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On the Mean Duration of Random Walks'

Wolfgang Wasow

The mean duration of a discrete random walk in a bounded domain is studied for

general transition probability functions.

The mean duration satisfies an integral equation

which, for small mean step length, can be approximated by an elliptic differential equation.
This leads to explicit inequalities for the mean duration in an important special case.

I. Introduction

This paper is concerned with random walks in a
bounded open domain @ in n-dimensional Euclidean
space. The walk ends when the moving point leaves
G for the first time. The nature of the random
walk is characterized by the transition distribution
function F (@, P). Here P and @ are points of the
space, and I (@, P) is the probability that a point
at P will, after one step, be in the rectangular sector
of the space in which all coordinates are less than
those of Q.

By duration of a random walk we mean the total
number of steps of the walk, including the one on
which the point leaves G. The subject of this paper
is the mean duration; that is, the expected value
W (P) of the duration as a function of the starting
point P.

It will be shown that—under very general condi-
tions—MW (P) is the unique solution of the integral
equation (9). In section III assumptions are
introduced, which, in a sense to be specified below,
make the occurrence of all but very small single
steps very unlikely. It will be shown that under
those assumptions W (P) differs very little from the
solution of a certain elliptic differential equation.
This differential equation involves only the first and
second moments of F (P,)). The method used in
these sections is closely related to that of Petrovsky
=
For a particularly important class of random
walks this differential equation reduces to a special
case of Poisson’s equation. For such random walks
it 1s possible to obtain numerical inequalities for the
mean duration. These estimates confirm the plausi-
ble conjecture that the mean duration does not grow
very fast with the number of dimensions, a fact
that is of interest in connection with the attempts
to wuse stochastic sampling procedures for the
numerical solution of partial differential equations.

If the moving point performs a continuous
Brownian motion rather than a discrete random
walk, the mean duration satisfies exactly a Poisson
equation. This is an easy consequence of the fact
that the fundamental solution of the differential
equation for diffusion in the presence of absorbing
boundaries can be interpreted as the probability
density that a Brownian particle starting from a

1 The preparation of this paper was sponsored (in part) by the Office of Naval
Research.
2 Figures in brackets indicate the literature references at the end of this paper.

given point P, at time 0 be at a point P, at time ¢
without having met the boundary. (See, e. g.
Smoluchovski, Drei Vorlesungen Uber Diffusion,
etc., Physikalische Zeitschrift 17, p. 568 to 570
(1916), or P. lLevi, Les processus stochastiques,
p. 272 to 273 (Paris, 1948)). It has been pointed
out to the author by M. Kac that this fact could be
used as a starting point for an alternative treatment
of our problem based on the theory of probability
measures in function space.

In sections I to III, where the n-dimensional case
differs from the two-dimensional one only by the
need for more cumbersome notation, we shall give
the arguments for two dimensions only.

II. Preparations; Lemmas on Integral
Equations

The transition distribution function /' (@, P) is
assumed to be bounded and Borel measurable for
all P and @ and a distribution function with respect
to . In order to guarantee that the moving point
leaves the domain G with probability one we intro-
duce a hypothesis which will be called assumption
(A).

Assumption (A). There exist two positive num-
bers » and s, independent of P, such that the proba-
bility is at least s that the abscissa of the moving
point be increased by » or more in one step.

We refer to [4, p. 431] for the simple proof that
the probability of leaving @ is indeed one, if assump-
tion (A) is satisfied.

Denote by F,, (@, P), m=1,2, .
functions defined by

F,(@Q, P)=F@Q, P)

. ., the iterated

Fo(@, P)= f For(Q, RF(R, P,

Here, and in the sequel, the Stieltjes differentials
are formed with respect to the first argument, and
an integral without explicitly indicated domain of
integration is to be extended over the whole space .

F, (Q, P) is the probability of a point being in the
domain z < zq, y<y, after exactly m steps, starting
from P and having all of its intermediate positions
in ¢. Here (2q, y9) are the coordinates of . In
consequence of assumption (A), and the bounded-
ness of @, there exists a positive integer m and a
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positive number ¢, less than one, such that

];(IF,,L(Q, P)< e, for all P in @. (1)

We shall need the following lemma concerning
imtegral equations formed with distribution func-
tions. For a proof, we refer again to [4].

Lemma 1: 1f assumption (A) is satisfied, there
exists exactly one bounded function «(F) which
solves the integral equation problem

Su(QdF(Q, P) in G
u(P 2{ (2)
Y(P) outside @,

where ¢(F) is a prescribed bounded and Borel meas-
urable function. This solution can be found by
means of successive iterations starting from any
function that is equal to ¥(2) outside @, and bounded
and Borel measurable in ¢.

Corollary: The solution w(F) of (2) satisfies the
inequalities

o.Lb.y(P)<u(P)< 1. u.b. y(b). 3)

Proof of the corollary: Take as initial approxima-
tion to u (P) the function u, (), which is equal to
g.L.b.y(P) in ¢. Then

w(P)=Su(QdF(Q,P)>g.1.b.y,

and, by induction, u,>g.l.b.y. A passage to the
limit proves the first one of the inequalities (3).
The proof of the second inequality is analogous.

Lemma 2: let ¢(P) be nonnegative and Borel
measurable in @, and assume that assumption (A)
is satisfied. Then the integral equation

u(P)= j’auw) dF(Q, )+ o(P) )

has a unique bounded solution in G. 1If ¢,(P) is a
nondecreasing sequence of nonnegative functions
converging to ¢(P), and u, (P) is defined by

Ug=0, 1 (P) = fu (QdF (Q,P)+¢u(P), (5)

then
U(P)=lim u,(P) (6)

n—wo

is the solution of (4). The solution %(P) is non-
negative.

Proof: The sequence u, (P) is proved to be non-
decreasing by means of mathematical induction,
using the relations

s (P)— g (P)= fgm@ dF(Q, P)20,

and

1 (P)— 1ty (P)— j p [t (Q)— 1t (] dF (Q, P)+
¢n 11 (1))““4’71 (1))

In order to show also the boundedness of the se-

quence u, () we iterate (15) and find

unH(P):J;qunﬂ(Q) dF (Q,R)dF (R, P)+ ¢ (P)
— Jaun—l (Q)dQ IifG’F(Q’ ]f)dl“(l{, P)]+ o2 (]))

- f U (QAFQP) 9 (P,

where
¢, (P)ZJ én A(QAF (Q,P)+¢,(P)<2 1. u.b. o).
@

Repeating this procedure m times—assuming n>m
—the integral equation
=]

U 1 (P)= J i (QAF (@ )+ 9 (P)

is obtained, where
Y (PY<(m-+1) 1. u. b. ¢(P).

If L, denotes the 1.u.b.of u,(P) in ¢ we have
therefore, using (1),

L, <ceL, ,+m-+1)1.u. b. ¢(P)
<eL,+(m-+1) 1. u. b. ¢(P),

hence
L,<(1—e¢)"'m 1.u.b. ¢(P).

The sequence u, (P), being bounded and nondecreas-
ing has therefore a limit, and this limit satisfies the
integral equation (4), since a passage to the limit
under the integral sign in (5) is legitimate.

The uniqueness of the solution follows by a stand-
ard argument from the uniqueness of the solution
of the corresponding homogeneous problem. The
uniqueness of the latter is assured by lemma 1.

Corollary: Equation (4) has a unique solution,
even if the assumption that ¢(#) be nonnegative is
omitted.

Proof: Let ¢ be a negative lower bound of ¢(P).
Lemma (2) can be applied to the integral equations

u, (P) szul (QdF (Q,P)—¢

wa (P)= faux@dm@, P)+o(P)—¢
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w(P)=1y(P)—u,(P) is then the solution of (4).
Lemma 3: 1If ¢ and $ are constants such that

¢<o(P)<$pin G,

and if W(P) is the solution of

W(P)— f W(QAF@Q,P)+1,

then the solution of (4) satisfies the inequalities
SWEP) SuP)<sW(P). (7)

Proof: The function w(P)=¢ W (P) is the solution of

T(P)= f WQIFQ,P)+F.

Subtracting (4) from this we see that w(P)—u(P)
is the solution of a similar integral equation with
»—o(P) as nonhomogeneous term. From lemma
2 it follows that u(P)—u(P) is nonnegative. The
other inequality of (7) is similarly proved.

III. The Integral Equatian for the Mean
Duration

Let p,(P) be the probability that the duration of
a random walk starting at P be exactly n. Because
of the remark following the assumption (A),we have

SmB=1, (8)

if we assume—as we shall—that assumption (A) is
satisfied.
For a point outside ¢

Pa(P)=60,(P not in G)

where 4§y, is Kronecker’s symbol.

] The expected
duration of a random walk is

by definition—

W (P)= 33 np,(P)

if this series converges.
duration is infinite. We shall prove

Theorem 1. If assumption (A) is satisfied, W(P)
is finite and is the unique solution of the integral
equation

Otherwise, the expected

WP)= jG W(QAF(Q,P)+1. ©)

Proof: 'The probability p,(P) satisfies the rela-
tion

PrilP)= [ pu@F(@ P)nz0.  (10)

Let
n

W (P)=2_ vp/P),

rv=0

then we obtain from (10) the relation

n-41
Wosn(P)= f Wa(QAF (@ P+ 3 p(P)

Reference to lemma 2 completes the proof.

If F (Q, P) is a discrete distribution with a finite
number of discontinuities, and if the position of these
discontinuities is independent of P, then the integral
equation (9) reduces to a difference equation. The
simplest cases can be solved explicitly; see, e. g.
[3, p. 286.]

IV. The Asymptotic Differential Equation

In many applications the steps of the random walk
are likely to be small. In order to describe more
precisely the sense in which this statement is to be
understood we assume, following Petrovsky, that the
transition function depends on a small parameter
w in such a way that the following assumptions are
satisfied.

Assumptions (B). Denote by a; (P, ), by (P, u),
(1, k=1, 2) the first and second moments of ¥ (), P)
about the point P. Then

a;(P, u)=c; (P) u+o0 (n)
bir (P,)=Bix(P) u+ o0 (u).

The functions o(x) may depend on P, but they are
to have the indicated order wniformly in G. The
a; (P) and By (P) are assumed to be in class C? in
(G5

Assumption (L). Let K,(P) denote the circle
P <r, with center at P. Then

PQF (Q,P)=o0 (n),

E-K,;(P)

here 0 (x) depends on P and r. The relation is to
hold uniformly for P in the closure of @, for any
fixed »>0.

In the applications g may measure the smallness
of the mesh, if the walk takes place in a lattice, the
smallness of the standard deviation, if the transition
distribution is normal, the smallness of the time
intervals between observations, if the walk is actually
a motion in time, ete.

The definition of the i is readily seen to imply
that Bi1 Bza—B12>0. We require, beyond this,

Assumption (E). In G and on its boundary,

BuBz—Bi>0.

This assumption will enable us to make use of the
existence theorems in the theory of elliptic differential
equations.
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Finally, we have to require a certain degree of
smoothness of the boundary € of G. In particular,
our results remain valid for polygonal domains.

Assumption (S). C has a continuously turning
tangent.

This restriction can be weakened. The necessary
arguments can be found in [4, p. 438].

We shall show that the function w=u W remains
finite, as p—0 and converges to the solution of the
differential problem

Z[V]+1=0in @
V=0onC (11)

where,

LWV=5 BuVert-BiVes 3 bVt Vit ar Vi
(12)

Because of assumption (E) the differential problem
(11) is elliptic and possesses in G a unique solution.

The basic idea of the proof is to show that V
satisfies an integral equation little different from the
one for W. 1In order to avoid extraneous difficulties
near the boundary (' it is convenient to replace
V(P) by a slightly different function V;(P) defined
in a larger domain G’’. This can be done by con-
structing a twice continuously differentiable mapping

o' = f(x,y;0),y’'=9(x,y;0),(z,y in G)

which is continuous in é, for §>0, together with its
first and second derivatives with respect to z and v,
and has the following properties: (a) It reduces to
the identity for 6—0. (b) It is, for all 4, the iden-
tity transformation in a subdomain G’ of G that
tends to G as 6—0. (c) It maps @ into a domain G”
containing @ in its interior for 6 >0.

For the explicit construction of such a mapping
with the help of assumption (S) we refer to [4].

If we define V; (P) in G by

Vi@, y )=V (z,y),(z,y in @)
then this new function is defined and twice con-
tinuously differentiable in G”. It tends to V(P),
uniformly in G together with its first and second
derivatives. We extend the definition into the whole
plane £ by setting
Vs(P)=0in E—G".

In order to estimate the integral

s f Vi(QdF (@, P)

for P in G we denote by K(P,s) a circle about P
with radius 7(5) depending on ¢ but not on P, such
that K (P,6) is in G’” whenever P isin G. We define

T f VidF, J,— f V,dF,
K (P,s) E—-K(P,s)

then J: J1+ Jg.

Now if A is an upper bound of |V;|, for all § with
0<6< 0,

A

e
|_7“2(6) E-E(P,5)

|2 PdF(Q,P).

Hence, by assumption (L),
J2: 0 (M’);

For the calculation of J; we use Taylor’s formula,
for P in G, @ in K(P, §), setting

Vi@=Vi(P)+M[V:(P)+Q[Vi(P]+R[Vi], (14)

where

for fixed . (13)

M[V]=(—=) V:(P)+m—y) V,(P)

QIVI= (((—2)*Vee (P)+2 (=) (1 —1) Vo P)+
(=) V ()]

and
RIVI=Q[VP]—Q[V®P)], Pin K(P, o)
1. e.,
R[V5]=PQ%s (P, Q, 5) (15)
with

lim p(P, @, 6)=0 uniformly for Pin @, @ in K(P, §).
6—0

(16)
In these formulas z, ¥y and £, » are the coordinates
of P and @, respectively. We now integrate (14)
termwise with respect to @ over K (P, 6) and discuss
the terms separately. We have, e.g., by assump-

tion (B),

f (¢—a) dF = peu+0 (W [ (¢—2) dF,
K(P, ) JE-K (P, )

but

1
Sr—(é—)o(“).

J (¢—a)dF
E—K (P, )

by assumption (L), and hence

f (=2} dF = pont-o(u), for fized & (17)
JK(P, )

Similar arguments apply to
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f dF, J (n—1y)d F, etc.
Jr®, s Jr®,

j RIVildF= py(P, 8)0(u)
K (P, )

Also,
(18)

by virtue of assumption (B). Here p,(#, d) tends to
zero, uniformly in &, as 6—0, because of (1.6),
and 0(g)/p remains bounded as §6—>0. Formulas

(1.3), (1.7), (1.8) and the formulas forJ dF,

K(P,5)

f (n—y)dF, ete., analogous to (1.7), when

JKr @,

applied to (1.4), yield
J=Vs(P)+uL[Vi]+ pi(P, 6)0(s)+0(n).

Now let e >0 be assigned arbitrarily (but less than
A), and choose a 8, (0<6<d), so small that the fol-
lowing inequalities hold:

(19)

(a) |L[V5]+1,<e¢/24A1in G (20)

This is possible because of (11) and the properties
of V; as described above.

(b) |o1(P, 9)0()] < pe/24 A 1)
Here the remark after formula (18) is used.

() |Vi—V|<;in G (22)
(d) Vi< {inG"—@ (23)

This last inequality is the only point where the
boundary condition in (11) is needed.

After 6 has been fixed in this fashion we choose
wo>0 so small that the o(u) in (19) satisfies the
inequality

lo(u)| <ue/24 A in G, for [ < p. (24)

From (20), (21) and (24) it follows that (19) can be
written

[ Vi(Q) dF(Q,P)=Vi(P)—pg(P,u),  (25)

where

(P, W) —1|<e¢/8A for Pin G, [u|<p.  (26)

For the comparison of V5 with pW we split V;
into
Vi= VO + V2,

where

J. Vam(lF: Vﬁu) —udg, V.su) —=01in E—@G (27)
G

f V®dF=V®in G, V®=V,in E—G. (28)

The integral equations (27) and (28) have unique
solutions, by the corollary to lemma 2, and by
lemma 1, respectively. If we apply lemma 3 to
(27), it follows from (9) and (26) that

€ r e 170 S 7
k(1=gq) Wy su (1455w, @)

Next we apply the corollary of lemma 1 to (28)
and use the inequality (23). This shows that

Vel (30)
The inequalities (29) imply
pW—VPl<= (31)

In fact, we have, for e <4A,

1 €
1—6/8AS Y|

and, therefore, from the first inequality in (29),

#I/V_Vamsiél V. (32)

By the definition of Vi and inequality (30),
ViP|<24.

If this is combined with inequality (32), one of the
two inequalities equivalent to (31) is at hand. The
second inequality is proved similarly.

Finally, adding inequality (22) to (31) the desired
formula

|luW—V|<e, for [u|<po

is proved.
We summarize this result as a theorem.

Theorem 2. 1f assumptions (A), (B), (L), (E), and
(S) are satisfied, then the mean duration W (P) of
the random walk satisfies the asymptotic relation

lim p W(P)=V(P),
w0

uniformly in G, where V(P) is the solution of the
elliptic boundary value problem (11).

V. Bounds for the Mean Duration in a
Simple Case

From the viewpoint of numerical application the
preceding theory is of interest mostly as a basis for
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finding reasonable bounds for the expected duration
There exists several methods for this. But since
this investigation was originally motivated by ques-
tions connected with the “Monte Carlo’” technique
of solving differential equations experimentally by
means of random walks, we shall disregard methods
which amount themselves essentially to an approxi-
mate solution of such a differential equation. A
general procedure for obtaining bounds for W (P) is
given in [2]. Here we shall limit ourselves to the
special case that L[u] is a constant multiple of
Laplace’s operator. Then it is possible to obtain
much more precise information, even if the space is
again assumed to be n-dimensional.
In other words, we require that

ﬁiK(P):k <0ik, ai(P):Oy

The differential problem (11) now assumes the form

i K=1,2, -, n(33)
{)
Av+i:0 in G,V=0onC

where A is Laplace’s operator in n dimensions.
The constant k£ is related to the mean square of

the step length, s?=>7 b,;(P) by the formula
i=1

s*=nuk+o0 (u)

There is therefore a u,>>0 such that for |u|<pu, it is

possible to use s* itself as a parameter u. Without
loss of generality we can therefore set
=Sy (34)
and, hence,
_1 5
= n; (3 0)
and
AV+2n=01in G, V=0 on C (36)

For those arguments below, where we let n ap-
proach infinity we need the further assumption that
w; can be chosen independently of n. Random walks
of the type described above will be called symmetric.

The two most interesting special cases of the type
considered are
(a) The random walk takes place in an orthogonal
net of mesh length & with transition probability 1/2n
in each of the 2n possible directions.

HeI‘e aiZO, biKthéiK/n.

Assumptions (B),
defined by

(L), and (E) are satisfied, if u is

=t (37)

Then (35) and (34) are satisfied.
(b) The transition probability is normal with

ai:(), bi](:Ojé”(. (38)

If we define

p="no?

(39)
formulas (34) and (35) remain again valid.

Theorem 3. 1f the conditions (33) are satisfied
the mean duration of a random walk in an n-di-
mensional sphere of radius a satisfies the asymptotic
formula

(l——l

W R= [1+ e(s)] (40)

where 7 is the distance of P from the center, s? the
mean square of the step length, and lim e(s)=0

n— o
The most interesting aspect of this formula is its
asymptotic independence of the dimension.

Proof: If G is a sphere in n dimensions, the
solution of problem (36) is V=a’—7r?. Theorem 3
is therefore an immediate consequence of theorem
2 and formula (34).

Corollary 1: Lt » be the volume of the n-di-
mensional sphere of radius a. Then the value of
W(P) at the center 0 of the sphere is

1wn<"+2> “1g=2p2/n[1 +e(s)].

Corollary 2:
lim W(0)/n= A(s), where A(s)5=0

n—®

(41)

This follows by a simple application of Sterling’s
formula to the right side of the preceding formula.

If G is not a sphere, the equality (40) can be re-
placed by an inequality, if we make use of the
following lemma.

Lemma 4. Let P be a fixed point in n-dimen-
sional space and denote by {B} the set of all n-di-
mensional domains of constant volume » containing
P in its interior and having a boundary which is
sectionally in Class C®. Let ugz(P) be the value at
P of the solution of the differential problem

Au+1=0 in G,u=0 on C.

Then wuz(P) assumes its maximum with respect to
the Class { B}, if Bis the sphere K with center at P.

Proof: Let r be the distance P and denote by
G5(Q) Green’s function in B, if one argument point
is fixed at . For the sphere K of radius a about
P Green’s function is of the form

Gr(Q)=c(m)[r*™"

where ¢,(n) is a constant depending on the dimension
n. For any domain B we have

—a’™", n>2 (42)
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usP)= j B Ga(QdQ (43)

Denote by vz(P), P>0 the volume of the “level”
surface Gz(Q)=p. For the sphere K we have,

from (42),
vx(p)=cs(n)(p+a?~)"/@=m (44)
We now make use of the inequality
vu(p) <wk(p), for all B of {B} (45)

which is an easy consequence of the classical ex-
tremal property of the capacity of a spherical shell.
(cf. Szegd [6], in particular p. 588. Szegd’s proof
for the three-dimensional case extends readily to
higher dimensions.) From (43) we have

usP)== [ " pdvate)=—[ pouts) J1 " oato)d.

The first term in the right member is zero, for
v(0)=2» and lim pvz(p)=0, since pvx(p)—which

p—®

by (45) at least equals pvg(p) —tends to zero, as
p— o, in consequence of (44). A reference to (45)
now completes the proof of the lemma for n>2.
The modifications for n=2 are trivial.

From this lemma and corollary 1 of theorem 3 we
obtain immediately the following result.

Theorem 4: 'The mean duration of a symmetric
random walk in an n-dimensional domain of volume
v satisfies the inequality

W(P)< n-iT2 (”%2) 50U [14e(s)].  (46)

Corollary 2 to theorem 3 implies that the right
member of inequality (46) tends to infinity with
order n, as nm— =, provided the volume is kept
constant. But an explicit calculation shows that
the increase, for small integers n is slower. In fact,
if we write the right member of inequality (46) in
the form

c(n)v?"s~2[14€(s)],

we have
n‘1‘2‘3‘4‘5}6‘7
|
c(n) .250\.318\.385'.450.5151.578.642

VI, Random Walks in an n-dimensional
Cube

The n-dimensional cube is another domain for
which problem (36) can be easily solved. It seems
intuitively plausible that the value of W(P) at the

center of such a cube will have the same order of
magnitude in 7 as the value for the sphere, given by
(41). This is, however, not the case. We shall, in
fact, prove the following theorem.

Theorem 5: For a symmetric random walk prob-
lem let W2 denote the mean duration of walks start-
ing at the center of an n-dimensional sphere of volume
v, and denote by W¢ similarly the mean duration
for a walk starting at the center of an n-dimensional
cube of the same volume ». Then

lim We/W:=0

but
lim n¢ We/Wi= o, (¢ >0, arbitrary).
n—o
Proof: 1t suffices to consider the unit cube B, de-
fined by |xi[<%, (1=1, - -+, n). The eigenfunctions

of Au in B are

’U/Kl...Kn(xl, oo e

n
’ fln): H CcOSs K1 ’ﬂ'xi,K1;>0, Kz Odd,
=i

and the corresponding eigenvalues are

Ak

n
— 23\ 2
l...Kn—ﬂ' £ 17Ki'
1=

These eigenfunctions are orthogonal. Their norm

1s 27" since
i

1
24 o n
f . II cos®? Kymzyday - - - dax,=27"
—3 -1 i=1
2 2

It follows that the multiple Fourier coefficients
Ck,-- K, of the representation

1:2K1 ...K,Cr,.. . KUK, ... Kn(%- ), (0dd K ... K,)
valid in B, are

ok =(f‘~) (—1><Ki-l>/2/ 1K
" T i=1

If we now substitute for  in Au-+1=0 a Fourier
series

Cg

u:ZKI...KnaKl...KnuKl...Kn(xly 506 Dk

(Odd Kl, « e ,Kn)
comparison of coeflicients shows that

Ng,. ..k, 0K, ... K, =CK,...K,)

that is, the value of u at the center z;=0 of the
cube is

w0y =r~(2) S, ...x, LD KK,
i=1 i=1 i=1

(dd K, . . . ,Ko).
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This n-fold sum can be simplified by means of the

substitution
n -1 © =
(Hm) =),
i=1 0

followed by an interchange of summation and inte-
gration, which is not difficult to justify (see,e.g. [1]

I, p. 331). Then we obtain
o/ 4ANE ® n (_1)(1(.-—-1)/2
w(0)=m 2(;) j; ZKl"'K"i:l—Kie K
Ky, ...,K, odd),
that is
A ERR PR B F ].e—(2j+l)2r}"
- (W) Jo {;:0( b 27+1 G

In order to investigate the asymptotic dependence
of u(0) on n we make use of the formula

2 exp{—aT?+ (@1 + min)/a}

N=—o

Z e—z(m+T)% —

m=—ow
(see, e.g. [5], p. 32), which is essentially the reciproc-
ity formula for the #-function. If we make the sub-
stitution 7'=iy/x and integrate with respect to
7 between 0 and 7/4 we obtain from this formula
the series

:__+¢M__J exp [—(y+mn)?a] dy

for the function
(2j+1)%z

e—
J@)=25 (— 1 G

Jj=0

Setting t=(y +mn/+/z in the integrals above, this be-
comes

e B =(n+3)/ vz
f@=—T4 [

_tzdt}
Ao

¥ o8 it z J
From (48) we conclude

fla)< —g—l— ﬁﬁm e—t? dt=£, for >0

and from the definition of f(z),
f@)y<e™.

Hence,

womer ({14 o]
Srfer(te) amor(te)}

933527—51——3

where e is an arbitrarily small positive number and
¢, and ¢, are constants less than #/4. Therefore

lim u(o) s

n—

_The first part of theorem 5 is now an imme-
diate consequence of theorem 2 and formulas (36)
and (41).

In order to estimate the rate of convergence of
%(0) from below, we observe that

u(0)> 7r‘2<%>nﬁ1f”(x)dx.

In the right member we use the inequality

J@)2 =57 [ " et~

which follows from (48),
inequality

(49)

e~ dt
e ’

combining it with the

© ; 1
—2 2 e
fz e dt<—220 , for 2 >0,

which is readily proved by an integration by parts.
Then we obtain

@z (1~ 82{: -rtne) > 21— 20%) 2 Jo

for 0<z<1; N >0, arbitrary. Inserting this in
(49), we have, finally,

1 -2 n
u(0)> w‘zﬁ) exp [——2nx"]<lx:k——77rllm L b A iy

> const. n'?.

This, in combination with formulas (36), (41), and
theorem 2, proves the second part of theorem 5

VII. Bandom Walks in n-Dimensional
Ellipsoids

In this section we collect some results concerning
the mean duration of random walks in n-dimensional
ellipsoids.

The “oblongness” of such an ellipsoid can be
defined as the ratio of the longest to the shortest axis.
The mean duration of a random walk of the class
considered in the last two sections will be less for a
walk starting from the center of such an ellipsoid
than it would be for a sphere of same volume. The
ratio between these two quantities will give an idea
of the deterioration of the estimate (46) for oblong
convex domains. For certain domains it may even
be advantageous to estimate the mean duration of
the random walk by its value in a circumseribed
ellipsoid rather than by formula (46). We shall
make use of a lemma concerning the arithmetic and
geometric means of n numbers which may be of
some interest in itself.
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Theorem 6. The mean duration of a symmetric
random walk in an m-dimensional ellipsoid with
semiaxes @y, . . ., @, 18

vi'E(P):s—2[1+e(s)]n(1—?::1 Z—)/gl ai (50)

Proof. Tt is readily verified that the solution of
problem (36) in such an ellipsoid is

Vo= (=585

This fact and theorem 2 prove formula (50).

Theorem 7. T1f Ws(P) is the mean duration of a
symmetric random walk for a sphere having the
same volume as the ellipse, then

n 1/n n
Wg(0)/Ws(0)=[1+c¢ (s)] { 1(1,-”} / 71“2a,-’2-
j= j=

(51)

]

Proof: The volume of the ellipsoid is

n
p=x"2T"1! <n—l—% Hla;" (52>
2/ j=

If we divide formula (50) for P=0 by the formula
in corollary 1 to therorem 3, and eliminate » by
means of formula (52), we obtain formula (51).

From now on we shall assume that the oblongness
of the ellipsoid is prescribed. In view of the remarks
at the beginning of this section it is of interest to
investigate the minimum of the right member in
(51) under this restriction. To this end we prove
the following lemma:

Lemma 5: Let t; (=1, . . ., n) be n positive
numbers such that the ratio of the largest to the
smallest has a prescribed value p. Then the
quotient of the geometric and the arithmetic mean
of these numbers will be smallest when

ty=t,= - - - =t,,

=t,; L=t o=+

where 7 is an integer that satisfies the inequalities

x (p)n<r<x(p)n+1,
with
__ P 1
X(p)—;—il_log p.

Proof: Without loss of generality we can assume

tl—_—l, tlSt2S e . Stn, tn:p. (53)
We have to minimize the quantity
n
F(tz, . e ey t,,_l)=j1_11tj/(2tj)" (54)

under the side conditions (53). As a function of
alone, (1<s<n), F' has its only stationary value
when

n
Z t,»—ntszo
j=1

1 n
_n—l {j:l tj—ts}-

This stationary value is a maximum, since F is zero
when t,=0 or t;— «. Hence, as a function of ¢,
alone, /' has no relative minimum and it assumes
therefore its minimum for given values of #;(j4s)
either when t;=t;_, or when t,=t,,;. It follows that
at the minimum of F, the ¢; consist of two groups
such that

ti=ty= - =t tpy1= -+ - =ty 1=t,, 1<r<n—1

the minimum will therefore be among the values of

n-—r

o P
"b(r)“i[r—l—(n—r)p]"’ 1<r<n—1.

We find that ¢(r) has exactly one stationary value,
which occurs at

R A S S

This stationary value is a minimum, for ¢ (r) is con-
tinuously differentiable and positive in the interval
— o r<np/(p—1), it is infinite at r=— o and r=
np/(p—1), and ry lies in this interval. Moreover,
g 1 : :

lim x(p)=§7 x(p) increases with p, and y(«=)=1.

p—1

Hence

5 <re<n.

If 7o is an integer, this is the admissible value of »
for which ¢(r) assumes its minimum. Otherwise, it
is one of the two neighboring integers. This com-
pletes the proof of the lemma.

Corollary 1: TFor sufficiently small p>>1 the in-
teger 7 of lemma 5 differs by less than unity from
n/2. As p increases, so does r. For sufficiently
la/rgc pwe have r=n—1. Also, r is never less than
n/2.

Corollary 2: For n=3 we have always r=2.

Proof: One shows easily that, for p>1,

Y(H2)>1.

Theorem 8: With the notations and assumption
of theorem 7 denote by m(w) the minimum of the
ratio Wg(0)/W(0) for all ellipsoids of given oblong-
ness .

Then
}LI_I,I; {m(w)-[1+e(s)]}=

[x(V&) 213D+ 2(1 — x (V)] (55)
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Proof: Without loss of generality we set

12022 . . . 2y,
hence
ay
W=——"
(7%

We apply lemma 5 to formula (51) with

=0 C

J ] ) )
()
“"(m)‘" '
The minimum of the right side of (51) is then

[1+el@]nar®ma 2= rar?+(n—r)a2=

w—ZT/n

[14e(s)].

P r
2L R
n T n

As n— o, r/n—x(p)=x(vw), and formula (55) is
at hand. Theorem 8 shows that for sufficiently
large n and w>1

m(w) <o ) 1

On the other hand, m(w) does not tend to zero as
n— . For large n, random walks starting from the
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center of any ellipsoid of prescribed oblongness are
on the average longer than those in n-dimensional
cube of same volume. If 7 is kept constant for all n
in (56), it represents the ratio W,(0)/W.(0) for
ellipsoids of given oblongness » of whose axes have
maximal length while the remaining n—7» have
minimal length.  For this type of ellipsoids
Wg(0)/Ws(0) tends to 1 as n—> . The correspond-
ing random walks are, therefore, on the average
longer, for large n, than for ellipsoids of the minimal

type.
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