then yield a good approximation Z to 7.
The iteration may be started again with Z. This
technique has worked well in several numerical
examples.

Since t=|£|/|z|—0, it is clear that fewer and fewer
significant figures will be retained in £ as the iteration
ploceeds in a numerical calculation. Nevertheless,
& and w(§) supply useful approximations to 1. and
Xo.  For example, after 3 and \; have been obtained,
the approximation £ can be used as the initial vector
2’ in the calculation of 7, and X\, by a new use of the
method of gradients.

The above remarks apply equally well to the
highest vector y,. One of the advantages of the
gradient methods is that they can be applied directly
to either end of the scale of characteristic roots.

A single step (2) of the gradient procedure
carries one from

=Y+ :ys+ - -+ ay,
to

T= {1+a(#—)\1)}a1?/1+{1‘|‘a(#“—)\2)}a2’£/2+' L0

Thus if any characteristic number X; is known, then
orthogonality of Z to 7; can be achieved by choosing”

1
Ni—n

o=

7 The same result can be obtained by taking 7=Az—\;z; the advantage of the
above procedure is that it fits into the iteration scheme (12).
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This observation may be used to maintain (approxi-
mate) orthogonality which may be theoretically
assured but may be gradually lost in computation
due to round-off errors. For example, in beginning
with & as an initial vector for obtaining 1, (see
second paragraph above), one must maintain ortho-
gonality to ¥, during the iteration process. To do
this, the procedure (12) may be interspersed with
steps in which yi=(\;—u%)~'. Similarly, one may
maintain orthogonality to any number of charac-
teristic vectors, or induce orthogonality to such
vectors, provided only that one knows the cor-
responding characteristic roots (relatively accur-
ately). The desired ends are achieved within the
framework of the scheme (12) by particular choices
of v*. Notice that if »—1 of the r characteristic
roots \; are known then the characteristic vector
belonging to the remaining root can be obtained in
r—1 steps.

It was remarked after theorem 6.1 that Ap’=
piTt—ut and ¢ are sequences with ratio . Hence
observation of the ratios Au*'/Au® or t*!/t' can lead
to an estimate of 62. Since 6=1—a(A,—N\)), and «
is known, another estimate of N, may be made,
alternative to the estimate u(¢). Furthermore, if a
sequence ¢’ has a limit (', and the difference ¢'—C
is a sequence with a ratio §< 1, then a transforma-
tion for speeding the convergence of ¢’ is

AT k : A("'le
cttl— §ict
S sk
c1+l dct
di=="0

With an estimate of 6,, this formula may be used
to improve u? and the components of x? (see remarks
following theorem 6.2).

A certain degree of flexibility may be introduced
in the method of fixed a by replacing the constant
a by a variable o,

azzﬂﬁ; (28)

which satisfies
=B =B -2 (81, Bs constants).  (29)
The conclusion of theorem 5.1 remains valid, since

this choice of o' does not violate the assumptions of
theorem 4.2.

The convergence of the gradients as in theorem 5.2
may also be justified prov1ded one imposes the addi-
tional restrictions

B:<1 and PRI, (30)

Under these conditions statements on rate of con-



vergence, appropriately formulated, can be estab-
lished.

For comparison purposes we state here, without
proof, some properties of the “power” method.
The iteration formula is

A

Suppose now that there is one characteristic root
of maximum absolute value; denote it by \;. Then

J.Zi
lim ——
im 2% Y

Im w(z?)—Ns.
i—w | i
(In the first limit the sequence with odd indices
tends to —y; if \<0, and to y; if A, >0.) It was
pointed out in the introduction that the power
method 1s a gradient method with

and the convergence result is
lim 2'=K y;, K =const.

i—o

(provided w® is never 0). Thus u? as well as |27,
may be used as a normalization factor.

The power method leads directly to an estimate of
i, and hence to an upper bound 2|\;| of M. Thus
a rough application of this method may be used as
a preliminary step in the method of fixed « in order
to determine an allowable value of the constant a.

Suppose now that \; is a characteristic root of
next highest absolute value. Concerning rate of
convergence we remark that p’—N\; is a sequence of
ratio (X\;/Ap)2% If—X\,; is not a characteristic root,
then &= &(2?) tends in direction to

N—N)
lxl_‘__ )‘L! Yi;

the sequence with odd indices tends to the negative
of this vector if N\;<0 otherwise to the same vector.

We conclude this section with a remark on the
method of relaxations.® Any method which begins
with a vector z and applies a sequence of transforma-
tions to it so that the resulting sequence of vectors
z' converges to a characteristic vector, must induce
the gradients £(z%) to tend to the null vector. Thus
any artful modification of a vector z to a new vector
7z which brings the gradient closer to the null vector

8 Cooper, J. L. B,, The Solution of Natural Frequency Equations by Relaxa-
tion Methods, Qtrly. Appl. Math., vol. 6, p. 179 (1948).

would be a plausible procedure in a numerical cal-
culation. The full skill and intuition of the computer
may come into play in varying the vector at any
stage to produce a better approximation. One
systematic procedure is to modify a single component
of z in such a way as to make a single component of
the gradient vanish. Other devices may be used;
the best trick at any point depends upon the infor-
mation available at that stage. This is the flexible
approach of the method of relaxations. Clearly it is
not easily adaptable to automatic computation.

IX. Invariant Subspace .

Before turning to the generalization of the method
of fixed « we shall develop here some properties of
the invariant subspace .o4. We will encounter cer-
tain polynomials p,(\) which have been considered
by Lanczos,® and some of the results of this section
will overlap his work.

In place of the notation z° we shall use z, to de-
note a given vector with expansion

ai=ayitasyet. . tay, (31)
asin eq (4). The space .oZ=(y, - - -, y,) may be char-
acterized as in the following lemma.

Lemma 9.1. The vectors z,, Az, - --, A7z,
span the space .oZ.

Let Z be the space spanned by the vectors A*z,,
k=0,1,2,-... Then this space is the smallest in-
variant subspace which contains the vector z,. Since
zy1s in .o, and .o/ is invariant, it follows that the
relation < .oZ holds.

Suppose that % were a proper subset of the invar-
iant space .o4. Then % would be spanned by a
proper subset of the characteristic vectors yi, v,
-+, vy, of .o/. Consequently the vector z,, being
in %, would be orthogonal to at least one of these
characteristic vectors, say 7 Thus, from eq (31),
ar=(21,y)=0. This contradicts the assumption
a; >0 (sce eq 4).

We now have #=.</. Consequently, dim #=dim
.A=r. The lemma now follows from the fact that
dim Zis the least integer h such that the vectors z,,

Ay, o AR Sepan: 5,
We now define the vectors z; recursively as fol-
lows. Let
fA_ﬁ_fL
=
|25-1] (32)
= p(2y)
Then
2o=Az;1— 2,
23=Azy—po2,—132,
(33)

T 2 o N Ly &
Zrr—=Ag;—per—2 05 J=2,8, . ue g7

9 ““An Iteration Method for the Solution of the Eigenvalue Problem of Linear
Differential and Integral Operators,” J. Research NBS 45, 255 (1950) RP 2133
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The vectors z,, 25, . . . , 2;, 2,41 are well-defined and

2;#0, il
For suppose, z;, . .

[hEih

., zr are defined and none is null,
Then by eq (33) zx4 is defined and is a linear
combination of A*z,, A*'z,, ..., Az, 2, with the
coefficient of A*z, equal to one. Further,if k<r—1,
then z;,,5#0 by lemma 9.1. This establishes the
assertion.
By induction it is easy to prove that

Az,

(2172]):(2]': ]:21 .,T+1,

(@4, en=0; S e Rl W S

(34)

Lemma 9.2. Let </, be the space spanned by z,,
Ala v D AVS e

.'.1/]‘:(21, 4421, ey flj_lzl),

e

Then (z,,. . ., z;) isan orthogonal basis for </,  Also,
2,+1:O.
By lemma (9.1), ./ has dimension 7. From the

above, the nonnull vectors (z4,. . ., z;) are orthogonal,
and lie in .o7; hence they span .o/.

The final conclusion of the lemma follows from
the fact that z,., is orthogonal to z,,...,2, and
hence to .o4. But from the invariance of o7, z,,,
belongs to .o4. Thus z,,,=0.

Given an arbitrary vector z, the integer r of eq
(31) can be determined from the above lemma; » is
that integer such that z,., is the first z; that van-
ishes. Notice that except for j=r, .7 is not the
space spanned by vy, .. .,y

We consider now the expansions of the z;in terms
of the ;. From eq (31) and (33),

zo=M—p) @it Na—p) @Yot - - + N —p) @Y.
Thus, if we put p,(\)=X—u, we have

25=p1(\) @Y1 +P1 () ayat - - - +pi(N) @y,
Again from eq (33),

23={p1 (\) \i—po)— 3} ay,+ - - -
+ {p1 () N —p2)— 3} @y

Hence, if we put pa(\)=p; (\) A\— ) —t3 we have
23=0DP:2 ()\1) a1y1+pz ()\2> aYat- - -+ P ()\r) @Y.
In general, if we define the polynomials p,(\) by

PN =1, 0 (N)=XN—p1, p;(N)=p,-1(N) A—u,)

~t72’pj*2()‘)}j:2) TR (35)
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we have the expansions

231=p; (\) @y +p; () oyt - -+ p;(N) @y,

.7.:0}1)"').7‘~ (36)
From eq (36) with j=r-+1, and lemma 9.2 we see
that the roots of

p(\)=0

are the characteristic numbers Ay, Xy, + - -, \,.  This
is a special case of the forthcoming theorem 9.2.

In lemma 9.2 we defined the subspaces .7 of ..
In order to develop some properties of these sub-
spaces we state without proof several well known
properties of symmetric linear operators.

Let Z denote a linear space of real vectors. Let
B denote a symmetric linear operator on 2. Con-
sider an [-dimensional subspace %’ of #; let = be
the projection operator into #4’. The operator =B
with domain restricted to %’ is a symmetric opera-
tor on %’; by the characteristic roots and vectors of
B relative to %’ we mean the corresponding quan-
tities of this operator. An alternative characteriza-
tion is given by the property that » is a character-
istic vector (relative to #’) belonging to the char-
acteristic root « if and only if » belongs to %’, » #0,
and

(@)= k(@50 zin 4.
Also, the smallest and greatest roots relative to %’
are respectively the minimum and maximum of u(z)
on Z'. It #’ is an invariant subspace of Z then
mB=B on #’ and the characteristic roots and
vectors relative to 4’ are such in the whole space
A; this is the case with .o/ as a subspace of 7.

If wy,u, - - -, u, is an orthonormal basis for %’
then the operator =B relative to this basis has the
[ matrix representation

B'=(Au,, uz), o=tz 2wl s
The characteristic roots relative to %’ are the roots
of

IN[=B| =0,

We quote a well-known result. (The first conclusion
of the theorem below holds without the restriction
that the «; be distinct.)

Theorem 9.1. Let Bbe a symmetric linear opera-
tor on an m-dimensional real linear space %; let %4’
be an [-dimensional subspace of . Suppose that B
has distinet characteristic values k< ko< -+« <kn
with corresponding characteristic vectors vy, vy, - -,
vm. Let the characteristic roots and vectors of B
relative to 4’ be respectively ki <x<-- - <k and
vl Wy s wis  Then
Ky S Kl,.

’ ’
KIS.KI) K2SK27' e

The equality holds for all indices if and only if



’ ’ /A
V1=  Vg=Uz; . . ., V=",
in this case #’ is an invariant subspace.'

We return to the subspaces .oZ. The character-
istic roots and vectors of A relative to .o/ are those
of the symmetric operator B;=m; A on .<Z, where
is the projection on .¢Z. Since z,, ..., z;1s an
orthogonal basis of .7 the operator B; has the matrix
representation

(Az,2n)

=12 s oy 1)
2l [2m] / st
We calculate this matrix.

Lemma 9.3. For a given 7,

Az, zn=lzjF when k=j—1
= |22 when k=j
=zl when k=j+1

otherwise.

We remark that for j=1, the first equation is to be
omitted. The first and third equations follow from
the first equation of (34). The second follows
from the definition of u;. The last is a consequence
of the orthogonality relations of (34) and the fact
%hat Az;is a linear combination of z;,,, z; and z;,_, by

33).

It follows from this lemma that B; has the matrix
representation

(uy ts O 1
by pa t3 O
0 3 us
B,—
AR ()
O -
L 0 t us)

Lemma 9.4.% Let qo(\)=1 and ¢;(\) be the char-
acteristic polynomial of B;,

QJ()‘)‘__!)‘I_BJ!: j:172>"’:r'

Then

pJ()\):q]()\), .7.20’17"':])'

Using the matrix representation above it is easy
to see by direct calculation that

G N)=N—u1, ¢GN=A—uy) g;-1N)— q;_2(N).

10 This result follows from the minimax principle for characteristic values.
Cf. Courant and Hilbert ‘“Methoden der Mathematischen Physik,” 1, 2d ed ,
Berlin (1931), pp. 27-29.

The lemma now follows from the fact that these re-
cursion relations are identical with eq (35).

Theorem 9.2. The roots n<w< ... <, of
p]()\):())]zly 2) -

are the characteristic roots of A relative to the sub-
space .<Z. Furthermore,
My, <y ..., NSy,

the equality holding for all indices if and only if

=

This theorem follows from theorem 9.1 with
HB=.f,, B=A. The last statement follows from
the fact that .7, 7<r, is not invariant.

X. Extension of Method of Fixed «

We return now to the sequence {z’} of eq (12) with
yi=a=const. As in theorem 5.2 we impose the
condition (23)" on a. We rename 2’ as z} and apply
the results of the previous section to each z. The
expansion (31) becomes (16),

A=ayt eyt ... ey
By lemma 5.1 each a! is positive; accordingly, the
space .o/ associated with zi is independent of 7 and
coincides with our original space .<4. We recognize
25 as our originial &

The polynomials of eq (35) now depend upon the
index 7; we denote them by pi(\). For each 7 they
are defined in terms of

#j:“(zi')y

24
ti gl
i ’

|25l

It is convenient to introduce

ﬁo()\)zly
?J‘()\):()\_)\j)(\)\—)\j_J)' : ‘()\_)‘1)7
j:l’ 2’- Fasd %

The vectors (zi, z5,- - -, 21) comprise a sequence of
orthogonal bases for the space .o4. We show that,
when normalized, this sequence converges to the
fixed basis yy, - - -, Y.

Theorem 10.1. Let the constant « satisfy (23)
and let the initial vector z{=z" be given by (4).
Determine the infinite sequences {zi}, {z5},- - -, {zi}
by (33) and

11 In this section and the next we assume without further comment that this
condition holds.
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Then
lim 2y lmoGD=), j=1,2,00 7
The proof will be made by induction. For an
integer k, 2<k<r, consider the statement
lim &y, lim 25,00, =12,k
(37)

By theorem 5.1, (5.2), lemma 5.3 and theorem 5.2
we see that the statement is true for k=2. Assuming
the statement true for k<'r, we shall show that it
holds for k-+1. This will provide a proof of the
theorem.
From the second eq (37), the definition of #, and
lemma 5.2 it follows that
t—0, =%, 000, 5
Also by the first eq (37)
#;"H)\jr j:])27"'7k'
Consequently, from eq (35), pi(N—=X—X\=7:(N),
Pi—=>N—X) pr (N) =72 (\), and generally,
p;()‘)%ﬁj()‘)y j:]7 Z 000 k.
The vector under examination is
zin=piANDaiy +piN)asys+- - -+ pi(\)aiy,. (38)

From the orthogonality relation (2%, z;,,)=0 and eq
(36),

> PN )N =0
=1

.
Zl" i (M) PiNy) @i’ =0.
rs

Dividing by a;’, and writing

i(\;) ai’
af‘:’zzk(x])a]7 j:1127"'}ky

2
A +1
these equations take the form

Do) o+ Ph (N @b+ + 7 (h9) @b =B

Diei N)iad Fpio 1 N abt-- - hpi (A ai=bi_,.
By lemma 5.2,

bf’%@ (Nes1) e Wiy

57

As 71— o the matrix of coefficients (p;(\,)) tends to
(p;(Ny)).  The latter matrix has only zeros below the
main diagonal; its determinant is the product of the
diagonal elements, namely,

PoA)PiNg) -« . Pra(Na).

From the definition of the polynomials p; and the
fact that the \; are distinct, it follows that this quan-
tity does not vanish. Consequently, for ¢ sufficiently
large, the above linear equations in « may be solved
for these unknowns. Furthermore, as 7 tends to
infinity, the solutions have finite limits, say L.
Hence

od—L; §=1,2,... k. (39)
It is simple to compute L;; allowing i— «  we obtain,
from the last equation,

I D) P aeg)
it Pr-1(Ne)

For our purposes it is not essential to know more of
the limiting values L; than the fact that they exist.
As a matter of interest they are evaluated at the end
of the section.

Now divide both sides of eq (38) by @ ;.
lemma 5.2 and eq (39),

From

2 £ :
afﬂﬁpk Ny 1) Yisr-

k+1

From this we immediately obtain the eq (37) for
j=k-1. This completes the proof.
For future use we record some of the results of
the above proof in the following corollary.
Corollary. For j=0,1, ..., r,

BB, 25,00,

1

Also, for j=1,2,-..,1—1,1=2,3,---, 1,

pi ()i

2
a,
has a finite limit; this limit has the value

Pii(N) Pi—s(Ny)

Pz (M)

when
j=l—1.

We return to the evaluation of L; of eq (39). Let

o TR
_ﬁk()\k e 1)

B; (40)

Then the B; satisfy the limiting equations



51()\1)31‘1'?1()\2)62‘*‘- . -+f71()\k)5k=“"f71()\k+1)

?k—l()\l)ﬁl_f—ﬁk—l()‘?)ﬁ?’{‘ o -+i)k-l()\k)6k:_I’k—l()‘lﬂ—l)-
In the second equation, 7,(\) is a polynomial of

degree 1; by adding A\, times the first equation to
the second we may reduce the second to

)\161+)\2ﬁ2+ ot oS +)\k6k:'—)\k+l'
In the third equation, 75(\) is a second-degree poly-

nomial; a linear combination of the preceding two
rows will reduce this equation to

MBi+NBt . . FNB=— Nt

Continuing in this way, we arrive at the equivalent
system,

B+ o O e
)\1ﬁ1+ >\252+ siiel + )\kﬁk:—)\k+l

Bk——_—l

N8N8t . . FNTIBe=— ML
The solutions 8, are immediately expressible in
terms of the function

Vk(bl, bz, <o, b= II

<m
i, m=12,---;'k

From the identity

1 1 Ao pta]:
b b N e
Vk(blybzy “ieailel bk>= 1 2 k
b=l pr-1 ... pk-!
it follows that
Vk(kg al for Is )\k )‘k+1)
— -—1 k ) ) )
ﬂl ( ) Vk()\l’ )\2’ SHE ,)k)
1 Ve(A, Ng, - o+ ) Agy M)
=(—1)*1! k\N 1y N3,y s Ny Arge1
62 ( ) Vk(xl’ )2, e )\k)
gl ViQy, - - -y Mecy Nr).
E Vi, g, - o, N

The L; may now be computed from eq (40).

XI. Rate of Convergence

We shall establish some results on rate of conver-
gence for the sequences of the previous section.
The terminology is that of section 6. Recall the
definition of é;,7=1,2, .. .,r, ineq (25). It iscon-
venient to set

6,+1:0.

We remark that for the lengths [zi| we have at
once, from the corollary to theorem 10.1 and lemma
6.2, that {|z:|} is a sequence with ratio ;.

Theorem 11.1. For a fixed integer 7, j=2,3,...,7,
consider the sequence {u(z9)}. (1) 1f 62>6,_-6;41, then
{N;—u(zH)} 1s a positive, monotonic sequence with
ratio (8,/6,-1)% (2) If &7<8; 16541, then {n(zi)—N;}
is a positive, monotonic sequence with ratio (5;,./6,)>

We first assume 7<r. Then from eq (36)

_ (&5, Az))—lzif?
|25 ]?

=|;1,;F{<m—x,> B (el . .

m(z) =N,

F o= [P (Vo) ai o]
SR CYTRE W 7 3N O PP )9 o8 PN

ai’ a’ ai’
SR S i i
_12’112—{biﬁa52+' . .+b;_1—a‘,2
£ 1t -1
;G
+bn .

1

where, by the corollary to theorem 10.1, the b
have finite limits.
Now suppose 6 >6;_,6;.,. We write

a

(u(z5)—Ny)

i2 aiz ai2 a.‘Z
o 3 SR } ik,
11.2 e 7 b11 ]‘.2 Sis +b;—2"‘12_
i 1

A N =2

i i 2
+b+b(“~;";) 4o §

i

(41)

The factors of b, (except for b:_,) may be recog-
nized as sequences of ratio less than 1, by lemma
6.1; hence these sequences tend to 0. Hence, by
the above-mentioned corollary, the left side of eq
(41) has the limit

Pi -\
— NN —— §
e I)P?—z()\;—l)

Using lemma 6.2 we deduce the first conclusion of
the theorem.

Suppose next that 62<8,_,8;;,. Then we write
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a;

ai

(u(z)—2)

i

A1 @; 41

i

i
a:+1 IZI
+b§_1( )

All terms tend to 0 except bi,
side has the limit

;2 2
a; +2
A e +b +1+by+2 7 + 4
@ 1@ 14 a]+1

Hence the left

)p_]M
7 1()‘})

From this we deduce the second conclusion of the
theorem.

There remains the case j=r. In this instance
only case (1) of the theorem is possible. The proof
is 1dentical with that given above for that case,
except that no terms b:,, and higher appear.

Theorem 11.1 leaves open the possibility of the
equality 67=6;_16;;1. The likelihood of this condi-
tion holdmg in a numerical instance is very slight,
but the problem is subtler than the instances of in-
equality and thereby has theoretical interest. We
establish the following corollary.

Corollary. Suppose 6°=26;_,6,,,. Then

M

Nj1— >0.

N=0(8/67-1).

To prove the corollary we require the following
lemma.

Lemma 11.1. If §2=46,_, 8;4, then the sequence

S

has a finite positive limit.

We remark that although the sequence in question
has ratio 1 it does not follow from this that it has a
limit.

;1@ 41
ai’

1

By eq (16)
@;-10541__ G7-107+1
i2 g8 02
ai a/i'
pes 1 fl—aOe a1 e u))
w0 {1—a(\;—uh}?

(42)

where p*=pu (z%). The general term of the product

may be written

[51—1+<¥ (Mk—‘)\l)] [57+1‘|“ @ (ﬂk‘—)\l)]
[6;+ a(u*—N)]?

Letting

B=pt—N, Ki=5"
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the general term becomes

(1+ K91+ K"

=14 b*
(K55 5
where
=64 K,+ K,— 2K;) +higher terms in 8"
The coefficient of 8* is positive. For,
(o4 6]’ 6]'
K1+K2—2K3:* el e
0; \8j—1 041
«@ 1 0; 0
e o S MR S RN 1)
0; <p+P ) <p 051 0; <
- ; (p=11>0.
b

It follows that for sufficiently large £, b* is positive.
Furthermore, by theorem 6.1 and lemma 6.2, b* is a
sequence with ratio 3. Hence Zb‘ converges;

thus the product II(1-b%), and l]OIlCL eq (42), con-
verges to a positive limit as i— .

We turn to the proof of the corollary. As in the
proof of the theorem we form eq (41). We see that
all terms tend to 0 except the termsin b:_, and bi ;.
The first of these has a finite limit, and by lemma
11.1, the second does, too. This complotes the
proof.

Notice that for the corollary we cannot deduce
that u(zi)—X; is a sequence with a ratio; this is be-
cause we do not know that the right side of eq (41)
has a nonzero limit. In fact, it seems likely that
this limit is zero.

Theorem 11.2. Let j be a fixed integer, j=2, 3,

Sz
Set ui =—=+-
EH

(1) If 62>6;_18;+1, then |ui—y;| has ratio §,/8;_;.

T

(2) If 6?<6j_151+1, then yj[ has ratio 5/+1/6j.

From the corollary to theorem 10.1 we see that

P al
El

—1

tends to 0. We wish an estimate of the rate of
convergence.
By eq (36),

2; [P -1 () @i’ —1=1/[pi -, A\))? {[pi-. (\) ai/ai]*+

F[Pio1 (A joy) @i @i P[P (M) @i a/ai]P+- - -]

Denote by ¢'* the first term on the left. Under case
(1) of the theorem we multiply both sides by




d;=(aj_./a})".

As in the proof of theorem 11.1 we find that
(¢*—1)di has a nonzero limit. Noting that
lh—(l/ci):(cﬂ—l)/ci(l +¢%) and using ¢’—1, we find
that

(-t
c

has a nonzero limit. (43)
On the other hand, under case (2) we find, by a
similar argument that

1 i
Gl

(44)

has a nonzero limit.
We have

J 2—# i i
[uj—yjl —’2”2 {[pi—l()‘l)al]2+ .
b O-Da- (1)
T I OV VL LN B }

Consider condition (1) of the theorem. Multiply

both sides of the above equation by di. From eq

(43) and the corollary to theorem 10.1 we obtain that
[u; —y,[*d; (45)

has a nonzero limit.

This proves the first part of the theorem. Consider

next condition (2). This time we multiply both

sides of the above equation by di,,. Using eq (44)
we find

[wi —y;|di
has a nonzero limit.

the theorem.
Corollary. Suppose 62=25;_16;,1.

This completes the proof of
Then

| — 1l =008,/8;-).

Using lemma 11.1 we show as in the proof of the
above theorem that theleft side of eq (43) has a finite
limit. Proceeding further as in the theorem we
show that the left side of eq (45) also has a finite
limit. This completes the argument.

The following result is of interest in connection
with the preceding theorems.

Theorem 11.3. Suppose 7>3.
teger with 2<;<r—1. If

Let 7 be an in-

Apr1—N > A — Ny,
then
5,2> 5]'_1 5]'+1.

Let Qj:()\j_xl)/ﬂl.

8—0;_10;11=(1—B¢)*—(1—Bq;-1)(1—Bq,1))
=B*[¢f—¢;-19;41]+BD,

From the definition of the é;,

where

D=(g;11—q7—(q;—qs5-1)
1
S (A=A )— =N,
We find that

6 —0;-18;,11=B*[(¢;— ¢;-1)’—q;-. D]+BD
=p%(¢;—q;-1)*+(B—B%q;-1) D.

Since 0< <1, and 0<¢q,;_,<1, it follows that the
coefficient of I) is positive. Hence the left side is
positive if D is. This concludes the proof.

Notice that if 7=r, the conclusion of the theorem
holds, for, §,,,=0. Also, if »=2, then j=2 is the
only meaningful value of 7 and the conclusion like-
wise holds.

Theorem 9.2 enables us to prove an interesting
result for the errors \;— pu'.

Theorem 11.4. Let
Gy = oo o g B=02 o o o«
Then for each 1,
etet ... +e<o, j=1,2,...,r—1,
eitei+ ... Le=0.

Consider a fixed 7, 7=1,2, . . . , r, and a fixed 7.
As in theorem 9.2 let », . . . , »; denote the roots of
pi(\)=0. From the definition of the jth degree
polynomial pi(\) we can verify directly that the

coefficient of \7'is —(ui+ . . . +ui). Hence
J Jor
S o
k=1 k=1

From theorem 9.2,

=T = Sui= S h— Sn= =) <0,
the equality holding just in case j=r.
XII. Concluding Remarks
Associated with a vector z is the chain of sub-

spaces
ShC (- (o

of section 9, together with the corresponding poly-
nomials p;(N), whose zeros give the characteristic
roots of A relative to .</. Let », ; denote a mini-
mum solution of p;(\)=0. It is a consequence of
theorem 9.1 that
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V1,1ZV1,22 "'>V1,r

ixl.
Similarly, if », ; denotes the next smallest solution,
then

Vo, 2> Vg, 32>ttt 2V 1= N
Analogous results hold for the higher characteristic
roots. Thus, the characteristic roots of A can be
found by successively finding the zeros of p.(N),
p:(N), ete.? The procedure may be followed, for
example, after a good approximation z{ has been
obtained by, say, one of the gradient schemes.

The subspaces and their polynomials may be used
in other ways in conjunction with the method of
gradients. It was pointed out earlier that in the
gradient methods we pass in each step from z
to a next approximation z; which lies in the subspace
o4 associated with z,.  One might consider choosing
Z, in .o4 or even a higher-dimensional subspace.
The extra labor involved might be justified, or even
essential, in an ill-conditioned problem in which
several roots are clustered about A\; (or \,).

To illustrate, suppose that N, N, N3 are close to-
gether and reasonably isolated from the other roots.
After a certain number of iterations it would be ex-
pected that the subspace .o4 spanned by z, 2, z;
would contain only the characteristic vectors yy, 1.,
13 to a good approximation. At this stage, although
the z’s might not be good individual approximations
to the y’s, the characteristic vectors uy, us, u; relative
to .4 would provide such approximations. Further
accuracy for y; would then be obtained by continuing
the iteration process with wu,.

We proceed to derive the formulas for the char-
acteristic roots » <w<w; and characteristic vectors
Uy, Uy, uz relative to o4, The roots v, are the solu-
tions of

Ps(N) =N — p) N— p2) (N — ) — 13N — pg) — 15N — 1) =0.

This cubic is most easily solved by introducing the
new variable p and the constants u, o, as follows:

p=—(p1+pst na),

N=R-+p.

k=1,2,3,

U'k:#k_py

The equation to be solved is now

p*+bp+c=0,
where

)

6:0102+‘020'3+0'10'3—t§* ;, C:f§0'3+t§0'1—0'10'20’3.

The solutions may now be determined rapidly by, say,

Newton’s method. To find u,;, the characteristic

vector relative to .4 belonging to »,, we write
UW=21F az2,+B2;

12 This is one of the methods developed by Lanczos.

O

61

and attempt to find « and 8. To do this observe
first that since u, is a characteristic vector relative
to .<%4 belonging to »,

(L, Al —wtly) =0, uanef, S E=1,23.  (46)
Using eq (46) with k=1, and u=z,, =2z in turn we
find, by eq (34),

0=(u1—r1)|21|’

0= a|z;|>-+ Bus|2;|>— Bri| 25/
Thus

i M
=

G

so that

1
23+— - 23

ViT M3

ul=21+5'7.—,“-'< )

t

The formulas for u, and u; are obtained by replacing
v; by v, and v, respectively.

Suppose the lower characteristic roots \;, A,
and the higher characteristic roots \,, \,_;, . . . have
been accurately calculated. The intermediate roots
and vectors can then be calculated by the gradient
procedure (12) as follows.  We apply the procedure
to an initial vector 2°, inducing (if necessary) and
maintaining orthogonality to the vectors y, .,
and y,, ¥,—1, . . . by more or less frequent selection
of v* as 1/(\;—pu?), with \; ranging over the known
roots (see section 8). Use of the subspaces .4, .o,

. may come into play as described above. Notice
that as more roots are found the constant « in the
method of fixed « may be chosen larger.

We remark that independent characteristic vectors
belonging to a multiple characteristic root can be
determined by varying the initial vector z°.

We conclude by pointing out that the results of
theorem 10.1 remain valid if the constant « satis-
fying eq (23) is replaced by the variable value of
eq (28) where, in addition to eq (29) and (30), the
condition

B:
8

N
SE AN

<@ i)

1 j=3,4,. .

is imposed. The purpose of this restriction is to
guarantee that aj/ai—0 for j<k. The results on
rate of convergence in section 11 may be modified
to fit the new conditions.

Los AncrLes, May 4, 1950.
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