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Calculation of

Spatial Distributions by Polynomial Expansion '

Lewis V. Spencer and U. Fano

The expansions of the spatial distribution of X-rays in suitable systems of polynomials

appear to converge rapidly.

Calculations are performed for various source geometries in an

infinite homogeneous medium. The surprisingly good convergence of this method of calcu-
lation is discussed with a view to its possible use in a variety of problems.

I. Introduction

Theoretical work at the National Bureau of
Standards on the propagation of X-rays through
large masses of homogeneous materials has so far
been directed primarily to the study of extremely
deep penetrations [1, 2, 3].> In the complementary
case of shallow penetration it was thought that a
straightforward calculation of the effect of successive
Compton scattering processes would prove con-
venient. The intention in this paper is to present
a different method of calculation that can be carried
out conveniently for moderate penetrations (up to
10 to 15 mean free paths of the primary radiation)
and that relies on appropriate application of con-
ventional physico-mathematical techniques.

The propagation of X-rays through an infinite
medium is governed by the transport equation

A
u-grad N(r.u,\)= —p.()\)]V—FJ AN kN, N)

du’ —;—T 6(1—u-u'—N+N)N(r,u’ \)+source
47
(1)
where

N(r,u,\) is the density of photons of wavelength
\ (in Compton units), at the point r traveling in the
direction w per unit solid angle; w()\) is the total
narrow beam absorption coefficient; £(\,)\) is the
Klein-Nishina differential coefficient for Compton
scattering with a wavelength change from ) to \;
and é(z) 1s Dirac’s delta-function.

It is widely known from the study of transport
equations of type (1) that successive moments of
the space distribution NV are related by a recurrence
relationship. The zero-th moment, that is, the
simple space integral of N, has already been calcu-
lated numerically in a number of sample cases
[4,5]. A few more moments can be calculated
numerically without excessive labor by manual
operation. Automatic computers might prove use-
ful for the same purpose.*

1 Work supported by the Office of Naval Research, Mathematics Branch.

2 Figures in brackets indicate the literature references at the end of this paper.

* An extensive program of applications is now in progress under the sponsor-
ship of the Atomic Energy Commission, New York Operations Office.

It is also widely recognized that a knowledge of
the moments of a distribution function enables one
in principle to reconstruct the function itself. How-
ever, little effort seems to have been applied along
this line in the study of X-ray or neutron diffusion
problems, presumably because the method was not
expected to prove convenient. Actually, the mo-
ment method can be used very conveniently to
obtain rapidly convergent expansions of the distri-
bution function in suitable polynomial systems.

II. General Discussion of Polynomial
Expansions

Consider, for simplicity, a distribution function

[ of a single space variable x, which ranges from

—® to + «; fis assumed to vanish sufficiently
rapidly at both ends of this range. To obtain a
polynomial expansion of f, a suitable weight func-
tion w(x) is first chosen that vanishes at -+ o.
One then chooses a succession of polynomials

Po, pi(@), . . . pa(x) , which has an adjoint
succession (also polynomials) p), pi(z) . . ., ete.,
such that
f w(@)ph (@) p,(@)dr=36,, . (2)
One can then write
f("’) = U)(.I')Z,, an])n (I) -' 1 (3)

The coefficients a, are given by the standard formula:

«

a, :fj; (@) f(x)dx. 4)

(In connection with each function w(z), one may,
but need not, use the special set of polynomials p,
which are identical with their adjoints p;).

o

Knowledge of all the momontsj z" f(x) dx of the

distribution function determines the values of all
the coefficients a, and thereby the complete ex-
pansion (3) with the preselected weight function and
polynomials. If only the first » moments are known,
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the first 7+ 1 coefficients may be determined exact-
ly, if the (»+ 1)-th adjoint polynomial is of degree 7.

If the function f(z) is the solution of a tmnspmt
equation, it may not be necessary to calculate the
moments first and thence the coeflicients a,. There
exist recurrence relationships between. the successive
coefficients a,, which are analogous to the relation-
ships between the successive moments. One may
then calculate the a,’s one after the other directly.

The significance of the expansion (3) of a distribu-
tion function into a series of polynomials is illus-
trated by the following argument: The first term of
the series contains a polynomial of grade zero, that
1s, the constant a,p,. Therefore the weight function
w(x) itself represents the initial approximation to the
function f(x) to within the factor ayp,. If w(x) were
chosen just equal to the unknown function f(z), the
expansion would reduce to a single term. In gen-
eral, one can expect the expansion to converge rapidly
if he chooses a weight function that constitutes a
sufficiently good approximation to f(z).

For example, one may think of embodying into
w(z) advance information that may be available on
the behavior of f( for very ]dl“(‘ and very small
values of z. It is a matter of convenience in any
particular application how complicated one should
make w(z) to obtain a rapidly convergent expansion.
In the practical application to the X-ray problem,
the choice of the simple exponential function for
w(z) yields convergence that seems quite adequate
for a surprisingly large range of .

The successive terms of the expansion may be
described as corrective terms that are added to the
mitial approximation w(z)=f(x) in order that
successive moments of the approximation function

0 () [@opotaip; (€) +asps (@) 4 - - - - - 1,

coincide with suceessive moments of the actual fune-
tion f(z). For example, suppose that an initial ap-
proximation w(r)~f(r) has been chosen so that

f (@) alin= f@)da (. e., aypo=1). Then, it

may turn out thal the actual value of the

mentj
valuej zw (x)dx.

the initial approximation should be modified by the
addition of a corrective term w(x)a,p,(x) which in-
creases w(x) on the side of positive z and reduces it
on the negative side. Actual calculation of high
order moments should usually be required only if
one has to fit the “tails’” of the distribution function
f(z). It should not introduce substantial corrections
to the main body of the distribution.

first mo-

xf(z) dr is larger than the “estimated”

To correct for this discrepancy

III. Illustrative Examples

As a demonstration, we have examined the La-
guerre polynomial expansions of two otherwise
known distribution functions, namely exp(—uz)
Jo(2tvx) and exp(—ax)F,(—3/2, 1,—z), for £>0.

(Laguerre polynomials are the self-adjoint polyno-
mials with the weight factor exp (—x) over the range
0to ). These distributions represent the solutions
of schematized X-ray or neutron problems [1, 6]; the
former pertains to the constant mean free path case
(k(\) =const.), the second to the case in which
w(N) =a+t bX.

The values obtained from successive polynomial
approximations of the “build-up factors” Jy(2ivx)
and (F,(—3/2, 1,—xz) are compared with the exact
values in tables 1 and The fit is surprisingly
good.? The addition of one more polynomial to the
expansion appears to extend the range of satisfactory
fit by at least an interval éz~3 into the tail of the
distribution function in the direction of inc reasing x
The tables include the results of expansions ip
Laguerre polynomials, as well as expansions in the
related set of U7, polynomials that are introduced
in the next section.

TasrLe 1. Representation nf /(.(2,\ x) by various finite sums

of Ly(x) and U,(x) polynomials
J S aoerT : ‘ ‘ Number of U,
Number of Laguerre polynomials polym,miﬂ]s"
£\ Exact U P
3 | 4 ‘ 5 ‘ 6 7 | | 4 ‘ 5 |
[ R I A R A
0 [ 0.906s| 1001 1 0.4797|  0.9961
| 1| 2.281 | 2.280| 2.545 2. 280
| 2| 4.077| 4.228 | 4.265) _______ I 4,251 4.530 4. 289
4 e | - ‘ 11.30 | 10.82 11.28
6 = el e 24.88 | 24.47 24.72
|
8 | 44.85 | 50.67 | 49.57 | _______ . 49.21 | 49.27 |
10 | 69.32 | 90.01 | 91.25 | _______ 90. 51 91.47 |
12 S| I 157.7 159. 8 |
14 | ___. 227.1 261. 6 264.8 264.0 | 264.4
16 | 332.0 411.8 427.9 | _____. 427.6 : 417.7
18 ‘ ,,,,, 465. 7 622. 8 669.6 | 674.3 | 673.5 |547.9 | 633.7
20 [ - 632. 2 910.3 1018 il()Bh‘ 13 7AN | e | 928.3 }

TasLe 2. Representation of Fy (—3/2, 1, —x) by a sum of

four terms of the Lag/ucne or U, expansion

T Laguerre
T |

0 0. 9953 i1 ‘
1 2,681 | 2688 | 2678

2 4.677 | 4.688 | 4.680

4 9.509 | 9.497 9. 512

6 15. 31 15.21 15.29

8 21. 90 21. 89

10 29.13 29, 22

12 36. 84 37.21 |
14 44, 72 45.80 |
16 52.73 ‘ 54. 99 ‘
18 60. 66 64.71 |
20 68. 32 74. 93 “

To illustrate further the workings of these expan-
sions, one may consider the 1nt001al r(\])rosontat,lon of

the distribution functions as “inverse Laplace
transforms”. In the case of the Bessel function, we
have

3 H. Hurwitz, Jr. has informed us that a similar surprisingly accurate fit was
obtained in neutron calculations following a method of Placzek quoted in [7], p
211 and following.
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where the L,’s are the normalized Laguerre poly-
nomials. Thus, the expansion in Laguerre poly-
nomials is obtained by expanding the Laplace
transform of the distribution function into powers of
(1—t)/t. This expansion converges rapidly near
t=1; that is, in the same general region where the
integrand exhibits a “saddle point” for 2~1. Each
term of the expansion has a pole at the point t=0,
where the Laplace transform is singular. An expan-
sion including about four terms affords a good
approximation of the Laplace transform from {= =
(saddle point for z=0) to perhaps t=1% (saddle point
for z=9).

IV. Calculation of Polynomial Expansions

The procedure for obtaining a convenient poly-
nomial expansion of the distribution of X-ray
photons varies somewhat depending upon the
geometry of the source. Therefore, a number of
different cases will be treated separately.

1. Plane Monodirectional Source: High-Energy
Photons Only

The simplest case, perhaps, is that of a parallel
beam of X-rays of infinite extension that enters a
material perpendicularly through the plane z=0.
The presence of the entrance surface does not cause
any difficulty in this case because no high energy
secondary X-rays will be present at the boundary.

In this case the photon density N (r, u, ) depends
only on the components z and u, of the vectors r
and u. The dependence of N upon the direction
cosine 4, may be expressed by means of an expansion
in Legendre polynomials

N(z,u;, N Z—

[i(x,N) Py(iuy). (6)

The incident beam is represented in eq 1 by the
source term

o, @)

Source=3 (x)

where f(\) is the incident spectrum.
Multiplication of eq 1 by P, (u,), followed by in-
tegration over w yields:

aNl-H

S [(l+1) L 1]=—u<x>Nl<x,x>+

L ANEN NP(1—\ EN)N(@N)F5@) ) (8)

The deep penetration of X-rays is controlled by
the absorption of their most penetrating com-
ponents.[1]. Therefore, one may describe the de-
pendence of the photon density on the depth of
penetration z by means of a sum of polynomials in z
with the weight factor exp (—ax). An obvious
choice for the parameter « in the weight factor is the
value of p(X\) for the most penetrating component of
the radiation, but a less obvious choice of « might
well prove better.

As we mentioned earlier, the ortho-normal set of
polynomials corresponding to the weight factor exp
(—ax) is the set of Laguerre polynomials given by
Ly(ax)=2,(n!/(n—v) 0?) (—ax)’. We accordingly
represent the function N,(z, \) in the form

J\fl(fﬂy )\):e_azznalno‘)Ln(ax)) (9)

a,n()\)zﬁm L,(ax)N(x, N adz. (9a)

The equation that determines a;,(\) is found by
multiplying eq 8 by «l,(ax) and integrating over x
from 0 to «. The integration of the left side of (8)
is carried out by parts. The values of N;; and N,_,
at the limits 0 and « vanish as shown by the follow-
Ing arguments:

1. No radiation penetrates to z= = ;

2. The density of incoming photons at the entrance
surface should be taken equal to zero if the source
term 6 () is included in the range of integration;

3. There are no photons going back out of the
entrance surface, as the treatment is limited to high
photon energies.

The following identity is used in carrying out the

remaining integration, which involves the derivative
of the Laguerre polynomial

dL,(y) "=

n' =0

The integrals of all terms of (8) are thus reduced to
the form (9a). The result is |

2l+1 Z [(l+1)a/l+l n’+lal 1, nt ]_—#O\)GMO\H—

ﬁ Y IVEQ, NP1 — AN @i M) F o). (10)

These equations coincide, for n=0, with those
whose numerical solution has been discussed in a
previous paper [5]. The equations for n >0 can be
solved in succession by the same method, because
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Ficure 1. Chain linkages of the Legendre-Laguerre coefficients.

the sum on the left side contains only terms with
n' < n.

Tt is often of interest to know the density of pho-
tons at a point irrespective of their direction. This
density is represented by the Legendre coeflicient
N,y (z,N). Calculation of the coeflicients a,, (N) of
the Laguerre expansion of N, requires, according to
(10), the calculation of a set of coeflicients a;, with
[>0. Figure 1 shows diagrammatically how, for
instance, the solution of the equation which deter-
mines @,,(\) requires a prior knowledge of the func-
tions ag, Ao, A1, and ag. In turn, the determina-
tion of @, and @y requires a prior knowledge of @y
and ay. If one calculates the moments

bln:JOm 2"N,; (z,\) dz,

instead of calculating directly the Laguerre coeffi-
cients @, one finds the simpler scheme of interde-
pendence illustrated by figure 2. Here, solution of
the equation for b,, requires prior knowledge of
bl—I, =il and b[+1, n—1j t}]us, to ('alCulatC Aoy Mo1y, o2,
and aq one must also calculate aio, @s, @30, @11, @2,
and @.; that is, one must solve numerically a total
of 10 equations This does not involve an excessive
amount of labor.

It may be interesting to relate the representation
of the photon density by means of Laguerre poly-
nomials to its representation as an inverse Laplace
transform:

Ni(z, >\)=2—l—:fe P2, (p, N) dp.

m™

The moments of the distribution N, in depth cor-
- respond to the coefficients of the Taylor expansion
of ¢i(p,\) in powers of p [7]. The expansion of N,
~in Laguerre polynomials is obtained by expanding
#, into a series of terms of type a,p"/(a—p)"*.
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Fraure 2. Chain linkages of the spatial moments of the Legendre
coefficients.

Shaded and unshaded sets of boxes are not interlinked.

Each of these terms has a pole at p=a. Notice
that ¢, itself has a singularity at p=p,, where p, is
the smallest value of w(\) [2]. Thus, the expansion
of the Laplace transform in powers of p/(a—p) may
be expected to converge more rapidly than the ex-
pansion in powers of p if « is given a value near

that of wu,.

2. Plane Isotropic Source

This case, in which radiation is emitted in all
directions from all points of a plane, is familiar in the
study of neutron penetration and diffusion [6, 7].

The distribution from a plane source, isotropic as
well as monodirectional, depends only on the coordi-
nate z of each point r and on the component u, of the
direction of flow w. The isotropic source term to be
entered in eq 1 takes the form:

Sourco:é(, L()‘)

T S
e (11)

Correspondingly, one finds, instead of eq 8

1 a =
s [ 440 251 00 | — kN, Y

A
+ [ AN NP =N AN NN+ 80 00 (12)
If the source is surrounded by an infinitely ex-

tended medium, the radiation is distributed sym-
metrically with respect to the source plane =0

N(@&,u;,N)=N(—z,—u;,\); Ni@,N)=(—1)'N,(—z,]\).
(13)
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In this case the moments of the space distribution
involve an integration over the entire range
— o< g<_w. Owing to the symmetry conditions
(13), if [ is even, all the odd moments of N, are zero
and if /1s odd, all the even moments of NV, are zero.

In the preceding case the nth Laguerre polynomial
added to the expansion reflected, in essence, informa-
tion gathered from the calculation of the n-th moment
of the distribution function. In the present case
every other moment vanishes; that 1s, does not
contribute to our knowledge of the distribution
function; therefore, the method applied in the
preceding case requires some modification. The n-th
polynominal should now reflect information provided
by the value of the 2n-th or 2n-7-th moment. An
appropriate set of polynomials is required for this
purpose.

The weight function should be selected in such a
way that the distribution function has the correct
symmetry. To maintain an analogy with the case of
a monodirectional source, one may choose the weight
function exp (—afz|) for the expansion of the
even-/ Legendre coeflicients V; (x, ). Correspond-
ingly, for odd values of [ the weight function

zexp(— alz|) is perhaps the simplest choice. Wewrite
N, N =e~13 a,WU,(alz]),  Leven
n=0
(14)
Nz N=axe "> a;,(\) Vy(a|z)), [ odd
n=0

where U, and V, are polynominals of degree n still
to be determined.

As indicated in section IV, 1, the first n terms of
each expansion should embody all the information
that is provided by the values of the first n wusable
moments of N; (z,\). In other words, the higher
terms of the expansion (14) should not contribute to
the lower usable moments. In the case of even [,
this implies that the component exp (—a|z|) U, («|z|)
of the function N; (x, N) has vanishing low-order
even moments

J“’ 2 ¢~ U (alz|)dz =0 for n’<<n. (15)
Similarly:
fw $2n’+lax€*a\1‘ 17n(a‘xt)dx:() for n'<n.
(15a)

These conditions determine the sets U, and V, to
within a normalization constant. We find the fol-
lowing expressions

(il

!

a 2n n
[a_y“] 2 T—p2 Y

1 fo) &
Vo) =35 [—a—y+1] U.@)

n—j

(16)

A number of these polynomials are given in table 3.*

TaBLe 3. The first four U, and V,, polynomials
Uy=1 V0=1§

1 1
U1=§ (1= Vl'-‘-g B—v)

- 1
Uz=; G=by+y%) Va=15 15—9y+y?)

5l
Va=—c (105—87y +18y2—y3)

1
Ug=— = 2803
3= g (15=-33y +12y°—y?) 381

To determine coefficients of the expansion (14)
one may utilize the sets of adjoint polynomials U}
and V), which fulfill the orthogonality condition (2)
together with O/, and V,, respectively. These

polynomials are
. 2l Al
U5 )=3 (" )=y
»=0 (21/) 14 (17)

Vi=—% ey (VT

We multiply eq 12 by «U; (az), if [ is even, or by
aVi (ax), if [ is odd, and integrate over z from
— @ to o. Theintegration proceeds as the integra-
tion of (8). The left side integrated by parts yields
one term that vanishes and an integral that contains
the derivative d U} /dz (L even) or d Vi/dz (I odd).
These derivatives fulfill the identities

d U (y)
dy

dVil) < rr
dy '—EO Dn'(y)

_ 1/:_—4(?/)
(18)

Thereby, the integration of eq 12 reduces to inte-
grals of the type

o f _Z U (a)Ni(w, Nda

| even

® -
am(_)\):f_ Vi (ax)Ni(z, Nd x
n+1 -
:§<n_}/—1)%_)1)1 brov—1 (N), [ odd
(19)

41t might be worth mentioning in passing that U, and V. are solutions of
the following 3d order differential equation, with the parameter m equal to zero
and one, respectively

asw aw aw
Y o +(2m+1—3y)—m+2(y—2m——l)d—y—2n W=0

Higher associated polynomials exist having weight functions and adjoint poly-
nomials analogous to those of Uy, and V.

450



n
O
»

\-
\

%
| 7

%

N\

N
\
N

LN
- N\

|
|
?
ﬁ
)
7.

L D\

Ficure 3.—Interlinkages for isotropic sources.

Shaded elements only are involved in the calculation.

where b, , is again the #»/-th spatial moment of
Ny(z,N). The result is

(63

72[_{_1 [(l_l“])”lj-l, 71—1‘*‘](1171, nfl]:_ M()‘)(l'lwa()\)+

A
ﬁ Aok NP A=A+ NV W)+af N6, Leven
R r

2[1’1 "/Z/:‘,“ l(/+ ])(11 +1, n’ +](I’l— 1, 71,’]: _“(k)dln()\)-}—

A
ﬁ ANEN, NP2 +N)ai(),  Lodd
0

D

(20)

These equations can be solved chainwise, much like
the eq 10. Notice that a;,=0 for n<(l)2—1),
since the source term is confined to the equation
with [=0. The equations must be solved in the
following order: @y, @15, @21, @s1, =+ +, Ao, A1y, Aoy -+ -,
(g, Qg + -+ -, Qgz -+ . Here again, as in the case
of the monodirectional source, the calculation of four
terms of the expansion of N, (z, N) requires the
solution of 10 equations.

The fact that a;,=0 for n< ({/2—1) relates to the
known fact that the moment b,,= f x"Ny(z,\N) dx

vanishes when n</ [7]. (Only the moments corre-
sponding to the shaded boxes in fig. 3 are not zero.
The value of each moment b;, depends on the val-
ues of the moments b, ,_, and b;_, ,_;, as shown
in fig. 2. The calculation must begin with by,
whose equation is inhomogeneous, that is from the
upper left corner of the scheme.) Accordingly, the
Laplace transform of N,(z,N), namely, ¢,(p, ), has
a Taylor expansion that begins with the /-th term.
The polynomial expansions (14) of N; are obtained

as inverse Laplace transforms if ¢ is represented as
a series of terms p*/(a*—p»)"*!, for even [, or
p* (ol —pA)nt! for odd [.

3. Plane Monodirectional Source-No Energy
Limitation

The method developed for the treatment of X-rays
from a plane isotropic source can be applied to the
study of radiation from other plane sources. To
this end, one must generalize the preceding treat-
ment somewhat.

It will be remembered that because the source is
symmetric and because of the interlocking of mo-
ments illustrated in figure 2, the only useful moments
are those which correspond to the black squares of
the checkerboard pattern of figure 2. The half-
checkerboard pattern of useful moments (fig. 3)
results from the isotropy of the source (eq 11). In
the general symmetric case, source terms, will be
present in all equations, not just those alone in
which /=0; and the full checkerboard scheme of
moments (fig. 2) will be used.

On the other hand, if the source were antisym-
metric in z, the moments corresponding to the
shaded squares in ficure 2 would all be zero. The
useful moments would be interrelated among them-
selves just as before and would correspond to the
white squares of figure 2.

One can take advantage of this separate inter-
locking of different sets of moments by regarding a
plane monodirectional source as the superposition
of a symmetrical and an antisymmetrical source.
The symmetrical source component injects equal
photon densities in opposite directions perpendicular
to the plane =0 on either side. The antisym-
metrical source injects a photon density equal to
that of the symmetrical source of the positive side
of z=0 and a ‘“negative” photon density of equal
size on the negative side.

The photon distribution N (z,u,,\) due to the
antisymmetric source has symmetry properties
opposite to (14), namely,

Nz, upyy N)=—NO(—z,—u, \);

N (@, N)=(—1""'N(—z,N). (21)
The polynomial expansions of the Legendre coeffi-
cients N/ (z, X\) involve the V, polynomials for even
[ and the U, polynomials for odd [, that is, they
conform to (14) with opposite even-odd condition.
The total photon density from a plane mono-
directional source is thus given by the sum of two
terms
N(@,uz, N)=N (2, %, ) +N @ (@, u;, ).  (22)
N® is determined by a set of equations identical with
(20), except that the source term does not include
the factor 6, N® is determined by a similar
system with even and odd / interchanged.
The total density N(z, u,, N) all but cancels on
the negative side of the source plane, inasmuch as
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N@ is negative there. The residual photon density
for <0 represents radiation that has been back-
scattered behind the source. It should consist of
comparatively low energy photons.

4. Point Isotropic Source

The photon density generated by a point isotropic
source can be derived from the solution corresponding
to a plane isotropic source (case (b)) [7]. This
derivation is especially simple if one calculates only
the total density of photons at each point irrespective
of their direction. For this reason we shall outline
here only sketchily an independent calculation for
the case of a point source.

Owing to the spherical symmetry of the problem,
the distribution function N(r,u,\) depends only on
the magnitude » of r and on the component w,=u-r/r
of u, if the origin of the coordinates is laid at the
source. The source term in eq 1 takes the form
8(r)f(\)/47r® and the transport eq 1 becomes

ON | (1—u?) dN
u- grad N(r, u, \)=u, a,.‘}‘ r  ou,

=—,L(x)N+ﬁd>«k<w, \)
du’ i6(1—u- u' —\+))

Jix 2w
N (e, uf, M)+ 20

(23)

The density N can be expanded in Legendre poly-
nomials of u,, as in eq 6. The transport equation
takes then a form corresponding to (8), whose deri-
vation makes use of the identity

(1—ud) dPy/du, =L ({4 1)(Pi_1— Piy)/21+1).
(+1) (142, L 0%
(2L O N (G- ) Mt
=—;.L()\)Nl(r,)\)+ﬁ AN EN NPy (1—N4-N) No(r N

8(r)f(N) 1o

T4 (24)

In this case we do not derive directly the coeffi-
cients of an expansion of N,(r,\) in polynomials in 7,
but we calculate the moments

f "rn NoGr, Ndmridr=bu,(\).
0

To this end one multiplies (24) by »” and integrates
over all the space. The result is

2l+1[(l+ )(l n)bl-}—ln 1()\)_l(l+n“1) b, 1,n— 1()\)]—

—p()\)bln()\)—{-ﬁ ANEO NP1 — A+ M)V

+ f(N\) 10010 (25)

This set, of equations can be solved chainwise in
exactly the same way as in the plane isotropic case.
Coefficients of the U, and V, polynomials can be
obtained by adding and subtracting moments. The
coefficients in the expansion of the total density of
photons in U, polynomials are related in the follow-
ing way with the corresponding coefficients in the
plane isotropic source case

(aorz)polnt: (zn"l‘ 1)(a0n)plane— 2"(“0. n—1)plane. (2 6)
The coeflicients a;, for the two sources in the case

l#£0 are related in a more complicated way.

5. Point Monodirectional Source

This kind of source may properly be regarded as
the elementary source, since any source can be
represented as an aggregate of point monodirec-
tional sources. The case of a point monodirectional
source is more complicated than the cases considered
above, because it involves explicitly the diffusion of
radiation sidewise from the initial “line of fire.”

Cylindrical coordinates r=(z, p, ¢), with the z
axis lying along the line of fire are appropriate to the
geometry of this problem. The direction vector u
can be described by polar coordinates (8, +¢), so
that the zero azimuth ®=0 refers to a plane through
the z axis and the point r under consideration.
Owing to the cylindrical symmetry of the source the
photon density depends explicitly on the variables
in the following way

N(r)ul X) =N(Z’ p? 07 ¢) x)' (2 7)

To calculate the expression u-grad N explicitly,
one must consider that the gradient is taken for

constant w, which means 6= —d¢. Accordingly
ON | . oN
u-grad N — 52 ~+sin 0 cos @b—p

sm 0 sin ® DN

) e (28)
In this problem the distribution function should be
expanded into Laplace spherical harmonics Y7, (6, ®)
and moments should be taken with respect to both
space coordinates z and p. Therefore we introduce
the set of dependent variables

N?,f(k)=ﬁmp”“dpj:’z"dzjoﬂsin 6d 6

27
|, @Yo oNG0eN

A corresponding four-fold integration applied to eq
1 reduces this equation to the form
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+ f(x) n05p05m0 \/ 47(‘ (3 0)

This equation reduces to the equation for the
plane monodirectional source, as it should do, when
f) m=0. The coefficients N;f(\) can be calcu-
ated accordingly. Once this is done one can pro-
ceed to p=1, m=41, and then on again.

In the preceding cases the calculation of a three-
variable function such as N (r, w,, \) was reduced to
the calculation of a two-dimensional array of co-
efficients N;(N). The present problem involves
five independent variables and reduces to the solu-
tion of an ‘“array of problems,” each of them as
complicated as any of the previous ones and corres-
ponding to one pair of values of p and m. The
genetic connections in the array of problems are
represented in figure 4.

Various polynomial representations of the radial
distribution might suggest themselves in the course
of any practical application. The use of a gaussian
weight function should presumably be convenient
at least in the lower energy range.

V. Numerical Applications*
1. Penetration of 10-Mev Gamma Rays in Lead

The method of section IV, 1 was applied numeri-
cally to the case of a parallel beam of 10.2-Mev
photons entering an infinitely thick layer of lead. A
heavy element was chosen because it is a more diffi-
cult situation to treat with asymptotic methods,
owing to the minimum of the absorption coefficient
near 3 Mev [2]. The same initial energy was
chosen which is used by Karr and Hurwitz in their
asymptotic calculation with the “straight ahead”
approximation [8]. The calculation was extended
only down to photon energies of about 1 Meyv
(=0.49), partly because of the limitation to the
validity of the method indicated in section IV, 1.

*Additional applications were reported by L. V. Spencer and F. A. Stinson
at the New York Meeting of the American Physical Society, February 3, 1951.

This calculation was carried out not onty by the
method of section IV, 1 but also with a correspond-
ing “‘straight ahead” approximation in order to esti-
mate .the error involved in neglecting angular
effects. The straight ahead approximation implies
disregarding the effects of deflections experienced by
high-energy photons in the course of Compton scat-
tering. In this approximation one solves only the
eq 8 for (=0, replacing ON,;/0z by 0N,/ox, so that
N, (z, N) is the only distribution function to be
determined.

Finally, the straight ahead calculation was car-
ried out once more, neglecting the sin’ terms in
the Compton cross section, that is, omitting the
last two terms of the expression

=5 [+

The purpose of this calculation was partly to esti-
mate the importance of these terms and partly to
obtain a proper comparison with the work of Karr
and Hurwitz, who used this approximation in mak-
ing their calculation.

Four terms of the polynomial representation (9)
of the function Ny(z, N\) were worked out with «
set equal to w,, the minimum value of u(\). For
comparison, the coefficients were regrouped to cor-
respond to a polynomial expansion with « set equal
to u(A=0.05) and also to a polynomial expansion
with the weight factor z exp (—pu,z), the last being
perhaps the most realistic weight factor in view of
what is known about the initial and asymptotic
behavior of the build-up factor. The results using
these different weight factors were all in satisfactory
agreement.

Figure 5 shows the differential spectrum given by
calculation according to section IV, 1. The energy
density is plotted as a function of the energy for
various penetrations. Notice the accumulation of
energy in the range~3 Mev, corresponding to the
minimum absorption coefficient.

k()\' 2()\ >\I)+ )\ >\/)2]I~1Thomson

§ 7 BER
2L // /
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[ 7

2 ]

2
| D) 77

Ficure 4. Interlinkages among the radial moments and the
Fourier coefficients of the azimuthal distribution for a point
monodirectional source.

Only shaded elements are involved in the calculation.

453



1.000 t i X =0 1.000 r+7

1 1

.492 t‘ M X=2 .49?}«!—1

1 i}

.242 I: N X=4 242 | -{

1 1

120 |- Um X=6 .|2(TF—-{

|

0588 |— Um X=8 0588 |—-—}

E |||
F

= l |
&

,(; .04 |— ete | |

ﬁw l l

03 |- |

L

N

.02 f— | |

| l

.0l f— |

) —= [HmX=0 | | 1y |

o 2 4 6 8 10 E

ENERGY , Mev

Fireure 5.  Differential spectra I1(E, unx) of the X-ray intensity
at various distances from a plane monodirectional 10.2-Mev
source in Pb.

The position of the source spectrum is indicated by the solid vertical line, its
intensity by the area of the dotted rectangle. The scale of ordinates is normalized
to unit strength of the source at z=0; at greater depths it discounts an exponential
decay corresponding to the absorption coefficient x (3.2 Mev) =um=0.469 cm~! of
the most penetrating component. The dotted line for z=0 departs from the base
line because only a finite number of terms in the expansion were calculated.
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Frcure 7. Differential spectra 1(E, por) of the X-ray intensity
at various distances r from a Co% point isotropic source in
water.

The positions of the two lines of the source spectrum are indicated by the solid
vertical lines, their intensities by the area of the dotted rectangles. The scales of
ordinates are normalized to unit intensity of the 1.33-Mev component of the
source; p;=0.0612 em~! is the narrow-beam absorption coefficient of this com-
ponent.

Freure 6. Differential intensity 1(E, unx) of the 1.04-Mev
component of the spectrum of figure 5 as a function of the
distance from the source, calculated by different methods:
(a) as in figure 5 (“exact”), (b) disregarding the deflection of
scattered photons (‘“‘straight ahead”), (c¢) using the extreme
relativistic form of the Klein-Nishina cross section (also
“straight ahead”).

The point at the end of the top curve is the result of the Karr-Hurwitz
asymptotic calculation.
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Fraure 8.  Semilogarithmic plot of the spectra of figure 7,
which illustrates the trend toward equilibrium.

The higher energy portions of the spectra have been omitted for clarity.

Figure 6 shows the angular calculation compared
with the two straight ahead calculations. The energy
density of the component N=0.49 is plotted against
depth of penetration. Karr and Hurwitz carried
their asympotitic calculations down to p,z=10. It
is possible to compare their results with ours at that
penetration. The circle gives their value and is to
be compared with our upper curve. The two values
are much closer together than was expected from the
accuracy of the caleculations. Notice that the angular
calculation differs by a factor of almost 3 from the
Karr-Hurwitz calculation at 10 mean free paths of
the most penetrating component.

2. Co" Isotropic Point Source in Water

This problem has been investigated experimentally
by White [9]. We have made numerical calcula-
tions by using the method outlined in section 1V, 4.
The coefficients of the first 4 (7, polynomials in
the expansion of Ny(r,X\) have been evaluated.
(Below 0.150 Mev, the coefficients of {/, and /3 were
estimated from the trend of the lower coefficients,
since approximate equilibrium was attained.)

Some results are illustrated in figures 7, 8, and 9.
Figure 7 shows the differential energy spectrum at
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Ficure 9. Comparison of the calculated curve for the build-up

factor with the experimental results of [9].

various depths of penetration. The same results are
plotted semilogarithmically in figure 8 to illustrate
the approach to an equilibrium spectrum at the
lower energies. At equilibrium the curves become
parallel, indicating that the spectrum no longer
changes with increasing penetration.

Figure 9 compares White's experimental build-
up factors, as measured by an ionization cham-
ber (and a counter), with a theoretical build-up
factor. The latter was evaluated by weighting the
:alculated spectra with the theoretical response in
roentgen of a standard free-air ionization chamber
and then again with the specific correction factor of
the Keleket I1I pocket dosimeter [10].  The integral
response over all spectral components was divided
by the calculated response to the primary radiation
to give the theoretical build-up factor. The slight
downward curvature at the end of the theoretical
curve is an artifact that indicates that the 4-term
approximation is beginning to fail at this distance.

VI. Discussion

The analytical developments and the numerical
applications presented in this paper seem to give
some confidence in the following conclusions:

a. A method is available for calculating the dis-
tribution of X-rays in uniform media with a moderate
amount of labor up to fairly large depths of penetra-
tion.

b. This technique can presumably be applied with
success to the broad class of transport phenomena
governed by Boltzmann-type equations. It can
take advantage even of rather crude theoretical
predictions on the behavior of a distribution function

to formulate an initial approximation that can
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thereafter be rapidly improved by straightforward
numerical work.

Nevertheless, much further practical experience
may be required before one can assess with some
confidence the criteria for the most economical
application of this technique. For example, it is not
immediately apparent how far one can conveniently
push the search for an improved weight function.

The present method should probably prove con-
venient for mapping out the distribution of various
radiations within thick layers of scattering and
absorbing materials. The necessary formulae for
calculating the spacial moments of electron distribu-
tions have recently been developed by Lewis [11].

One can conceive of making still broader use of the
methods considered in section II. There is some
question as to whether the fitting of distribution
functions by rapidly converging approximations
should remain a problem by problem affair or
whether some wuseful guiding principles can be
formulated.

The present approach is complementary to the
earlier papers [2, 3] which dealt primarily with the
asymptotic behavior of the photon distribution and
which made extensive use of the method of Laplace
transforms. The work reported in those papers has
now been developed into a more comprehensive

treatment which will be the object of a separate
report.

Continuation of this work will aim primarily in two
directions:

a. To evaluate the effect of boundaries between
two media and, in general, to consider the propaga-
tion through inhomogeneous barriers.

b. To include the effect of X-ray regeneration by
the cascade shower mechanism, which becomes
important at high energies.
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