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Stochastic Processes and Dispersion of Configurations of 
Linked Events 

Chan-Mou Tchen 

By the use of a function for the transition probability, as introduced by Kolmogoroff in 
diffusion problems with continuous motion (the so-called continuous stochastic processes), 
the dispersion of the configurations of linked events is studied. A long-chain molecule of 
irregular configurations, representing configurations of events linked in a time seq uence, is 
chosen as a model. Attention is given in particular to the inversion of the dispersion law of 
stochastic processes, and to the interactions between nearest neighbors. A very elementary 
application is given to t he perturbance on the distribution function for t he configurations of 
a chain molecule, as a result of inter·actions by other neighbor chains. 

1. Introduction 

We can distinguish problems concerning the motion 
of particles as occurring in physics and mechanics 
into two types: (1) problems relating to completely 
determinate systems; (2) problems relating to irregu­
lar systems. 

In the problems of the first type, the motion of the 
particles is controlled by certain known equations, so 
that its whole course can be derived from prescribed 
initial conditions. In the problems of the second 
type, on the contrary, the motion is not exactly 
known, even if the initial conditions were given. 
Such cases are found when particles are subjected, for 
instance, to irregular influences of mutual impacts 
and thermal agitations. In such cases it is only 
possible to calculate a distribution of the chances for 
the occurrence of particular positions of the particles 
at a later instant, assuming that certain initial 
conditions have been given. Such systems can be 
called " s tochas tic pro cesses" or " irregu lar pro cesses. " 

It is assumed that at a given instant s' there are 
many particles with positions between r' j and 
r',+dr'i (in a volume element dr'l dr'2 dr'3) , where 1" 

is a vector with components 1"1 , 1"2, 1"3, and i=1,2,3. 
Let the density distribution of these particles be 

W(s',r') dr\ dr'2 dr' 3' (1 ) 

L et 
p(s', 1"; S ,1') drl dr2 dr3 (2) 

be the probability for a particle that at the instant 
s' started from the region between 1", and r' ,+dr'j 
to arrive in the region between 1', and ri+drt at the 
instant s. The transition probability function p 
will be called the dispersion function, since it con­
trols the dispersion process of particles as due to 
irregular motion. 

The above general description of the stochastic 
processes has been studied by Kolmogoroff (1931, 
1933) in the diffusion of particles by continuous 
motion. The present author has extended the 
theory in such a way that it can be applied to the 
dispersion of the elements of volume of liquid in a 
turbulent motion (see Tchen, 1944). In this paper, 

we will discuss certain general properties of the dis­
persion function and other derived functions, and 
will show how such considerations of stochastic proc­
esses are relevant to the description of the configura­
tions of long chain molecules. 

The particles (atoms, monomer units, etc.) of a 
long chain molecule are linked in a random arrange­
ment. This may be considered as a spatial model 
of the configurations of events linked in a time 
sequence. Thus the variable s in eq uation 1, which de­
termines the time sequence of the occurrence of the 
position r is , in the model, equal to the number of 
links separating the given particle from the origin 
of the chain. For the sake of abbreviation swill 
be called " link-number". IVe consider a great num­
ber of chains of identical overal structure, but which 
at a given instant give configurations independent 
from each other. A chain will be called OA" A s, the 
particles A", A s being labeled by their respective 
link-numbers s' and s. A system of coordinates 
with fixed directions is attached to the origin 0 of the 
chain. The position of the particle A" in the system 
of coordinates is given by the vector OA,,=r' with 
components 1'\, 1"2, 1" 3. It is assumed that at a 
given instant there are many chains that have their 
A, ,-particle in the positions between 1", and 1" t+dr' j. 
Let 

W(s',r') d1'\ dr'2 dr'3 

be the probability for the particle As' to be situated 
in the region between 1" i and 1" i+dr' i. 

In an analogous way we can define 

as the probability for the particle A s to be situated 
in the region between ri and ri+drt . The transition 
from the state (s', 1") to the state (s, 1') can be defined 
by a transition probability 

p(s', 1"; S, 1') drl dr2 dr3' 

It is the probability for a particle As to be situated 
in the region between ri and ri+ dr i, being given that 
a preceding particle As' was situated in the region 
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between 1" t and 1" i+ dr' t. The funetion p has a 
complete formal analo~y with (2 ), and in the present 
application will be called the dispersion function of 
the linked particle . 

It is to be noticed that the introduction of a dis­
continuous link-number s in the above picture is a 
mat ter of convenience. In fact the picture can very 
well be generalized to a continuous chain, where we 
have to do with "elements of chain" instead of 
"linked particles" . Then the position s of the ele­
men t in the chain can be determined by its contour 
length from the origin, which length may be expressed 
dimensionlessly, for instance, in terms of a "corre­
lation length" . (About the correlation length, see 
T chen 1947). 

Some proper ties of t he dispersion function and its 
differential equations will be di scussed briefl y for the 
tlll'ee-dimensional case in section II, by following the 
one-dimensional procedure of section 5 of T chen 
(1944) and section 1.3 of T chen (1947) in the study 
of diffusion problems. 

It is to be remarked that the above dispersion 
function refers to increasing s. However , the inverse 
problem migh t also b e formulated : we could ask 
to find from which preceding distribution an observed 
distribution may have originated . If s refers to the 
time variable in the dispersion processes of discrete 
systems, this will mean to determine the past from 
the future distribution . Such an inversion of a law 
of na ture presen ts special difficulties and will be 
discussed in section III. (The notion of inversion 
of a law of nature has been introduced by Sch1"odinger 
193 1). As an application, we may consider cases 
where the distribution of the positions at the final 
instant can be perturbed by interactions between the 
distributions of posi tions at the earlier instants. In 
order to calculate such interactions, it will be neces­
sary to know the distributions of positions at the 
initial instants, being given the distribution of posi­
tions at the final instant. Such a transition from the 
final state to the initial state is an inversion of the 
dispersion processes. 

In order to study further details in the mechanism 
of interactions, in part icular when we consider two 
particles as nearest neighbors, or when we consider 
the interaction between the far particle of a molecule 
(particle situated ill the farthest perimeter) with 
surrounding molecules, it will be necessary to formu­
late the nearest neighbor and farthest neighbor 
probability functions. Those functions will be 
studied in section IV. While the derivations of the 
foregoing functions and the analysis of their proper­
ties form the subject matter of this paper, elucidating 
the mathematical basis of the dispersion of chain 
configurations, a very elementary application is 
given finally in section V, in order to illustrate as 
an example, the perturbance on the distribution as 
a result of interac tions. This at the same time will 
furnish an opportunity of pointing out what reason­
ings are underlying the mechanism of l inter actions, 
and where the difficulties arise. 

II. Properties of the Dispersion Function and 
Its Differential Equations 

The distribution function Wand the dispersion 
function p must satisfy the relations 

f +OO f +oo 
_ 00 d1'\ . .. W (s' ,r')= 1; _00 d1'J . W (s,1')= l 

(3) 

.L+: d1' l ... p(s',1"; S,1',)= 1. (4) 

The notation 

for the sake of abbreviation . Formulas in (3) ex­
press the condi tion of normalization , and formula 
(4) expresses the condition that all transitions start­
ing ou t of the state (s ' ,r' ) must find their places i;l 
the totality of the clements drj . . . ,forming the avail­
able domain of the variable r t . p is the transition 
probabili ty from a known initial state (s ' ,r') to a 
final sta te (s,r) . So, if the initial distribu tion W (s'r') 
is lmown, the final distribution W (s,r) can be deduced 
from the relat ion 

W (s, 1')= f _+",OO dr'J •.. W(s',r') pes', 1"; s,r). (5) 

In order to conform to the laws of difI"usion 
phenomena, the dispersion function moreover must 
satisfy the condition (see Smoluchowski, 1913 and 
Chapman , 1928): 

p(s' ,r'; s,1')= 

. . p(s',r'; s/l,1' /l ) p(s", 1'''; s,r), (6) 

where s' :5, s" :5,s . This equation means that the 
diffusion process is integrable, i. e., the process from 
(s ',r' ) to (s ,r) as controlled by the function 
p (s' ,r'; s,r ) can be obtained by calculating first the 
dispersion in the interval sf! - s', and then the dis­
persion in the adjoining interval s -s", e" being an 
arbitrary intermediary variable within the interval 
s-s'. 

Under the conditions expressed by (4) and (6), 
the dispersion function will satisfy two partial dif­
ferential equations given originally by Kolmogoroff 
(1931 and 1933). They h ave been derived by 
Tchen (1944) independently of Kolmogoroff's meth­
ods. In the following lines, we shall first discuss 
some developments into series of the dispersion func­
tion before returning to those partial differential 
equations. 
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It is in the nature of the phenomena of motion, 

whether regular or irregular that we must expect 

lim p(s',r'; s,r) = O for r~r' 
8=8' 

i . e., wheD there is a finite difference between l' and 1". 
Nevertheless relation (4) must remain valid. Con­
sequently for 1' = 1" , the function pes' , 1"; s, 1'), 
which will be finite for s ~ s', must take necessarily 
an integrable infinite value, when s tends indefinitely 
to s' , so that (4) is not violated. Such properties 
of the p-function at the limit when s tcnds to s', re-

f+O> d R ( ) op(s' , 1" ; s, 1') 1'1 . .. l' 
_ 0> OS 

sembles to those of the Dirac operator, the a-function, 
which is a kind of improper function. Certain oper­
ations involving an improper funct.ion may impair 
the rigour. For instance, the development of 
p (s', 1"; S, 1' ) into a Taylor series will become badly 
convergent or even cease to be convergent at the 
limit s= s'. As an example let us examine the series 
development in the derivation of the second partial 
differential equation of the p-function by Kol­
mogoroff. Kolmogoroff (1931 and 1933) introduced 
an arbitrary function R, that satisfies certain 
boundary condition and showed that 

= lim - drl' .. R (r) dr"l" . p(s',r'; s, r")p(s , 1'''; s+ T,r)-lim - dr l '" R(r)p(s', 1" ; s, r) 1f+o> f +o> 1 J+ro 
T-?O T - 00 -00 T ----tO T. - 00 

= lim.!.f+ro dr"l " ·f+o> dr l ' " R(r") {-A~' . [p(s',r'; s, r" ) p(s,r" ; s+ T,r) (r - r")i] 
r ---+O T -00 - 00 u1 1 

02 
[(" '" ( " + ) (r - r")i(r - r")kl} +0"0" pS,r;S,r)pS,r;S T,r ') . r i r k ~ J 

The quantity in {. . .} is a development into a 
Taylor series, which may become badly convergent 
for values of T approaching zero. In view of this 
difficulty, special care about the series development 
will be taken in our derivations. 

In Gauss' function the parameters s' , 1", S, l' 

figure exclusively in the form of the differences 
s- s', 1' - 1" . In functions of a general type, how­
ever, the parameters may occur separately. Let 

1' - r' = l 

then we can write the dispersion function p (s' , 1"; S, 1' ) 
as a function P of (s', 1"; T, l) or of (s - T, 1'-l; T, l): 

p(s' , 1"; s,r ,)= P(s',r'; T,l)=P (s- T,1' - l; T, l). 

The second mode of writing is useful when we want 
to express that the variations of a dispersion function 
are much slower with respect to s' , 1" than with 
respect to T, l, in particular when T is small: 

oP/ori«oP/oli for T small. 

Hence in the development into a Taylor series that 
will be used in the derivations of the partial differ­
ential equations, we will use the dispersion function 
in the form of p when T is not small, and in the form 
of P when T is small. A development of P into a 
Taylor series with respect to l' means a development 
of p (s', 1"; S, 1' ) into a series proceeding simultaneously 
with respect to 1" and to 1', with equal increments of 
both variables. 

With the use of the dispersion function , the mo­
ments or the mean values of the displacement and of 
its higher powers can be definied as follows: 

(7 ) 

Following the assumptions of Kolmogoroff, moments 
of higher orders are negligible and the ratios 
,...., r--1 

ltlT, lil k/2T tend to finite constant values at the 
limit T-'70. However, we can make, as was done in 
Tchen (1947 ), a broader assumption: we assume 
that they tend to finite constant values for small 
values of T but still exceeding the correlation measure, 
which was studied in detail there. 

In order to derive the partial differential equations 
for p, we start from the integral equation (6). We 
suppose that T= 8" - S' be a small quantity, and 
write l= 1''' -1" .1 If s- s' is not particularly small, 
neither will s- s" be small. So we can develop 

p(s", 1'''; s,1')= p(s" , r' + l; s, 1') 

into a Taylor series in powers of l by keeping the 
dispersion function in the form of p. Substituting 
this series into (6) , applying (4) and (7), and let s" 
tend to s', we obtain 

op(s', 1"; s, 1') 
os' 

1"'1 r-1 

_b. (s' 1") 0 P + Uk ~. (8) 
T ' or: 2T or; 01'£ 

1 T and I are intervals of tbe arguments of the p·function . For instance, H tbe 
function considered is p eS',T'; 8" ,T"), such as in (6), then T=8"-8' , l=7" - r' . 
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H ere, and in Lhe following, a summation will be 
understood whenever an index occurs twice. 

In the second place let us suppose tha t T= S-S" 
is a small quan tity. When we put l= r - r" , we 
may ,,,ri te (6) in the form 

p(S', 1"; s, r)= 

.f-+ooOO dl 1 ••• p (S' , 1"; s" ,r - l) P (s" , 1' - l; T, l). (6a) 

As s" - s' is no t small, we may develop 
p (s ' ,r' ; s" , 1' - / ) P (s" , r - l; T,l ) into a Taylor series. 
Substi tu ting this series into (6a), we obtain after 
integration with respect to dl and applying (4) 
and (7) 

o n 
p (s',1"; s, 1') - 1)(8 ' , r'; s", 1') = - ort [It(s'' , 1') p] + 

,.--, 

02 [ltlk ] 
ori rk 2 p . 

By decreasing indefinitely T, we ob tain 

n ,..--, 
op (s ' ,r'; s, r) 

os 
o [ Ii ( ) ] 02 [ lilk ] ( ) - - . - s,r p +- --, - p' 9 

01 i 7 or i 01 k 2 T 

E quations (8) and (9) are the par tial differenti al 
equations for the changes of p with respect to s' and 
s, r espec tively. 

A par tial differen tial equa tion W can also be de­
rived by an analogous procedure as for p . We star t 
from (5), which can b e written as follows 

J+OO 
W (s,r) = _00 dl 1 ••• W (s- T,r- l)P (s - T,r- l; T,7:) , 

with 7 = S-S' , l= r - 1". The integrand can be de­
veloped in to series, and by using the assump tions of 
Kolmogoroff , we ob tain a t the limi t 7~0 , 

n ,.--, 

oW =~ (w ~)+~ (W lilk) . (10) ot ori Tori ork 27 

The equa tion in this form is called the Fokker­
Planck equa tion. (See Burgers 1941 , Fokker 1914, 
Planck 1917 and T chen 1944 .) 

III. Inversion of Q dispersive phenomenon 

Being given relation (5), we seek a function 
p*(s' , 1"; S, 1') such that for every pair of functions 
W (s' , 1") , W (s,r) connActed by relation (5), we have 
the following rela tion: 

J+OO 
W (s' , r' )= _00 dr[ · . ·W (s ,r) p*(s' , r' ;s , r). (ll) 

If such a function is found , Lhen p* is called th einverse 
di persion juncti on. Now, in gener al, i t is probable 
t hat such an inverse function will not a lw3,Ys be 
po itive. As an example let us take a di crete sys­
tem in which th e in tegral is replaced by a urn : 

i, j = 1,2, . . . N, (12) 

wi th th e conditions 

for all values of j, 

and 

We can solve this system of equations for the vari­
ables Wj wh en Wi are given . Let D be the deter­
minant of the P i j 

(13) 

L et us denote_by DiJ i ts cofactor. Then we have 

so that for every arbitrary distribu tion of th e Till's 
th e rela tion is inverse . 

N ow there exists tb e known relation 

As Pik '?:. 0 for all i and lc , it is no t possible th a t always 

DtJ > O 
D- ' 

When nega tive values occur among the DijjD , these 
quantities cannot be considered as determining a 
probability. Thus we cannot use them to answer 
the ques tion: What is the probability that a par­
t icle that is situated a t l' at the phase s (the variable 
s may be the time) , was situated at 1" a t a previous 
phase s' ? 

As an example we consider a case of travels from 
the cities 0 1 and O2 to the cities C1 and C2, For 
each city of start, we can define the probability of 
a t ravel to tX or O2 independently of the number 
of travelers leaving the ci tie~ of start , e. g., 
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0.6 to 0 1 , 

0.4 to 0 1, 

0.4 to O2 , 

0.6 to O2 , 

Thus relation (12) can be written into the equations 

W\ = 0.6 W 1+ 0.4 W2} 

W 2= OA W1 +O.6 W 2 ' 

(15) 

where WI, W 2 are numbers of travelers in cities of 
start 0 1 and O2, and WI If'2 are numbers of travel­
ers in cities of destination 0 1 and O2 , 

Inversely we can solve the system of (15) for the 
variables WI , W 2 in terms of WI, W2. We have 

W 1= 3W I -2 ij 2 } 

W 2=-2W1+3 W2 
(16) 

It is seen that p* (coefficients of WI and W~) presents 
also negative values and hence cannot be considered 
as determining a probability. 

The dispersion function p as governed by the 
differential equation (9) has the task of bringing the 
distribution at a certain initial phase s' into a broader 
distribution at a later phase s. So, on the other 
hand, in the inverse problem, we must expect a 
narrowing of the distribution. However, such an 
inverse dispersion in the narrowing transition of 
distributions cannot exist without having certain 
negative values either in the inverse dispersion 
function or in the distribution function. From the 
above considerations we can conclude that in a 
stochastic world, we can find a law of transition 
(dispersion function) that tells us about a distribu­
tion of the future from a distribution of the past. 
However, for someone living in the inverse world 
where all events present in the wrong way, it will not 
be possible to find an inverse law of transition (in­
verse dispersion function) that tells about a distri­
bution of the past from a distribution of the future 
if the law of transition and of distribution are to b~ 
positive. 

In order to answer in the inverse problem the 
question: what is the preceding distribution from 
which a:n observed distribution has originated, we 
may wnte: 

for the case of travels: 

for a discontinuous system in general: 

where 

and for a continuous systcm: 

W(s' , 1" )= f _+roro drl ... W(s, r) p' (s ', r'; s, r), 

where 

P'(s' 1'" s r)= p(s' r" s 1') W(s',r' ). (17) 
, , , '" W(s, r) 

We may consider p' as the probability for a particle 
~o hav~ ~tar.ted from dr' . at the phase s', being given 
Its posltlOn m dr, at the phase s. In a certain sense 
the function p' plays the role of a kind of invers~ 
function of the dispersion function p. However 
p' is dependent upon the distribution really present' 
and has no independent meaning such as was th~ 
case :vith p. p' :w~l b~ called retrograde dispersion 
functwn. By ehmmatrng p from (5) and (17) it is 
seen that p' satisfies the condition of normalization 

f +ro 
-ro dr'l ... p'(s',r'; s, r) = 1. (18) 

Let us now specify the above considerations of 
retrograde dispersion for a chain molecule in the 
description of the intramolecular interaction. Con­
sider a ehain A oA s' As with origin at Ao. BeinO' 
give~ the position .r' of A s" the probability for th~ 
partIcle A. to be sItuated between ri and ri+dr/ is 
by definition 

p' (s', 1"; s, r) drl dr2 dra. 

Since the chain is symmetrical, we can take the 
form 

p'(s',r'; s,r)= W(s- s',r-r'), (19) 

depending upon the difference s-s' and 1'-1". 

Hence (17) becomes 

p'(s',r'; s,r)= W(s-s',r-r') W(s',r') /W(s,r) (2 0) 

This relation means that the probability 
p' (s' , 1"; S, 1') dr'l dr' 2 dr' a for the particle A., to be 
situated in dr\dr'2dr'a, being given the position 1', 

of the particle As from Ao, is equal to the product 
of the following two probabilities: 

(a) The probability W(s',r') dr\ dr'2 dr'a for the 
particle A" to be situated in the region between r'j 
and r'i+dr', from Ao. 

(b) The probability W(s-s', 1'-1") dr'l dr'2dr'a for 
the particle As' to be situated in the region between 
1'/-1"; and 1'i-(r'j+d1"j) from As, with AoA,=1'j. 
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This Jatterprobability, argued from a symmetrical 
inver ion of the chain, assures the condition that the 
particle Ao is situated at 1'i from As. By taking 
the product of (a) by (b), we have 

p'(s' ,1"; S,1') d1"I ... = 

constant W (s-s',1' -1") liV(s', 1" ) d1"l .. . 

This cxpression becomes identical to (20) after de­
termination of the constant by the condition of 
normalization (18). 

In the study of intramolecular interactions of long 
chain molecules, the above r etrograde dispersion 
function is in general not sufficient. We have to 
know, in general, the probability of the distance 
between an arbitrary pail' of particles, say Aj and Al 
which none of them are ends of the chain. In the 
following we shall show how such a more complicated 
retrograde dispersion function can be constructed on 
the basis of the simple one obtained in (20). 

Let us now consider a chain AoAjA,As. Being 
given the distance 1' ; of the particle A s from the 
particle Ao, we ask the probability 

p' (A jA I , h ; s,1') dh 1 ••• 

for the particle Al to be situated in the posltlOn 
between h; and ht+ dht from A j • It is the product 
of the following probabilities: 

(a) Both ends j andl must be subj ected to cer tain 
conditions, namely A j must be in the position between 
At-ht and At+ dAt- h; from Ao with probability 

W(j, A- h) dAI ... 

(b) Al must be in the position between 1't - A; and 
ri- Aj-dAi from A. with the probability 

W(s-l, 1'- A) d X1 • ••• 

The product of the above probabilities integrated 
with r espect to X gives 

p'(AjA" h; S,1') 

=const.J_+",'" dAI ... W(j,A - h) W (s-l,1'- X), 

f+'" W (l- j, h) . . . 
= _'" dA I . .. W (s,1') p(l-],h, l,A) p(I, A, S,1'), 

using (17) and (19), 

(l . 1 ) W (l- j, h) . (6) 
=p -], I~; s, r W(s, 1') , usmg . (2 1) 

According to (17), the right-hand member is 
p'(l-j, h; s, 1'). Hence 

p'(AjA"h; s,r)=p'(l-j,h; s,r). (22) 

- ---------

Thi shows that the retrograde dispersion function 
for an intermediary pair of particle AI and A j is 
equal to the retrograde dispersion function for the 
end pair of particles A I - f and Ao. Thus in the 
following section, b y studying the nearest neighbor­
hood dispersion function, we can consider only the 
latter dispersion function for the end pair of particles, 
by putting s= l-j and h= r'. 

I t will be useful to calculate the p'-function of 
(22) from (21 ) for a W-function of the Gaussian type: 

(23) 

with K2 = (3 /2b2) (l /s), and b= length of one link. 
The use of (1 9) and of polar coordinates transforms 
(21) into the following formula after integration with 
respect to the polar angles 

=~!!: [e- ,..2(h - a)2_ e -,..2 (h+ a)2j 
-r; a ' 

(24) 
where 

2 _ 3 s . - ' (l . / 
}J. - 2b 2 (l-J)(s- l+j)' a - 1 -J) s. (24a) 

This formula is an extended form of a formula ob­
tained by Kuhn, Ktinzle and Katchalsky (1949) for 
the special case of j=O. 

IV. Nearest Neighbor Probabilities 

In the study of the mechanism of interaction, we 
have to know not only the distribution of the distance 
between two arbitrary particles, but also often such 
a distribution as they become nearest neighbors. 
For discrete particles that are totally independent 
from each other, H erz (1909) h as obtained a formula 
for the nearest neighbor distribution functions in 
terms of the distribution function. Applications 
have been made by Jaffe (1940) to the study of inter­
actions of charged par ticles. Applications to linked 
particles, such as is the case with a chain molecule, 
has been made by Simha (1948), in connection with 
the problem of volume effect. However , such a 
direc t application of Herz's formula to the density 
distribution of linked particles yields only an ap­
proximate result. In fact the differen t particles 
on the chain behave differently as neares t neighbors, 
according to their order of linkage, in such a way 
that the pure randomness of the particles, lying in 
the indiffer ence of order, will be distorted. It is 
the purpose of the following lines to study the 
nearest neighbor probabilities for such mutually 
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dependent particles. Herz's method will be extended 
to the calculations of the nearest neighbor function 
of the retrograde dispersion function. 

Consider again a chain OAs, A s (s>s') with origin 
of coordinates at 0 , the case of spherical symmetry 
being considered. Being given the scalar distance l' 

of the particle A s from the origin, the probability for 
the particle As' to be situated in the region between 
1" and 1" + dr' is 

2 
p'(s',r'; s,1') 47T'r' dr' , (25) 

where p' is the retrograde dispersion function. Its 
nearest neighbor function will be designated by P'l. 
It is the prop ability for the particle A s' to be situated 
in the region between r' and 1" + dr' , as a nearest 
neighbor to the particle 0 , being given the distance 
OAs=r of the particle As. It can be calculated by 
taking the product of the following two probabilities. 

(a) the probability that the particle As' is situated 
at a distance between 1" and 1" + dr' from 0, being 
given the distance OAs= r for the particle As; 

(b) the probability that no nearest neighbor is 
situated in t.he region between 0 and 1". 

The probability indicated in (a) is given by (25), 
but owing to the fact that As' cannot be situated in 
the region between 0 and r', the probability in (a) 
will be increased to the value 

(26) 

On the other hand, the probability of finding any 
one of the s particles as a nearest neighbor to the 
particle 0 in the region dr' is 

In order to simplify the writing, ,ve put 2 

T = ± __ -=,Po.,.'_4_7T'_r_,_2 __ 

s'~ l 1 i r' d' 4 ,2 , - r 7T'1' p 
o 

d 8 8 " 

= --d'~ In ( l - Q)= -~R 
r 8'=1 8'=1 

R = ln(l-Q); 

then (28) can be written in the simpler form 

UJ' 4 7rr,2 dr' = T (1-i r
' dr' 4 7T'r,2 UJ' ) dr' (28a) 

An integration gives the solution under one of the 
following forms: 

2 8 

Gl4 7T'r' = T IT (l-Q) (29) 
s' = 1 

f" - Jo dr'T = T e 0 . (29a) 

It can be shown that UJ' satisfies the condition of 
normalization. ,V' e write from (29a) 

, 
s " ~ 1/ 

UJ' 41l'r'2= - ~ R e" - 1 " 

8'=1 

By integrating with respect to 1", we have 
8 

(r' 2; 1/ Jo d1"4 '1rr' ZGl= 1-e8 ' ~ 1 " 

(27) By increasing the upper limit indefinitely, we obtain 

say denoted by Gl 47T'r, zd1" and the probability that no 
nearest neighbor is situated in the region between 0 
and 1" is 

(27a) 

Hence by taking the product of the probabilities 
in (26) and (27a) and using (27), we obtain the fol­
lowing integral equation for UJ' 

2 
8 p' 47T'r' dr' 
~ . , 
8'- 1 ( r 2 

- 1 - J 0 dr' 47T'r' p' 
(28) 

So'" dr' 47T'1"2 Gl= 1. (3 0) 

This condition means that one of the s particles at 
least must be a nearest neighbor to the particle 0 
in the totality of the domain. 

The function p\ gives the probability of the dis­
tances between two nearest neighbor particles that 
are linked on a chain. If the particles are not linked 
and behave like gas molecules, we can define a dis­
tribution W(r) of the distances l' between two 
particles, and a distribution WI(r) when the particles 
are nearest neighbors. For this latter case, the 
nearest neighbor distribution WI can be obtained 

d 
, (.) means d?" 
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-from (29) by changing p', P'l into W /s, WI /s, re­
pectivcly, Wand liVI being now independent of s'. 

So for cliscreLe particles formula (29) degenera tes to 
t he formula of Herz (1909) : 

(3 1) 

,-\Th ere s is the number of such independent particles. 
In the study of intramolecular interactions, i . e., 

the in teractions between the different parts of OM 
giant chain, the configurations of any particle of the 
chain are wholly controlled by the dispersion func­
tions p, p' , and P'l as studied above. On the other 
h and, in th e study of intermolecular interactions, 
i. e., the interactions between two particles belonging 
to two difl'eren t chains, we might ask: what is the 
probability for the particle A " , belonging to one 
<:hain, say chain B, to be situated at a distance 
between 1" and 1" + ell" from the origin 0, at which 
distance it b ecomes the far thest one of all particles 
·of B , and t llCrefore becomes the most exposed Lo 
interactions with sUlTounding chains? Such prob­
abilities, as will be indicated by t he subserip t "2", 
c. fl. liV2, P'2 , will be called "farthest neighbor 
probabilities", in contrast with near est neighbor 
probabilities. The farthest neighbor probabilities 
can\ be calculated in the same way as for the near­
est neighbor probabiliti es, except that the limits 
(0,1") have to be changed into (1" , GO ). Followi.ng 
(29a) the result is 

, ~ In(l- r~ dr' hr,2 p' ) , p ,'- 1 Jr 
p 2= ' 00 e . 

1 - J dr'4 7rr, 2z/ 
r ' 

(32) 

v. Intermolecular Interactions 

The intramolecular interaction, i. e. between the 
different paTts of one giant ehain molecule, is com­
parable to a kind of internal repulsion within the 
chain molecule. Therefore an expansion of the chain 
can be expected. On the other hand, the in ter­
molecular interaction, i. e. between a number of 
separate molecules, is a kind of external repulsion 
exerting on every molecule, and will cause a com­
pression of the chain. As indicated by Simha, the 
observed anormality of the variations of viscosity 
with concentration in connection with the solvent 
effect could point to a shrinkage of two coil-mole­
cules on approaching each other at concentrations of 
a few tenths of one percent. 

The perturbance on the distribution function 
W (1'), by those interactions, can be calculated on the 
basis of the retrograde dispersion function, nearest 
neighbor and farthest neighbor functions derived 
above. The perturbance by intermolecular inter ­
actions will be discussed her e for the following very 
elementary case. 

Let us consider the one-dimen ional interaction of 
two chains!1 and B, which are supposed to move only 
along the d ll"ectlOn Oy. We suppose that the chain A 
is fixed at the end A o, and that the chain E is fixed 
at the end E o, the point A o being taken as th e oriO"in 
of coord inates. The particle of E, which forms the 
v?lume i?-indrance to A, is the ~arthest particle of E, 
of coordmate c. Of course c I S a random variable 
having a certain distribution that can be calculated 
from the considerations given in section IV concern­
ing the farthest neighbor probability function . This 
forms a difficult detail in which we shall no t en ter 
here, bu~ :;tssume on~y that we eould find an efject?'ve 
fixed pOSItIOn c formmg a fixed obstacle to the motion 
of A . Then the distribution of any particle A , of 
the chain A will be modified and becomes: s 

W ,(s' ,y' )= W(s',y') + W(s',2c-y' ) (33) 

where W (s ' ,y' )ely' is the distributi on free from 
obstacle, W (s ',2c-y' ) ely' is the additional distribu tion 
reHected back by the obstacle, and W r(s',y' ) dy' is the 
total distribu tion . 

It is easy to verify that the total distribu t ion sat­
isfies the normalization cone! i tion 

J~ oo ely' W r (s ' ,y' )= 1 

if the free distribu tion is normalized to uni ty: 

J+oo 
_00 dy'W (s' , y' )= l. 

Let us define: 

- J +oo J +oo y' = -00 dyy'TV(s', y' ); y' 2= _ 00 ely'y'2liV(s', y' ) 

and 

y'r= J~oo ely'y' W ,(s',y' ); Y'r2=J~ 00 ely'y' 2W r(S',y') 

as the mean distance and the mean sq uare distance 
between the particles A o, A s' of the chain A, in the 
free configuration and in the restricted configuration 
respectively. With the usc of (33), and for a fre~ 
distribution 

K liV (s' , y' ) ely' = .;; e -<2y '2 ely' 

with K2= (2 sb2)-1, b= length of one link, i t IS found 
tha t : 

y' = O; 
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The value of y' r 2< y'2 indicates a compression of the 
chain due to intermolecular interactions. 

The distributions for all particles, such as A s' , with 
s' <s, are modified by intermolecular interactions 
in the manner indicated by (33). This is true, of 
course, only when the intramolecular effect is not 
considered, for instance the volume overlapping in 
one molecule must then be allowed. Otherwise the 
modifications of the distributions for all particles 
s' <s will influence the distribution W r(s,y) dy of the 
particle As. The study of such an intramolecular 
effect will involve the retrograde dispersion functions 
and the nearest neighbor probability functions , which 
determine the distribution of chances of interactions 
between one arbitrary pair of particles. Such com­
plications form again a difficulty that remains to be 
in ves tiga ted. 
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